Preliminary 2 Results

The code appears to be running so it is now possible to obtain some prelimiary results for the base set of paramters to investigate, $E_{\text{APPLIED}}$=-0.16, -0.18, -0.20, -0.22, -0.24, -0.26, -0.28, -0.30; $c_{\theta}^{\infty}$=0.006, 0.012


In [22]:
from extremefill2D.fextreme.tools import get_treant_df, get_by_tags, get_by_uuid, fcompose
import pandas
from extremefill2D.fextreme.plot import vega_plot_treant
from extremefill2D.fextreme import read_json
from toolz.curried import map, pipe
from pprint import pprint
from extremefill2D.fextreme.plot import vega_plot_treants

In [23]:
df = get_treant_df(['prelim2'], path='../../data')

In [24]:
df_sort = df.sort(columns=['bulkSuppressor', 'appliedPotential'])
df_sort


/home/wd15/anaconda/envs/extreme/lib/python3.5/site-packages/ipykernel/__main__.py:1: FutureWarning: sort(columns=....) is deprecated, use sort_values(by=.....)
  if __name__ == '__main__':
Out[24]:
appliedPotential bulkSuppressor tags uuid
22 -0.80 0.003 [prelim2] 334dee67
6 -0.70 0.003 [prelim2] 642c8b55
25 -0.70 0.003 [prelim2] c3437f85
10 -0.60 0.003 [prelim2] bc3cacdb
2 -0.50 0.003 [prelim2] 8b7eeba9
3 -0.40 0.003 [prelim2] 0bc89986
0 -0.30 0.003 [prelim2] 63d2cfbc
16 -0.28 0.003 [prelim2] 2e05eb8e
24 -0.26 0.003 [prelim2] 1b300121
12 -0.24 0.003 [prelim2] 80663650
8 -0.22 0.003 [prelim2] 280a1451
7 -0.20 0.003 [prelim2] e677558a
5 -0.18 0.003 [prelim2] 1b23b0b8
1 -0.16 0.003 [prelim2] 0d9a570c
21 -0.80 0.006 [prelim2] 24365f73
23 -0.70 0.006 [prelim2] b22e3837
15 -0.60 0.006 [prelim2] 950f7398
17 -0.50 0.006 [prelim2] 7153746e
4 -0.40 0.006 [prelim2] bdb08a0e
11 -0.30 0.006 [prelim2] d3a85632
20 -0.80 0.012 [prelim2] 795b55ce
13 -0.70 0.012 [prelim2] 97e9f836
19 -0.60 0.012 [prelim2] d8ae1960
9 -0.50 0.012 [prelim2] 4ce42ce6
14 -0.40 0.012 [prelim2] 6959ec1f
18 -0.30 0.012 [prelim2] b901726f

In [25]:
df_to_treants = fcompose(
    lambda x: x.uuid,
    map(get_by_uuid(path='../../data')),
    list
)

$k^+$ = 0.006


In [26]:
df1 = df[df.bulkSuppressor == 0.006].sort(columns=['appliedPotential'])
df1


/home/wd15/anaconda/envs/extreme/lib/python3.5/site-packages/ipykernel/__main__.py:1: FutureWarning: sort(columns=....) is deprecated, use sort_values(by=.....)
  if __name__ == '__main__':
Out[26]:
appliedPotential bulkSuppressor tags uuid
21 -0.8 0.006 [prelim2] 24365f73
23 -0.7 0.006 [prelim2] b22e3837
15 -0.6 0.006 [prelim2] 950f7398
17 -0.5 0.006 [prelim2] 7153746e
4 -0.4 0.006 [prelim2] bdb08a0e
11 -0.3 0.006 [prelim2] d3a85632

In [27]:
out = vega_plot_treants(df_to_treants(df1))
out.display()


$k^+$ = 0.012


In [28]:
df2 = df[df.bulkSuppressor == 0.012].sort(columns=['appliedPotential'])
df2


/home/wd15/anaconda/envs/extreme/lib/python3.5/site-packages/ipykernel/__main__.py:1: FutureWarning: sort(columns=....) is deprecated, use sort_values(by=.....)
  if __name__ == '__main__':
Out[28]:
appliedPotential bulkSuppressor tags uuid
20 -0.8 0.012 [prelim2] 795b55ce
13 -0.7 0.012 [prelim2] 97e9f836
19 -0.6 0.012 [prelim2] d8ae1960
9 -0.5 0.012 [prelim2] 4ce42ce6
14 -0.4 0.012 [prelim2] 6959ec1f
18 -0.3 0.012 [prelim2] b901726f

In [29]:
out = vega_plot_treants(df_to_treants(df2))
out.display()


$k^+$=0003


In [30]:
df3 = df[df.bulkSuppressor == 0.003].sort(columns=['appliedPotential'])
df3


/home/wd15/anaconda/envs/extreme/lib/python3.5/site-packages/ipykernel/__main__.py:1: FutureWarning: sort(columns=....) is deprecated, use sort_values(by=.....)
  if __name__ == '__main__':
Out[30]:
appliedPotential bulkSuppressor tags uuid
22 -0.80 0.003 [prelim2] 334dee67
6 -0.70 0.003 [prelim2] 642c8b55
25 -0.70 0.003 [prelim2] c3437f85
10 -0.60 0.003 [prelim2] bc3cacdb
2 -0.50 0.003 [prelim2] 8b7eeba9
3 -0.40 0.003 [prelim2] 0bc89986
0 -0.30 0.003 [prelim2] 63d2cfbc
16 -0.28 0.003 [prelim2] 2e05eb8e
24 -0.26 0.003 [prelim2] 1b300121
12 -0.24 0.003 [prelim2] 80663650
8 -0.22 0.003 [prelim2] 280a1451
7 -0.20 0.003 [prelim2] e677558a
5 -0.18 0.003 [prelim2] 1b23b0b8
1 -0.16 0.003 [prelim2] 0d9a570c

In [31]:
out = vega_plot_treants(df_to_treants(df3))
out.display()



In [ ]: