In [60]:
from ftplib import FTP
import os
In [61]:
os.
File "<ipython-input-61-024bf0bece45>", line 1
os.
^
SyntaxError: invalid syntax
In [61]:
In [73]:
def upload(ftp, file):
ext = os.path.splitext(file)[1]
if ext in (".txt", ".htm", ".html"):
ftp.storlines("STOR " + file, open(file))
else:
ftp.storbinary("STOR " + file, open(file, "rb"), 1024)
In [74]:
ftp = FTP('ftp.freshfigure.com')
In [75]:
ftp.login('ipython', 'PassWord123!')
Out[75]:
'230 OK. Current restricted directory is /'
In [76]:
ls
33561.jpg ftpWCM.ipynb love.ttf street0276.jpg wirePIL.ipynb
artcontrol.ipynb hello.PNG README.md street1016.jpg
edit.jpg LICENSE smerk-color.png street1715.jpg
In [77]:
upload(ftp, '33561.jpg')
In [78]:
ftp.cwd
Out[78]:
<bound method FTP.cwd of <ftplib.FTP instance at 0x252e5a8>>
In [79]:
data = []
In [80]:
ftp.dir(data.append)
In [81]:
ftp.quit()
Out[81]:
'221-Goodbye. You uploaded 101 and downloaded 0 kbytes.\n221 Logout.'
In [82]:
for line in data:
print '-', line
- drwx---r-x 2 joeblac inetuser 4096 Nov 25 14:05 .
- drwx---r-x 2 joeblac inetuser 4096 Nov 25 14:05 ..
- -rw----r-- 1 joeblac inetuser 103187 Nov 25 14:05 33561.jpg
- -rw----r-- 1 joeblac inetuser 37080 Nov 25 13:39 edit.jpg
- -rw----r-- 1 joeblac inetuser 284638 Nov 25 13:59 wirePIL.ipynb
In [83]:
fro]]]##
File "<ipython-input-83-ce24d69b1be4>", line 1
fro]]]##
^
SyntaxError: invalid syntax
In [83]:
In [84]:
from __future__ import printFunction
File "<ipython-input-84-efb2717a0b25>", line 1
SyntaxError: future feature printFunction is not defined
In [85]:
from wand.image import Image
In [89]:
from bs4 import BeautifulSoup4
---------------------------------------------------------------------------
ImportError Traceback (most recent call last)
<ipython-input-89-7030b73ba87c> in <module>()
----> 1 from bs4 import BeautifulSoup4
ImportError: cannot import name BeautifulSoup4
In [99]:
from __future__ import print_function
from urllib2 import urlopen
from wand.image import Image
response = urlopen('http://artcontrol.me/wp-content/uploads/2013/11/wpid-Sketch1521630.png')
try:
with Image(file=response) as img:
print('format =', img.format)
print('size =', img.rotate(90))
finally:
response.close()
format = JPEG
size = None
In [100]:
import gzip
from wand.image import Image
In [112]:
gz = gzip.open('hello.png.gz')
with Image(filename='hello.png') as img:
img.format = 'jpeg'
img.save(file=gz)
gz.close()
---------------------------------------------------------------------------
IOError Traceback (most recent call last)
<ipython-input-112-c4a253d31d2a> in <module>()
----> 1 gz = gzip.open('hello.png.gz')
2 with Image(filename='hello.png') as img:
3 img.format = 'jpeg'
4 img.save(file=gz)
5 gz.close()
/usr/lib/python2.7/gzip.pyc in open(filename, mode, compresslevel)
29
30 """
---> 31 return GzipFile(filename, mode, compresslevel)
32
33 class GzipFile(io.BufferedIOBase):
/usr/lib/python2.7/gzip.pyc in __init__(self, filename, mode, compresslevel, fileobj, mtime)
89 mode += 'b'
90 if fileobj is None:
---> 91 fileobj = self.myfileobj = __builtin__.open(filename, mode or 'rb')
92 if filename is None:
93 # Issue #13781: os.fdopen() creates a fileobj with a bogus name
IOError: [Errno 2] No such file or directory: 'hello.png.gz'
In [122]:
import requests
import json
In [127]:
openWire = open('wirePIL.ipynb')
wireInfo = openWire.read()
In [132]:
saveWire = json.loads(wireInfo)
In [136]:
print(saveWire)
saveWire
{u'nbformat': 3, u'nbformat_minor': 0, u'worksheets': [{u'cells': [{u'source': [u'WMCKEE PIL EDITZ'], u'cell_type': u'heading', u'metadata': {}, u'level': 1}, {u'source': [u'Opens up images and edits them'], u'cell_type': u'raw', u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 277, u'input': [u'from PIL import Image\n', u'import random\n', u'import os\n', u'from IPython.display import Image as disImg\n'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 285, u'input': [u'from wand.image import Image\n', u'from wand.display import display'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'TypeError', u'evalue': u"'str' object is not callable", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mTypeError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-300-469ad720021a>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 6\x1b[0m \x1b[0mi\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrotate\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m90\x1b[0m \x1b[0;34m*\x1b[0m \x1b[0mr\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 7\x1b[0m \x1b[0mi\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mflip\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 8\x1b[0;31m \x1b[0mi\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mcolorspace\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 9\x1b[0m \x1b[0mdisplay\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mi\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;31mTypeError\x1b[0m: 'str' object is not callable"], u'output_type': u'pyerr'}, {u'output_type': u'stream', u'stream': u'stdout', u'text': [u"<wand.image.Image: 88a02e1 'JPEG' (1280x720)>\n"]}], u'collapsed': False, u'prompt_number': 300, u'input': [u"with Image(filename='street1016.jpg') as newzImg:\n", u' print(newzImg)\n', u' for r in 1,2,3:\n', u' with newzImg.clone() as i:\n', u' i.resize(int(i.width * r * 0.25), int(i.height * r * 0.25))\n', u' i.rotate(90 * r)\n', u' i.flip()\n', u' i.sequence(\n', u' display(i)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'AttributeError', u'evalue': u"type object 'Image' has no attribute 'open'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)', u"\x1b[0;32m<ipython-input-295-ec0059fd8676>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m'street1016.jpg'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m", u"\x1b[0;31mAttributeError\x1b[0m: type object 'Image' has no attribute 'open'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 295, u'input': [u"img = Image.open('street1016.jpg')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 268, u'input': [u"imagRandz = random.choice(os.listdir('/home/will/Desktop/video/street'))"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'pyout', u'prompt_number': 278, u'jpeg': u'/9j//gAOTGF2YzUyLjg3LjEA/9sAQwAIBgYHBgcICAgICAgJCQkKCgoJCQkJCgoKCgoKDAwMCgoK\nCgoKCgwMDAwNDg0NDQwNDg4PDw8SEhERFRUVGRkf/8QBogAAAQUBAQEBAQEAAAAAAAAAAAECAwQF\nBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+hEAAgECBAQDBAcFBAQA\nAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2\nNzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOk\npaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgC\n0AUAAwEiAAIRAAMRAP/aAAwDAQACEQMRAD8A87tok8pflX8ql8qP+4v5Cm23+qSpqgZF5Uf91fyo\n8qP+6Pyp9FADPKj/ALo/Kjyo/wC4v5U+igCPyo/7q/lR5Uf9xfyqSkpgM8pP7i/lSeUn9xfyFSUl\nAEflJ/dX8hR5Sf3V/KnmigBnlJ/dX8qPKT+6v5U+igQzyk/ur+VHlJ/dX8hTqKAGeVH/AHFo8qP+\n6v5U+igBnlR/3F/Kjyk/uL+Qp9FADPKj/uD8qPKj/uD8qfRQAzyo/wC4v5UeVH/dX8qfRQAzyk/u\nL+QpfKj/ALi/kKdRQA3yo/7o/IUeVH/dX8hT6KAGeVH/AHV/Kjyo/wC4v5U+igBnlR/3F/Kjyo/7\ni/lT6KAGeVH/AHF/KjyU/uL+Qp9FADPJT+6v5CjyU/ur+Qp9FADPKj/uL+VHlJ/dX8qfRQMj8qP+\n6v5UeVH/AHF/Kn0UDGeVH/dX8qPKT+4v5Cn0UCGeVH/dX8qPKj/uL+VPooAZ5Uf9xfyo8qP+4v5U\n+igBnlR/3V/Kjyo/7i/lT6KAGeVH/dX8qPKj/uL+VPooAZ5Uf91fyo8pP7q/98in0UAM8tP7i/8A\nfIo8tP7i/wDfIp9FADPKT+4v5UeUn9xfyp9FADPJj/ur+VHkx/3F/Kn0UAM8qP8AuD8qPKj/ALi/\nlT6KAGeVH/cX8qPKT+6v5U+igBvlJ/cX8qPKj/uL+VOpaAGeXH/cT8qPLj/uL+VPooEM8uP+4v5U\neXH/AHF/Kn0UAM8qP+4v5UeVH/cX8qfSUAM8qP8AuL+VHlR/3F/Kn0UAM8qP+6v5UeVH/dX8qfRQ\nAzyo/wC4v5UeVH/cX8qfRQAzy4/7q/lR5cf91fyp9FADPLj/ALi/lR5Mf9xfyp9FADPKT+4v6UeU\nn91fyp9FADDEn91fypvlJ/cWpDSUwGeUn9xfyo8qP+6v5U+igBnlx/3F/IUeXH/dX8qfRQAzy4/7\nq/kKPLj/ALq/kKfRQAzy4/7i/kKPKj/ur+Qp9FAEvlR4+4v5UeVF/cX8qVDxTqYDPKi/uL+VHlRf\n3F/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UAM8qL+4\nv5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL/3yKPKi/uL/wB8in0UAM8qL+4v/fIo8qL+\n4v8A3yKfRQAzyov7i/8AfIo8qL+4v/fIp9FADPKi/uL/AN8ijyov7i/98in0UAM8qL+4v/fIo8qL\n+4v/AHyKfRQAzyYv7i/kKPJi/uL+Qp9FADPJi/uL+Qo8mL+4v5Cn0UAM8mP+4v5UeTH/AHF/Kn0U\nAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPJj/uL+Qo8mP+4v5Cn0UAM8mP+4v5CjyY\n/wC4v5Cn0UAM8mP+4v5CjyY/7i/kKfRQAzyY/wC4v5CjyY/7i/kKfRQAzyY/7i/kKPJj/uL+Qp9F\nADPJj/uL+Qo8mP8AuL+Qp9FADPJj/uL+Qo8mP+4v5Cn0UAM8qP8AuL+Qo8uP+4v5Cn0UAM8qP+4v\n5UeTH/cX8qfRQAzyY/7i/lR5Mf8AcX8qfRQAzyY/7i/lR5Mf9xfyp9FADPJj/uL+VHkx/wBxfyp9\nFADPJj/uL+VHkx/3F/Kn0UAM8mP+4v5UeTH/AHF/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