In [3]:
%matplotlib inline
from pycocotools.coco import COCO
import numpy as np
import skimage.io as io
import matplotlib.pyplot as plt
import pylab
pylab.rcParams['figure.figsize'] = (10.0, 8.0)
In [4]:
dataDir='..'
dataType='train2014'
annFile='%s/annotations/instances_%s.json'%(dataDir,dataType)
In [5]:
# initialize COCO api for instance annotations
coco=COCO(annFile)
In [6]:
# display COCO categories and supercategories
cats = coco.loadCats(coco.getCatIds())
nms=[cat['name'] for cat in cats]
print 'COCO categories: \n\n', ' '.join(nms)
nms = set([cat['supercategory'] for cat in cats])
print 'COCO supercategories: \n', ' '.join(nms)
In [7]:
# get all images containing given categories, select one at random
catIds = coco.getCatIds(catNms=['person','dog','skateboard']);
imgIds = coco.getImgIds(catIds=catIds );
img = coco.loadImgs(imgIds[np.random.randint(0,len(imgIds))])[0]
In [8]:
# load and display image
# I = io.imread('%s/images/%s/%s'%(dataDir,dataType,img['file_name']))
# use url to load image
I = io.imread('http://mscoco.org/images/%d'%(img['id']))
plt.figure(); plt.axis('off')
plt.imshow(I)
plt.show()
In [9]:
# load and display instance annotations
plt.imshow(I); plt.axis('off')
annIds = coco.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)
anns = coco.loadAnns(annIds)
coco.showAnns(anns)
In [10]:
# initialize COCO api for person keypoints annotations
annFile = '%s/annotations/person_keypoints_%s.json'%(dataDir,dataType)
coco_kps=COCO(annFile)
In [11]:
# load and display keypoints annotations
plt.imshow(I); plt.axis('off')
ax = plt.gca()
annIds = coco_kps.getAnnIds(imgIds=img['id'], catIds=catIds, iscrowd=None)
anns = coco_kps.loadAnns(annIds)
coco_kps.showAnns(anns)
In [12]:
# initialize COCO api for caption annotations
annFile = '%s/annotations/captions_%s.json'%(dataDir,dataType)
coco_caps=COCO(annFile)
In [13]:
# load and display caption annotations
annIds = coco_caps.getAnnIds(imgIds=img['id']);
anns = coco_caps.loadAnns(annIds)
coco_caps.showAnns(anns)
plt.imshow(I); plt.axis('off')
plt.show()