In [1]:
%load_ext autoreload
%autoreload 2
from extremefill2D.tools import getSMTRecords, smt_ipy_table
records = getSMTRecords(path='..', tags=['provisional2'])
for r in records:
    print r.label


5bb7562a8256
c460c1148bee
a0ed5bfe2665
559e53d131c2
fc09eb47bc30
d921b79ac354
ce051f63191f
907284507af1
4969842e428d
354f5b7acd4a
066b9de9dad4
9e0efd1b2202
5ccb0b04e1c9
adcc18d875d3
9b2c5a156847
d935b88ee1b4
702280517093
c1c895d0b739
e5e3e23a7b51

In [9]:
records_sorted = sorted(records, key=lambda x: (x.parameters['bulkSuppressor'], x.parameters['appliedPotential']))

smt_ipy_table(records_sorted,
              fields=['label', 'timestamp', 'parameters', 'duration', 'version', 'tags'],
              parameters=['kPlus', 'kMinus', 'appliedPotential', 'bulkSuppressor', 'Nx'])


Out[9]:
LabelTimestampParametersDurationVersionTags
5bb7562a2017-04-18 15:16kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.4, bulkSuppressor: 0.006, Nx: 2007h 34m 34.67s7064f0d6e675provisional2
559e53d12017-04-18 15:16kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.35, bulkSuppressor: 0.006, Nx: 2007h 44m 59.33s7064f0d6e675provisional2
c460c1142017-04-18 15:16kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.3, bulkSuppressor: 0.006, Nx: 2007h 47m 0.71s7064f0d6e675provisional2
fc09eb472017-04-18 15:16kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.28, bulkSuppressor: 0.006, Nx: 2007h 45m 5.11s7064f0d6e675provisional2
a0ed5bfe2017-04-18 15:16kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.26, bulkSuppressor: 0.006, Nx: 2007h 45m 41.89s7064f0d6e675provisional2
9e0efd1b2017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.24, bulkSuppressor: 0.006, Nx: 2007h 46m 23.29s4fd63047e5f2provisional2
066b9de92017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.22, bulkSuppressor: 0.006, Nx: 2007h 45m 58.55s4fd63047e5f2provisional2
c1c895d02017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.2, bulkSuppressor: 0.006, Nx: 2007h 43m 38.77s4fd63047e5f2provisional2
d935b88e2017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.18, bulkSuppressor: 0.006, Nx: 2007h 38m 43.74s4fd63047e5f2provisional2
354f5b7a2017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.16, bulkSuppressor: 0.006, Nx: 2007h 29m 5.91s4fd63047e5f2provisional2
ce051f632017-04-18 15:16kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.4, bulkSuppressor: 0.012, Nx: 2007h 45m 6.22s7064f0d6e675provisional2
907284502017-04-18 15:16kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.35, bulkSuppressor: 0.012, Nx: 2007h 48m 31.31s7064f0d6e675provisional2
4969842e2017-04-18 15:16kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.3, bulkSuppressor: 0.012, Nx: 2007h 43m 36.42s7064f0d6e675provisional2
d921b79a2017-04-18 15:16kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.26, bulkSuppressor: 0.012, Nx: 2007h 45m 51.58s7064f0d6e675provisional2
5ccb0b042017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.24, bulkSuppressor: 0.012, Nx: 2007h 44m 46.98s4fd63047e5f2provisional2
702280512017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.22, bulkSuppressor: 0.012, Nx: 2007h 45m 52.85s4fd63047e5f2provisional2
9b2c5a152017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.2, bulkSuppressor: 0.012, Nx: 2007h 36m 50.55s4fd63047e5f2provisional2
e5e3e23a2017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.18, bulkSuppressor: 0.012, Nx: 2007h 42m 7.45s4fd63047e5f2provisional2
adcc18d82017-04-17 17:30kPlus: 150.0, kMinus: 1500000.0, appliedPotential: -0.16, bulkSuppressor: 0.012, Nx: 2007h 17m 24.63s4fd63047e5f2provisional2

In [16]:
len(records_sorted)


Out[16]:
19

In [44]:
%matplotlib inline 
from extremefill2D.contourViewer import ContourViewer
import matplotlib.pyplot as plt
import numpy as np

fig = plt.figure(figsize=(8, 8), dpi=200)
for count, record in enumerate(records_sorted):
    if count > 12:
        count_ = count + 1
    else:
        count_ = count
    ax = plt.subplot(4, 5, count_ + 1)
    viewer = ContourViewer(record, ax=ax)
    all_spines = ['top', 'bottom', 'right', 'left']
    for spine in all_spines:
        ax.spines[spine].set_visible(False)

    plt.text(0.0, -0.01, '{0}'.format(record.label[:8]), fontsize=10, transform=ax.transAxes)
    viewer.plot(times = np.arange(10) * 2000. / 9. , mirror=True, cutoff=True, cutoffvalue=0., show=False)
plt.tight_layout(pad=-0.1, w_pad=-0.2, h_pad=0.15)



In [ ]: