In [1]:
%matplotlib inline
# Code source: Gaël Varoquaux
# Andreas Müller
# Modified for documentation by Jaques Grobler
# License: BSD 3 clause
# numpy
import numpy as np
import scipy as sp
# Plotting
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
# Sklearn tools
from sklearn.cross_validation import train_test_split
from sklearn.preprocessing import StandardScaler
from sklearn.datasets import make_moons, make_circles, make_classification
from sklearn.naive_bayes import GaussianNB
from sklearn.discriminant_analysis import LinearDiscriminantAnalysis
from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis
In [2]:
# Setup for example classification problems
## Define the clasifiers to use
names = ["Naive Bayes",
"Linear Discriminant Analysis",
"Quadratic Discriminant Analysis"]
classifiers = [GaussianNB(),
LinearDiscriminantAnalysis(),
QuadraticDiscriminantAnalysis()]
In [3]:
# Define sample data to test classification methods
n_samples = 200
n_features = 2
## Make a linearly separable set
X, y = make_classification(n_features=n_features, n_samples=n_samples,
n_redundant=0, n_informative=n_features,
random_state=0, n_clusters_per_class=1)
rng = np.random.RandomState(2)
X += 2 * rng.uniform(size=X.shape)
linearly_separable = (X, y)
datasets = [make_moons(noise=0.3, random_state=0, n_samples=n_samples),
make_circles(noise=0.2, factor=0.5, random_state=1, n_samples=n_samples),
linearly_separable]
In [4]:
# Plot parameters
h = .05 # step size in the mesh
figure = plt.figure(0, figsize=(18, 9), facecolor='white')
figure.clf()
# Script fot making plot
i = 1
# iterate over datasets
for ds in datasets:
# Preprocess
## Important! shift and scale the data before fitting classifiers
X, y = ds
X = StandardScaler().fit_transform(X)
# Cross validation setup: Define the training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=.4)
# Define a grid for plotting
x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
xx, yy = np.meshgrid(np.arange(x_min, x_max, h),
np.arange(y_min, y_max, h))
# Plott the sample dataset
cm = 'bwr'#plt.cm.RdBu
cm_bright = ListedColormap(['#0000FF', '#FF0000'])
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
# Plot the training points
ax.scatter(X_train[:, 0], X_train[:, 1], label='training',
c=y_train, cmap=cm_bright, alpha=.4)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], label='test',
c=y_test, cmap=cm_bright)
ax.legend(loc='best')
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
i += 1
# iterate over classifiers
for name, clf in zip(names, classifiers):
ax = plt.subplot(len(datasets), len(classifiers) + 1, i)
## Fit the training set
## This is the key step. Passing the `clf` classifier the training set
## give the data needed to fit the coeficients of the decision function
clf.fit(X_train, y_train)
##
## Cross validation score calculation
score = clf.score(X_test, y_test)
##
# Plot the decision boundary. For that, we will assign a color to each
# point in the mesh [x_min, m_max]x[y_min, y_max].
if hasattr(clf, "decision_function"):
Z = clf.decision_function(np.c_[xx.ravel(), yy.ravel()])
else:
Z = clf.predict_proba(np.c_[xx.ravel(), yy.ravel()])[:, 1] - .5
# Put the result into a color plot
Z = Z.reshape(xx.shape)
maxabs = max(abs(Z.min()), abs(Z.max()))
minabs = min(abs(Z.min()), abs(Z.max()))
levels = sp.linspace(-minabs/2.0, minabs/2.0, 6)
levels[0] = -(maxabs+minabs)
levels[-1] = (maxabs+minabs)
cm='bwr'
ax.contourf(xx, yy, Z, levels=levels, cmap=cm, alpha=.3)
ax.contour(xx, yy, Z, levels=[0,], color='k', linewidth=4.0)
# Plot also the training points
ax.scatter(X_train[:, 0], X_train[:, 1], c=y_train, cmap=cm_bright)
# and testing points
ax.scatter(X_test[:, 0], X_test[:, 1], c=y_test, cmap=cm_bright,
alpha=0.6)
ax.set_xlim(xx.min(), xx.max())
ax.set_ylim(yy.min(), yy.max())
ax.set_xticks(())
ax.set_yticks(())
ax.set_title(name)
ax.text(xx.max() - .3, yy.min() + .3, ('%.2f' % score).lstrip('0'),
size=15, horizontalalignment='right')
i += 1
figure.subplots_adjust(left=.02, right=.98)
plt.show()
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]:
In [ ]: