In [10]:
import pandas
import numpy as np
import mpld3
import matplotlib
import matplotlib.pyplot as plt
import datetime
matplotlib.style.use('ggplot')
%matplotlib inline
In [11]:
data = pandas.read_csv('/tmp/inspector_demo.csv',
parse_dates=['run_start_timestamp', 'run_check_start_timestamp', 'run_check_end_timestamp'],
date_parser=lambda d: datetime.datetime.strptime(d, "%Y-%m-%d %H:%M:%S"))
print(type(data['run_start_timestamp'][0]))
data.head()
Out[11]:
In [12]:
[group['run_check_violation_cnt'].sum() for key, group in data.groupby('instance_name')]
Out[12]:
In [36]:
history_raw = [pandas.Series(df['run_check_violation_cnt'].values, index=df['run_start_timestamp'].values)
for df in [group[['run_start_timestamp', 'run_check_violation_cnt']]
for key, group in data.groupby('instance_name')]]
# Resample each timeseries by minute
history = [hist.resample('H', how='count') for hist in history_raw]
history[0].where(history[0].values >= datetime.datetime.now() - datetime.timedelta(days=7))
In [6]:
series[0].resample('D', how='count')
Out[6]:
In [ ]:
plots = [plt.figure() for h in history]
In [ ]: