Susceptibility to substitution

1 Setup

Flags and settings.


In [1]:
SAVE_FIGURES = False
PAPER_FEATURES = ['frequency', 'aoa', 'clustering', 'letters_count',
                  'synonyms_count', 'orthographic_density']
BIN_COUNT = 4

Imports and database setup.


In [2]:
import pandas as pd
import seaborn as sb
import numpy as np
%matplotlib inline
import matplotlib.pyplot as plt
from progressbar import ProgressBar
from statsmodels.stats.proportion import multinomial_proportions_confint

%cd -q ..
from brainscopypaste.conf import settings
%cd -q notebooks
from brainscopypaste.mine import Model, Time, Source, Past, Durl
from brainscopypaste.db import Substitution
from brainscopypaste.utils import init_db, session_scope, stopwords
engine = init_db()

Build our data.


In [3]:
def qposition(values, position):
    value = values[position]
    if np.isnan(value):
        return np.nan, np.nan
    finite_values = values[np.isfinite(values)]
    svalues = np.array(sorted(finite_values))
    length = len(svalues)
    ours = np.where(svalues == value)[0]
    return ours[0] / length, (ours[-1] + 1) / length

In [4]:
model = Model(time=Time.continuous, source=Source.all, past=Past.last_bin, durl=Durl.exclude_past, max_distance=2)
stop_poses = ['C', 'F', 'I', 'M', 'P', 'S', 'U']

data = []

# First get the exact substitution ids so we can get a working progress bar
# in the next step.
with session_scope() as session:
    substitutions = session.query(Substitution.id)\
        .filter(Substitution.model == model)
    print("Got {} substitutions for model {}"
          .format(substitutions.count(), model))
    substitution_ids = [id for (id,) in substitutions]

for substitution_id in ProgressBar(term_width=80)(substitution_ids):
    with session_scope() as session:
        substitution = session.query(Substitution).get(substitution_id)
        
        # Prepare these arrays for use in stopword-checking.
        dslice = slice(substitution.start,
                       substitution.start
                       + len(substitution.destination.tokens))
        lemmas = substitution.source.lemmas[dslice]
        tokens = substitution.source.tokens[dslice]
        tags = substitution.source.tags[dslice]
        is_stopword = np.array([(lemma in stopwords)
                                or (token in stopwords)
                                for (lemma, token) in zip(lemmas, tokens)])
        
        for feature in Substitution.__features__:
            
            # Get feature values for the sentence and its words.
            sentence_values, _ = substitution.\
                source_destination_features(feature)
            sentence_values_rel, _ = substitution.\
                source_destination_features(feature,
                                            sentence_relative='median')
            source_type, _ = Substitution.__features__[feature]
            words = getattr(substitution.source, source_type)[dslice]
            
            # Find the bins we'll use.
            # If there are only NaNs or only one feature value
            # we can't get bins on this sentence, so we want at least
            # 2 different feature values.
            # We also skip feature values if the source word is not coded
            # for the feature, as it would skew the 'appeared' 
            # distributions compared to the distribution of substituted
            # words. (For instance, the sum of categories would not be 
            # equal to the sum of H0s in the very last graphs, 
            # on sentencequantile. It also lets us make meaningful H0
            # comparison in all the other feature-based graphs.)
            non_sw_values = sentence_values.copy()
            non_sw_values[is_stopword] = np.nan
            non_sw_value_set = \
                set(non_sw_values[np.isfinite(non_sw_values)])
            if (len(non_sw_value_set) <= 1 or
                    np.isnan(sentence_values[substitution.position])):
                allnans = [np.nan] * len(non_sw_values)
                bins = allnans
                non_sw_values = allnans
                sentence_values = allnans
                sentence_values_rel = allnans
            else:
                bins = pd.cut(non_sw_values, BIN_COUNT, labels=False)
            
            # For each non-stopword, store its various properties.
            for i, (word, tag, skip) in enumerate(zip(words, tags,
                                                      is_stopword)):
                if skip:
                    # Drop any stopwords.
                    continue

                # Get a readable POS tag
                rtag = tag[0]
                rtag = 'Stopword-like' if rtag in stop_poses else rtag
                
                # Get the word's quantile position.
                start_quantile, stop_quantile = qposition(non_sw_values, i)

                # Store the word's properties.
                data.append({
                    'cluster_id': substitution.source.cluster.sid,
                    'destination_id': substitution.destination.sid,
                    'occurrence': substitution.occurrence,
                    'source_id': substitution.source.sid,
                    'position': substitution.position,
                    'feature': feature,
                    'word': word,
                    'POS': tag,
                    'rPOS': rtag,
                    'target': i == substitution.position,
                    'value': sentence_values[i],
                    'value_rel': sentence_values_rel[i],
                    'bin': bins[i],
                    'start_quantile': start_quantile,
                    'stop_quantile': stop_quantile,
                    'word_position': i
                })

words = pd.DataFrame(data)
del data


Got 3641 substitutions for model Model(time=Time.continuous, source=Source.all, past=Past.last_bin, durl=Durl.exclude_past, max_distance=2)
100% (3641 of 3641) |######################| Elapsed Time: 0:01:23 Time: 0:01:23

Assign proper weight to each substitution.


In [5]:
divide_target_all_sum = \
    lambda x: x / (words.loc[x.index].target 
                   * words.loc[x.index].weight_all).sum()
divide_target_feature_sum = \
    lambda x: x / (words.loc[x.index].target 
                   * words.loc[x.index].weight_feature).sum()

# Weight is 1, at first (or 1 for feature-coded substitutions).
words['weight_all'] = 1
words['weight_feature'] = 1 * np.isfinite(words.value)

# Divided by the number of substitutions that share a durl.
print('Computing shared durl (all) weights')
words['weight_all'] = words\
    .groupby(['destination_id', 'occurrence', 'position',
              'feature'])['weight_all']\
    .transform(divide_target_all_sum)
print('Computing shared durl (per-feature) weights')
words['weight_feature'] = words\
    .groupby(['destination_id', 'occurrence', 'position',
              'feature'])['weight_feature']\
    .transform(divide_target_feature_sum)

# Divided by the number of substitutions that share a cluster.
# (Using divide_target_sum, where we divide by the sum of weights,
# ensures we count only one for each group of substitutions sharing
# a same durl.)
print('Computing shared cluster (all) weights')
words['weight_all'] = words\
    .groupby(['cluster_id', 'feature'])['weight_all']\
    .transform(divide_target_all_sum)
print('Computing shared cluster (per-feature) weights')
words['weight_feature'] = words\
    .groupby(['cluster_id', 'feature'])['weight_feature']\
    .transform(divide_target_feature_sum)

# Add a weight measure for word appearances, weighing a word
# by the number of words that appear with it in its sentence.
# And the same for substitutions *whose source is coded by the feature*.
# (This lets us have the sum of categories equal the sum of H0s
# in the very last graphs [on sentencequantile], and make meaningful H0
# comparison values for all the other feature-based graphs.)
print('Computing appeared (all) weights')
words['weight_all_appeared'] = words\
    .groupby(['source_id', 'destination_id', 'occurrence',
              'position', 'feature'])['weight_all']\
    .transform(lambda x: x / len(x))
print('Computing appeared (per-feature) weights')
words['weight_feature_appeared'] = words\
    .groupby(['source_id', 'destination_id', 'occurrence',
              'position', 'feature'])['weight_feature']\
    .transform(lambda x: x / np.isfinite(words.loc[x.index].value).sum())

# In the above, note that when using a model that allows for multiple
# substitutions, those are stored as two separate substitutions in the
# database. This is ok, since we count the number of times a word is
# substituted compared to what it would have been substituted at
# random (i.e. we measure a bias, not a probability). Which leads us to
# count multiple substitutions in a same sentence as *different*
# substitutions, and to reflect this in the weights we must group
# substitutions by the position of the substituted word also (which is
# what we do here).


Computing shared durl (all) weights
Computing shared durl (per-feature) weights
Computing shared cluster (all) weights
Computing shared cluster (per-feature) weights
Computing appeared (all) weights
Computing appeared (per-feature) weights

Prepare feature ordering.


In [6]:
ordered_features = sorted(
    Substitution.__features__,
    key=lambda f: Substitution._transformed_feature(f).__doc__
)

Prepare counting functions.


In [7]:
target_all_counts = \
    lambda x: (x * words.loc[x.index, 'weight_all']).sum()
target_feature_counts = \
    lambda x: (x * words.loc[x.index, 'weight_feature']).sum()
appeared_all_counts = \
    lambda x: words.loc[x.index, 'weight_all_appeared'].sum()
appeared_feature_counts = \
    lambda x: words.loc[x.index, 'weight_feature_appeared'].sum()
susty_all = \
    lambda x: target_all_counts(x) / appeared_all_counts(x)
susty_feature = \
    lambda x: target_feature_counts(x) / appeared_feature_counts(x)

2 On POS


In [8]:
# Compute POS counts.
susties_pos = words[words.feature == 'aoa']\
    .groupby('rPOS')['target']\
    .aggregate({'susceptibility': susty_all,
                'n_substituted': target_all_counts,
                'n_appeared': appeared_all_counts})\
    .rename_axis('POS group')

# Plot.

fig, axes = plt.subplots(2, 1, figsize=(8, 8))
# Raw substituted and appeared values.
susties_pos[['n_substituted', 'n_appeared']]\
    .plot(ax=axes[0], kind='bar', rot=0)
# With their CIs.
total_substituted = susties_pos.n_substituted.sum()
cis = multinomial_proportions_confint(susties_pos.n_substituted.round(),
                                      method='goodman')
for i in range(len(susties_pos)):
    axes[0].plot([i-.125, i-.125], cis[i] * total_substituted,
                 lw=4, color='grey',
                 label='95% CI' if i == 0 else None)
axes[0].legend()
# Substitutability values.
susties_pos['susceptibility']\
    .plot(ax=axes[1], kind='bar', legend=True, ylim=(0, 2), rot=0)
axes[1].set_ylabel(r'$susceptibility = \frac{substituted}{appeared}$')
# With their CIs.
for i in range(len(susties_pos)):
    axes[1].plot([i, i], (cis[i] * total_substituted 
                          / susties_pos.n_appeared.iloc[i]),
                 lw=4, color='grey',
                 label='95% CI' if i == 0 else None)
axes[1].legend(loc='best')
# Save if necessary.
if SAVE_FIGURES:
    fig.savefig(settings.FIGURE.format('all-susceptibilities-pos'),
                bbox_inches='tight', dpi=300)


Note on confidence intervals

Here we're in case (3) of the explanation below on confidence intervals (in section 3): it's really like a multinomial sampling, but not quite since not all POS tags are available to sample from in all the sentences. There's no way out of this, so we're going to use multinomial CIs. We can safely scale all the bars and CIs to their respective n_appeared values, since that is an independent given before the sampling.

Are the appeared and substituted proportions statistically different?

The only test we can easily do is a multinomial goodness-of-fit. This tells us if the n_substituted counts are significantly different from the reference n_appeared counts.

From there on we know a few things:

  • Comparing a given POS's n_substituted count to its reference n_appeared count tells us if it's statistically different (< or >). We know this will be true individually for any POS that is out of its confidence region for the global goodness-of-fit test, since it's a weaker hypothesis (so the null rejection region will be wider, and the POS we're looking at is already in the rejection region for the global test). We don't know if it'll be true or not for POSes that are in their confidence region for the global test.
  • Jointly comparing two POS's n_substituted counts to their reference n_appeared counts tells us if there is bias for one w.r.t. the other. This is also true for all pairs of POSes that are on alternate sides of their confidence region in the global test (for the same reasons as in the previous point). We don't know if it's true for the other POSes though.

In [9]:
# Test the n_substituted proportions are different from
# the n_appeared proportions
total_appeared = susties_pos.n_appeared.sum()
appeared_cis = multinomial_proportions_confint(
    susties_pos.n_appeared.round(), method='goodman')
differences = [(s < ci[0] * total_appeared) or (s > ci[1] * total_appeared)
               for s, ci in zip(susties_pos.n_substituted, appeared_cis)]
are_different = np.any(differences)
if are_different:
    print("Appeared and substituted proportions are different with p < .05")
    print("The following POS tags are out of their confidence region:",
          list(susties_pos.index[np.where(differences)[0]]))
else:
    print("Appeared and substituted proportions cannot be "
          "said different with p value better than .05")


Appeared and substituted proportions are different with p < .05
The following POS tags are out of their confidence region: ['N', 'R', 'Stopword-like']

3 On global feature values

Prepare plotting functions, for bin and quartile susceptibilities for each feature.


In [10]:
def print_significance(feature, h0s, heights):
    h0_total = h0s.sum()
    bin_count = len(h0s)
    print()
    print('-' * len(feature))
    print(feature)
    print('-' * len(feature))
    for n_stars, alpha in enumerate([.05, .01, .001]):
        h0_cis = multinomial_proportions_confint(h0s.round(),
                                                 method='goodman',
                                                 alpha=alpha)
        differences = ((heights < h0_cis[:, 0] * h0_total)
                       | (heights > h0_cis[:, 1] * h0_total))
        are_different = np.any(differences)
        stars = ' ' * (3 - n_stars) + '*' * (1 + n_stars)
        if are_different:
            bins_different = np.where(differences)[0]
            bins_different += np.ones_like(bins_different)
            print(stars + ' Target different H_0 with p < {}.'
                  ' Bins [1; {}] out of region: {}'
                  .format(alpha, bin_count, bins_different.tolist()))
        else:
            print('     Target NOT different from H_0 (p > {})'
                  .format(alpha))
            break

In [11]:
def plot_bin_susties(**kwargs):
    data = kwargs['data']
    feature = data.iloc[0].feature
    color = kwargs.get('color', 'blue')
    relative = kwargs.get('relative', False)
    quantiles = kwargs.get('quantiles', False)
    value = data.value_rel if relative else data.value
    
    # Compute binning.
    cut, cut_kws = ((pd.qcut, {}) if quantiles
                    else (pd.cut, {'right': False}))
    for bin_count in range(BIN_COUNT, 0, -1):
        try:
            value_bins, bins = cut(value, bin_count, labels=False,
                                   retbins=True, **cut_kws)
            break
        except ValueError:
            pass
    middles = (bins[:-1] + bins[1:]) / 2

    # Compute bin counts. Note here the bins are computed on the
    # distribution of observed substitutions, not the simulated aggregated
    # distributions of cluster-unit substitutions. But since it's mostly
    # deduplication that the aggregation process addresses, the bins
    # should be mostly the same. This could be corrected by computing
    # bins on the aggregate distribution (not hard), but it's really
    # not important now.
    heights = np.zeros(bin_count)
    h0s = np.zeros(bin_count)
    for i in range(bin_count):
        heights[i] = (data[data.target & (value_bins == i)]
                      .weight_feature.sum())
        h0s[i] = data[value_bins == i].weight_feature_appeared.sum()
    total = sum(heights)
    cis = (multinomial_proportions_confint(heights.round(),
                                           method='goodman')
           * total / h0s[:, np.newaxis])
    
    # Plot them.
    sigmaphi = (r'\sigma_{\phi'
                + ('_r' if relative else '')
                + '}')
    plt.plot(middles, heights / h0s, 
             color=color, label='${}$'.format(sigmaphi))
    plt.fill_between(middles, cis[:, 0], cis[:, 1],
                     color=sb.desaturate(color, 0.2), alpha=0.2)
    plt.plot(middles, np.ones_like(middles), '--',
             color=sb.desaturate(color, 0.2),
             label='${}^0$'.format(sigmaphi))
    plt.xlim(middles[0], middles[-1])
    plt.ylim(0, 2)
    
    # Test for statistical significance
    print_significance(feature, h0s, heights)

In [12]:
def plot_grid(data, features, filename,
              plot_function, xlabel, ylabel, plot_kws={}):
    g = sb.FacetGrid(data=data[data['feature']
                               .map(lambda f: f in features)],
                     sharex=False, sharey=True,
                     col='feature', hue='feature',
                     col_order=features, hue_order=features,
                     col_wrap=3, aspect=1.5, size=3)
    g.map_dataframe(plot_function, **plot_kws)
    g.set_titles('{col_name}')
    g.set_xlabels(xlabel)
    g.set_ylabels(ylabel)
    for ax in g.axes.ravel():
        legend = ax.legend(frameon=True, loc='best')
        if not legend:
            # Skip if nothing was plotted on these axes.
            continue
        frame = legend.get_frame()
        frame.set_facecolor('#f2f2f2')
        frame.set_edgecolor('#000000')
        ax.set_title(Substitution._transformed_feature(ax.get_title())
                     .__doc__)
    if SAVE_FIGURES:
        g.fig.savefig(settings.FIGURE.format(filename),
                      bbox_inches='tight', dpi=300)

3.1 Bins of distribution of appeared global feature values


In [13]:
plot_grid(words, ordered_features,
          'all-susceptibilities-fixedbins_global',
          plot_bin_susties, r'$\phi$', 'Susceptibility')


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
     Target NOT different from H_0 (p > 0.05)

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [3]
     Target NOT different from H_0 (p > 0.001)

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [2, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

Note on how graphs and their confidence intervals are computed here

There are three ways I can do a computation like above:

(1) For each word, we look at how many times it is substituted versus how many times it appears in a position where it could have been substituted. This is the word's susceptibility, $\sigma(w)$. Then for each feature bin $b_i$ we take all the words such that $\phi(w) \in b_i$, average, and compute an asymptotic confidence interval based on how many words are in the bin. This fails for sentence-relative features, because a given word has different feature values depending on the sentence it appears in. So we discard this.

(2) Do the same but at the feature value level. So we define a feature value susceptibility, $\sigma_{\phi}(f)$, and compute a confidence interval based on how many different feature values we have in the bin. The idea behind (1) and (2) is to look at the bin middle-value like the relevant object we're measuring, and we have several measures for each bin middle-value, hence the confidence interval. In each bin $b_i$ we have:

$$\left< \sigma_{\phi}(f) \right>_{f \in b_i}$$

The problem with both (1) and (2) is that there's no proper $\mathcal{H}_0$ value, because the averages in the bins don't necessarily equal 1 under $\mathcal{H}_0$. Also, we can't check that there is consistency, showing that the sum of susceptibility values of the bins is 1. Hence case 3:

(3) Consider that we sample a multinomial process: each substitution is in fact the sampling of a feature value from one of the four bins. In that case, we can compute multinomial proportion CIs. This is also not completely satisfactory since in most cases not all feature values are available at the time of sampling, since most sentences don't range over all the feature's values, but it's what lets us compute proper null hypotheses: in each bin $b_i$ we have a value of $\sigma_{\phi}(b_i)$, and the sum of those should be the same under $\mathcal{H}_0$ as in the experiment (in practice in the graphs, we divide by the values under $\mathcal{H}_0$, and the reference is $\sigma_{\phi}^0(b_i) = 1$).

Here and below, we're always in case (3).


In [14]:
plot_grid(words[~(((words.feature == 'letters_count') 
                   & (words.value > 15))
                  | ((words.feature == 'aoa') 
                     & (words.value > 15))
                  | ((words.feature == 'clustering') 
                     & (words.value > -3)))],
          PAPER_FEATURES,
          'paper-susceptibilities-fixedbins_global',
          plot_bin_susties, r'$\phi$', 'Susceptibility')


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [2, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

3.2 Quantiles of distribution of appeared global feature values


In [15]:
plot_grid(words, ordered_features,
          'all-susceptibilities-quantilebins_global', plot_bin_susties,
          r'$\phi$', 'Susceptibility',
          plot_kws={'quantiles': True})


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 2] out of region: [1, 2]
  ** Target different H_0 with p < 0.01. Bins [1; 2] out of region: [1, 2]
 *** Target different H_0 with p < 0.001. Bins [1; 2] out of region: [1, 2]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
     Target NOT different from H_0 (p > 0.05)

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
     Target NOT different from H_0 (p > 0.01)

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

Note on confidence intervals

Here we're again in case (2) of the above explanation on confidence intervals (in section 3.1), since we're just binning by quantiles instead of fixed-width bins.


In [16]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-quantilebins_global', plot_bin_susties,
          r'$\phi$', 'Susceptibility',
          plot_kws={'quantiles': True})


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

4 On sentence-relative feature values

4.1 Bins of distribution of appeared sentence-relative values


In [17]:
plot_grid(words, ordered_features,
          'all-susceptibilities-fixedbins_sentencerel',
          plot_bin_susties, r'$\phi_r$', 'Susceptibility',
          plot_kws={'relative': True})


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [2, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [2, 3]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [2, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [2, 3]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
     Target NOT different from H_0 (p > 0.05)

----------
clustering
----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [4]
     Target NOT different from H_0 (p > 0.01)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
     Target NOT different from H_0 (p > 0.001)

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 3, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
     Target NOT different from H_0 (p > 0.001)

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 3]
     Target NOT different from H_0 (p > 0.01)

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

In [18]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-fixedbins_sentencerel',
          plot_bin_susties, r'$\phi_r$', 'Susceptibility',
          plot_kws={'relative': True})


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 2, 3, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [2, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [2, 3]

----------
clustering
----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [4]
     Target NOT different from H_0 (p > 0.01)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3]
     Target NOT different from H_0 (p > 0.001)

4.2 Quantiles of distribution of appeared sentence-relative values


In [19]:
plot_grid(words, ordered_features,
          'all-susceptibilities-quantilebins_sentencerel',
          plot_bin_susties, r'$\phi_r$', 'Susceptibility',
          plot_kws={'quantiles': True, 'relative': True})


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1]
     Target NOT different from H_0 (p > 0.01)

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1]
     Target NOT different from H_0 (p > 0.001)

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

In [20]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-quantilebins_sentencerel',
          plot_bin_susties, r'$\phi_r$', 'Susceptibility',
          plot_kws={'quantiles': True, 'relative': True})


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [4]

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1]
     Target NOT different from H_0 (p > 0.001)

5 On quantiles and bins of the in-sentence distributions

5.1 In-sentence bins (of distribution of values in each sentence)


In [21]:
def plot_sentencebin_susties(**kwargs):
    data = kwargs['data']
    color = kwargs.get('color', 'blue')
    feature = data.iloc[0].feature
    
    # Compute bin counts
    heights = np.zeros(BIN_COUNT)
    h0s = np.zeros(BIN_COUNT)
    for i in range(BIN_COUNT):
        heights[i] = (data[data.target & (data.bin == i)]
                      .weight_feature.sum())
        h0s[i] = data[data.bin == i].weight_feature_appeared.sum()
    total = sum(heights)
    cis = (multinomial_proportions_confint(heights.round(),
                                           method='goodman')
           * total / h0s[:, np.newaxis])
    
    # Plot them.
    sigmaphi = r'\sigma_{bin_{\phi}}'
    x = range(1, BIN_COUNT + 1)
    plt.plot(x, heights / h0s, color=color, label='${}$'.format(sigmaphi))
    plt.fill_between(x, cis[:, 0], cis[:, 1],
                     color=sb.desaturate(color, 0.2), alpha=0.2)
    plt.plot(x, np.ones_like(x), '--',
             color=sb.desaturate(color, 0.2),
             label='${}^0$'.format(sigmaphi))
    plt.xticks(x)
    plt.ylim(0, None)
    
    # Test for significance.
    print_significance(feature, h0s, heights)

In [22]:
plot_grid(words, ordered_features,
          'all-susceptibilities-sentencebins',
          plot_sentencebin_susties, r'$bin_{\phi}$ in sentence',
          'Susceptibility')


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1]
     Target NOT different from H_0 (p > 0.001)

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

In [23]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-sentencebins',
          plot_sentencebin_susties, r'$bin_{\phi}$ in sentence',
          'Susceptibility')


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

5.2 In-sentence quantiles (of distribution of values in each sentence)

For each feature, count the sum of weights in each bin and plot that.


In [24]:
def bound(limits, values):
    left, right = limits
    assert left < right
    return np.maximum(left, np.minimum(right, values))

In [25]:
def plot_sentencequantile_susties(**kwargs):
    data = kwargs['data']
    color = kwargs.get('color', 'blue')
    feature = data.iloc[0].feature
    
    # Compute bin counts
    heights = np.zeros(BIN_COUNT)
    h0s = np.zeros(BIN_COUNT)
    step = 1 / BIN_COUNT
    for i in range(BIN_COUNT):
        limits = [i * step, (i + 1) * step]
        contributions = ((bound(limits, data.stop_quantile)
                          - bound(limits, data.start_quantile))
                         / (data.stop_quantile - data.start_quantile))
        heights[i] = \
            (contributions * data.weight_feature)[data.target].sum()
        h0s[i] = (contributions * data.weight_feature_appeared).sum()
    total = sum(heights)
    cis = (multinomial_proportions_confint(heights.round(),
                                           method='goodman')
           * total)# / h0s[:, np.newaxis])
    
    # Plot them.
    sigmaphi = r'\sigma_{q_{\phi}}'
    x = range(1, BIN_COUNT + 1)
    plt.plot(x, heights,# / h0s,
             color=color, label='${}$'.format(sigmaphi))
    plt.fill_between(x, cis[:, 0], cis[:, 1],
                     color=sb.desaturate(color, 0.2), alpha=0.2)
    plt.plot(x, h0s, '--',
             color=sb.desaturate(color, 0.2),
             label='${}^0$'.format(sigmaphi))
    plt.xticks(x)
    plt.ylim(0, None)
    
    # Test for significance.
    print_significance(feature, h0s, heights)

In [26]:
plot_grid(words, ordered_features,
          'all-susceptibilities-sentencequantiles',
          plot_sentencequantile_susties, r'$q_{\phi}$ in sentence',
          'Number of substitutions\n(weighted to cluster unit)')


-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
phonemes_count
--------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

---------------
syllables_count
---------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
     Target NOT different from H_0 (p > 0.001)

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

-----------
betweenness
-----------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1]
     Target NOT different from H_0 (p > 0.001)

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

------
degree
------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1]

---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [4]

--------
pagerank
--------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------------
phonological_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

In [27]:
plot_grid(words, PAPER_FEATURES,
          'paper-susceptibilities-sentencequantiles',
          plot_sentencequantile_susties, r'$q_{\phi}$ in sentence',
          'Number of substitutions\n(weighted to cluster unit)')


---------
frequency
---------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 3, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 3, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 3, 4]

---
aoa
---
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 2, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [4]

----------
clustering
----------
     Target NOT different from H_0 (p > 0.05)

-------------
letters_count
-------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 2, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [1, 4]

--------------
synonyms_count
--------------
     Target NOT different from H_0 (p > 0.05)

--------------------
orthographic_density
--------------------
   * Target different H_0 with p < 0.05. Bins [1; 4] out of region: [1, 4]
  ** Target different H_0 with p < 0.01. Bins [1; 4] out of region: [1, 4]
 *** Target different H_0 with p < 0.001. Bins [1; 4] out of region: [4]

6 Regression on significant features

6.1 Multinomial logistic regression

We try to predict which words are substituted, based on their global values, sentence-relative values, bins and quantiles of those, or in-sentence bin values.

Prediction is not good, mainly because the constraint of one-substitution-per-sentence can't be factored in the model simply. So precision is generally very low, around .20-.25, and when accuracy goes up recall plummets.

So it might show some interaction effects, but given that the fit is very bad I wouldn't trust it.

In-sentence quantiles (from section 5.2) were not done, as they're impossible to reduce to one value (our measure of those quantiles is in fact a subrange of [0, 1] for each word, corresponding to the subrange of the sentence distribution that that word's feature value represented).


In [28]:
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import PolynomialFeatures
from scipy.stats import binom_test

In [29]:
def regress_binning(data, features, value_funcs):
    # Compute bins
    data = data.copy()
    regress_features = [('{}'.format(value_name), feature)
                        for value_name in value_funcs.keys()
                        for feature in features]
    for i, (value_name, value_func) in enumerate(value_funcs.items()):
        data[value_name] = value_func(data)
    
    # Massage the dataframe to have feature bin as columns.
    data_wide = pd.pivot_table(
        data,
        values=list(value_funcs.keys()),
        index=['destination_id', 'occurrence', 'source_id', 'position',
               'word_position'],
        columns=['feature']
    )[regress_features]

    # Add the target value.
    # Question/FIXME: should we use weight_appeared for regression?
    data_wide['target'] = pd.pivot_table(
        data,
        values=['target'],
        index=['destination_id', 'occurrence', 'source_id', 'position',
               'word_position'],
        columns=['feature']
    )[('target', 'aoa')]
    data_wide = data_wide.dropna()

    # Compute polynomial features.
    poly = PolynomialFeatures(degree=2, interaction_only=True)
    pdata = poly.fit_transform(data_wide[regress_features])
    pregress_features = [' * '.join(['_'.join(regress_features[j])
                                   for j, p in enumerate(powers)
                                   if p > 0]) or 'intercept'
                         for powers in poly.powers_]

    # Divide into two sets.
    print('Regressing with {} word measures (divided into'
          ' training and prediction sets)'
          .format(len(data_wide)))
    pdata_train = pdata[:len(data_wide) // 2]
    target_train = data_wide.iloc[:len(data_wide) // 2].target
    pdata_predict = pdata[len(data_wide) // 2:]
    target_predict = data_wide.iloc[len(data_wide) // 2:].target
    assert len(pdata_train) + len(pdata_predict) == len(data_wide)
    assert len(target_train) + len(target_predict) == len(data_wide)
    
    # Regress
    regressor = LogisticRegression(penalty='l2', class_weight='balanced',
                                   fit_intercept=False)
    regressor.fit(pdata_train, target_train)
    
    # And predict
    prediction = regressor.predict(pdata_predict)
    standard = target_predict.values
    success = prediction == standard
    
    tp = prediction & standard
    tn = (~prediction) & (~standard)
    fp = prediction & (~standard)
    fn = (~prediction) & standard
    
    print()
    print('{:.2f}% of words well predicted (non-random at p = {:.1})'
          .format(100 * success.mean(),
                  binom_test(success.sum(), len(success))))
    print('Precision = {:.2f}'.format(standard[prediction].mean()))
    print('Recall = {:.2f}'.format(prediction[standard].mean()))
    print()
    print('Coefficients:')
    print(pd.Series(index=pregress_features, data=regressor.coef_[0]))

Global feature value


In [30]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'global': lambda d: d.value})


Regressing with 9852 word measures (divided into training and prediction sets)

52.90% of words well predicted (non-random at p = 5e-05)
Precision = 0.23
Recall = 0.60

Coefficients:
intercept                                             0.423938
global_frequency                                     -0.253508
global_aoa                                            0.283560
global_letters_count                                  0.029565
global_orthographic_density                          -0.466485
global_frequency * global_aoa                        -0.010049
global_frequency * global_letters_count               0.028402
global_frequency * global_orthographic_density        0.042514
global_aoa * global_letters_count                    -0.029482
global_aoa * global_orthographic_density              0.035970
global_letters_count * global_orthographic_density   -0.002302
dtype: float64

Sentence-relative feature value


In [31]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'sentence-rel': lambda d: d.value_rel})


Regressing with 9852 word measures (divided into training and prediction sets)

54.61% of words well predicted (non-random at p = 1e-10)
Precision = 0.24
Recall = 0.60

Coefficients:
intercept                                                        -0.367235
sentence-rel_frequency                                           -0.155873
sentence-rel_aoa                                                  0.033259
sentence-rel_letters_count                                        0.151863
sentence-rel_orthographic_density                                 0.066790
sentence-rel_frequency * sentence-rel_aoa                        -0.010780
sentence-rel_frequency * sentence-rel_letters_count               0.037074
sentence-rel_frequency * sentence-rel_orthographic_density        0.035388
sentence-rel_aoa * sentence-rel_letters_count                     0.021656
sentence-rel_aoa * sentence-rel_orthographic_density              0.067244
sentence-rel_letters_count * sentence-rel_orthographic_density    0.029276
dtype: float64

Global + sentence-relative feature values


In [32]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'global': lambda d: d.value,
                 'sentence-rel': lambda d: d.value_rel})


Regressing with 9852 word measures (divided into training and prediction sets)

56.48% of words well predicted (non-random at p = 1e-19)
Precision = 0.25
Recall = 0.61

Coefficients:
intercept                                                         -0.799314
sentence-rel_frequency                                            -0.454712
sentence-rel_aoa                                                   0.270478
sentence-rel_letters_count                                         0.142315
sentence-rel_orthographic_density                                  0.391182
global_frequency                                                   0.044884
global_aoa                                                         0.096849
global_letters_count                                               0.384993
global_orthographic_density                                       -1.655278
sentence-rel_frequency * sentence-rel_aoa                         -0.012037
sentence-rel_frequency * sentence-rel_letters_count               -0.091401
sentence-rel_frequency * sentence-rel_orthographic_density        -0.118352
sentence-rel_frequency * global_frequency                         -0.029382
sentence-rel_frequency * global_aoa                               -0.030524
sentence-rel_frequency * global_letters_count                      0.133505
sentence-rel_frequency * global_orthographic_density               0.064538
sentence-rel_aoa * sentence-rel_letters_count                      0.108448
sentence-rel_aoa * sentence-rel_orthographic_density               0.163812
sentence-rel_aoa * global_frequency                                0.058018
sentence-rel_aoa * global_aoa                                     -0.007275
sentence-rel_aoa * global_letters_count                           -0.094825
sentence-rel_aoa * global_orthographic_density                    -0.196295
sentence-rel_letters_count * sentence-rel_orthographic_density     0.045999
sentence-rel_letters_count * global_frequency                      0.015238
sentence-rel_letters_count * global_aoa                           -0.019016
sentence-rel_letters_count * global_letters_count                 -0.020686
sentence-rel_letters_count * global_orthographic_density          -0.068505
sentence-rel_orthographic_density * global_frequency               0.045666
sentence-rel_orthographic_density * global_aoa                    -0.054586
sentence-rel_orthographic_density * global_letters_count          -0.063601
sentence-rel_orthographic_density * global_orthographic_density   -0.137017
global_frequency * global_aoa                                     -0.027777
global_frequency * global_letters_count                           -0.010694
global_frequency * global_orthographic_density                     0.095019
global_aoa * global_letters_count                                 -0.005889
global_aoa * global_orthographic_density                           0.135409
global_letters_count * global_orthographic_density                -0.022144
dtype: float64

(3.1) Bins of distribution of appeared global feature values


In [33]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'bins-global':
                     lambda d: pd.cut(d.value, BIN_COUNT,
                                      labels=False, right=False)})


Regressing with 9852 word measures (divided into training and prediction sets)

39.61% of words well predicted (non-random at p = 2e-48)
Precision = 0.22
Recall = 0.80

Coefficients:
intercept                                                       0.326327
bins-global_frequency                                           1.412647
bins-global_aoa                                                -0.422675
bins-global_letters_count                                      -0.737737
bins-global_orthographic_density                                0.199318
bins-global_frequency * bins-global_aoa                        -0.514083
bins-global_frequency * bins-global_letters_count               0.044512
bins-global_frequency * bins-global_orthographic_density       -0.513892
bins-global_aoa * bins-global_letters_count                     0.324572
bins-global_aoa * bins-global_orthographic_density              1.021336
bins-global_letters_count * bins-global_orthographic_density   -0.657380
dtype: float64

(3.2) Quantiles of distribution of appeared global feature values


In [34]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'quantiles-global':
                     lambda d: pd.qcut(d.value, BIN_COUNT, labels=False)})


Regressing with 9852 word measures (divided into training and prediction sets)

61.94% of words well predicted (non-random at p = 2e-63)
Precision = 0.25
Recall = 0.49

Coefficients:
intercept                                                                -0.141231
quantiles-global_frequency                                               -0.155274
quantiles-global_aoa                                                      0.154699
quantiles-global_letters_count                                            0.848318
quantiles-global_orthographic_density                                    -1.767954
quantiles-global_frequency * quantiles-global_aoa                        -0.394323
quantiles-global_frequency * quantiles-global_letters_count              -0.004722
quantiles-global_frequency * quantiles-global_orthographic_density        0.829070
quantiles-global_aoa * quantiles-global_letters_count                     0.206954
quantiles-global_aoa * quantiles-global_orthographic_density              0.757487
quantiles-global_letters_count * quantiles-global_orthographic_density   -1.150821
dtype: float64

(4.1) Bins of distribution of appeared sentence-relative values


In [35]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'bins-sentence-rel':
                     lambda d: pd.cut(d.value_rel, BIN_COUNT,
                                      labels=False, right=False)})


Regressing with 9852 word measures (divided into training and prediction sets)

63.20% of words well predicted (non-random at p = 2e-77)
Precision = 0.24
Recall = 0.42

Coefficients:
intercept                                                                  -0.642008
bins-sentence-rel_frequency                                                -0.010913
bins-sentence-rel_aoa                                                       0.660963
bins-sentence-rel_letters_count                                             0.345204
bins-sentence-rel_orthographic_density                                     -0.642008
bins-sentence-rel_frequency * bins-sentence-rel_aoa                        -0.505206
bins-sentence-rel_frequency * bins-sentence-rel_letters_count               0.168197
bins-sentence-rel_frequency * bins-sentence-rel_orthographic_density       -0.010913
bins-sentence-rel_aoa * bins-sentence-rel_letters_count                    -0.533738
bins-sentence-rel_aoa * bins-sentence-rel_orthographic_density              0.660963
bins-sentence-rel_letters_count * bins-sentence-rel_orthographic_density    0.345204
dtype: float64

(4.2) Quantiles of distribution of appeared sentence-relative values


In [36]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'quantiles-sentence-rel':
                     lambda d: pd.qcut(d.value_rel, BIN_COUNT,
                                       labels=False)})


Regressing with 9852 word measures (divided into training and prediction sets)

48.92% of words well predicted (non-random at p = 0.1)
Precision = 0.22
Recall = 0.67

Coefficients:
intercept                                                                             0.070280
quantiles-sentence-rel_frequency                                                      0.181314
quantiles-sentence-rel_aoa                                                            0.114715
quantiles-sentence-rel_letters_count                                                 -0.035775
quantiles-sentence-rel_orthographic_density                                          -0.266676
quantiles-sentence-rel_frequency * quantiles-sentence-rel_aoa                         0.095536
quantiles-sentence-rel_frequency * quantiles-sentence-rel_letters_count              -0.179326
quantiles-sentence-rel_frequency * quantiles-sentence-rel_orthographic_density       -0.061682
quantiles-sentence-rel_aoa * quantiles-sentence-rel_letters_count                    -0.006353
quantiles-sentence-rel_aoa * quantiles-sentence-rel_orthographic_density              0.042965
quantiles-sentence-rel_letters_count * quantiles-sentence-rel_orthographic_density    0.060257
dtype: float64

(5.1) In-sentence bins (of distribution of values in each sentence)


In [37]:
regress_binning(words, ['frequency', 'aoa', 'letters_count',
                        'orthographic_density'],
                {'in-sentence-bins': lambda d: d.bin})


Regressing with 9852 word measures (divided into training and prediction sets)

63.62% of words well predicted (non-random at p = 2e-82)
Precision = 0.26
Recall = 0.49

Coefficients:
intercept                                                                 0.047991
in-sentence-bins_frequency                                               -0.158233
in-sentence-bins_aoa                                                      0.090724
in-sentence-bins_letters_count                                            0.008951
in-sentence-bins_orthographic_density                                    -0.208478
in-sentence-bins_frequency * in-sentence-bins_aoa                        -0.040010
in-sentence-bins_frequency * in-sentence-bins_letters_count              -0.020716
in-sentence-bins_frequency * in-sentence-bins_orthographic_density        0.100830
in-sentence-bins_aoa * in-sentence-bins_letters_count                     0.042532
in-sentence-bins_aoa * in-sentence-bins_orthographic_density              0.103019
in-sentence-bins_letters_count * in-sentence-bins_orthographic_density   -0.014181
dtype: float64

6.2 PCA

We get coefficient values out of the PCA, but I can't figure what to make of them... They reflect the correlations of the features, alright, but beyond that? Some interactions, but there's no clear interpretation of the coefficients and variances explained into interaction strengths.


In [38]:
from sklearn.decomposition import PCA

In [39]:
def pca_values(data, features, value_func):
    data = data.copy()
    data['pca_value'] = value_func(data)
    
    # Prepare dataframe, averaging over shared durl.
    data_wide = pd.pivot_table(
        data[data.target],
        values='pca_value',
        index=['cluster_id', 'destination_id', 'occurrence',
               'position'],
        columns=['feature']
    )[features]
    # ... then over shared clusters, and dropping NaNs.
    data_wide = data_wide\
        .groupby(level='cluster_id')\
        .agg(np.mean)\
        .dropna(how='any')
    print('Computing PCA on {} aggregated word measures'
          .format(len(data_wide)))
    print()
    
    # Compute PCA.
    pca = PCA(n_components='mle')
    pca.fit(data_wide)
    print('Variance explained by first {} components (mle-estimated): {}'
          .format(pca.n_components_, pca.explained_variance_ratio_))
    print()
    print('Components:')
    print(pd.DataFrame(index=data_wide.columns,
                       data=pca.components_.T,
                       columns=['Comp. {}'.format(i)
                                for i in range(pca.n_components_)]))

PCA of feature value of substituted words


In [40]:
pca_values(words, ['frequency', 'aoa', 'letters_count'],
           lambda d: d.value)


Computing PCA on 1055 aggregated word measures

Variance explained by first 2 components (mle-estimated): [ 0.68985845  0.18839092]

Components:
                Comp. 0   Comp. 1
feature                          
frequency     -0.356652  0.467773
aoa            0.748179 -0.375385
letters_count  0.559489  0.800172

PCA of sentence-relative value of substituted words


In [41]:
pca_values(words, ['frequency', 'aoa', 'letters_count'],
           lambda d: d.value_rel)


Computing PCA on 1055 aggregated word measures

Variance explained by first 2 components (mle-estimated): [ 0.63308037  0.21372817]

Components:
                Comp. 0   Comp. 1
feature                          
frequency     -0.462387  0.426435
aoa            0.694145 -0.371424
letters_count  0.551689  0.824741