5\nUX9xfyp9FADPKi/uL+VQ3EUflN8q9PQVZqG5/wBU1ACW3+qWpahtv9WtTVHUYUUUUAFFFFABSUUV\nQCGkpaQ1IBRSUtMAooooEJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UlLQAUUUUAFFFFABRRRQA\nUUUUAFFFFABSUtFAxKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB\naKKKAYUUUUCCiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACkNLSGgBKKKKYBRRRQAUUU\nUAFFFFAEsfSn1HH1xUlMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqFzeuj\nFFAGO9KTsNF7IHU0KytnaQcehrFe4lk+85pLW5+yyc8o559j61KlcdjcoooqyQooooAKKKKACiim\ns6p94gfU0AOoqnLqMEeQCWPtVKXVpDwgCj/PrU3HY2CQvUio1uYnfyw4Lc8fSudkupZOrmptOR2u\n0YAsBnOeg4p6hY6GiiimIKhuf9U30qaorn/VPQAy3/1S1NUNt/qhU1SMKKKKLAJRRSUAFFFFABTa\nWigAooooEFJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRSUtABRRRQAUUUUAFFFFABR\nRRQAUUUUAFJS0UDEooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApaSloAKKKKBB\nRRRQAUUUUAFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiii\ngBydamquKsUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwpn3SN9T/Ot2sCU/\nO2P7xrOZcRKRlDAikozUIZe0y7z+4kPI+6Sf0rUrmHJUiReCpzW9a3sU0QYsAR1BPf8AnWsWQyzR\nWfLq0S/cG4/5+v8ASqUuqTv935R7cU7gbbyJH95gPqeaqSapAnT5v8/57VhtI8nVmNSxWFxN92Ns\nerHaMevOM/hU6jLUurStwnyiqUk8kh+Zifx/ya0YdF7zSD/dT/E/4VeisbeLG2ME+p+b+dHLfuBg\nxW00x+RGb3xx+dXItHkOPMcL7DJP49B/OtnFLVWQrlWLTbaLB27z6tz+nT86s7QvAGAOwpaKYgoo\nooAKhuf9U9TVDc/6p6AG23+qSpaht/8AVrU1SMKKKSgBaKSkoQCUUUtAMSloooEFJRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lFAC0UlLQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAlFLSUDCiiigAooooAKKKKACiiigAooooAKKKKACiiloAKKKKBBRRRQAUUUUAFFFFABSUtJQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaQ0AJRRRTAKKKKACiiigAooooAKnXpUFTR9KAHUUU\nUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigApaiuJfIhkkABKqTzXNTancz9ZCo9E4/Uc0AdDNeW8H35AD6d\nT+Qqquswu4RVO0kDex9/7v8AjXO5JpVOCPqKAOzHNKaztNvRIvlPgEdCT1FWJL6CLq2fYUrgTk4B\nNYEjZZie5q1Nq/ZFx7/5/wDr1ms5brUS1KRMWphcVCT70wyCjlHcmLk8Ug3Odoyx9ACf5VW3kmul\n0u18iEMfvuMk8cD078VXKIy4tNuZv4Ng9X4/Tk/pV6LRlHMrk+yjA/M5J/StSkJA6kUWQEEdnbw/\ncjUH1I3H9asVC08S85/z+OKpT6vEmcHP0+b/AAFF/IDSphkjXqwrBm1iR87Qcerf4DiqUl1NLnc5\nx6DgfpRdiOgn1OGEHGCccAnv9BU9ncG6gWQ4yeoFclz9a6PSIZIrfLDbvOR1zj8aYjRooopgFFFF\nABUNz/qnqaobn/VPQAy2/wBUtS1Dbf6palqRi5optFAC0UUUAFFFJQIWkoooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKKAFooooAKKKKACiiigAooooAKKKKACiiig\nAooooASilooASijFFAwooooAKKKKACiiigAoopaACiiigAooooEFFFFABRRRQAUUUUAFJS0lABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiiigAqSOo6evWgCWiiimAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUdPaqU2pwQ8A7yOwpASX/FrNn+4a5Ota81R542QAANWTTAKKKKAJ43x3\nqaOKSYnarPVRetX7O5NvIGycdx7fnUtDRZi0id+XZYx6dTST6RMozFIGx2IwfzyRW0jiVAyng0GR\nF6n2oWgHIzRSxNskUqfeo63NUSGdlbzghUEHOOn86z91nD0RpT/tcD/P4U7hYqpG7H5QT+FdLDdC\nK3j83htuPpWE19L0QLGP9kf1quzM5+Yk/U0ajN2XWYl+6cn2H9TiqE2rTSfd+X6/N/8AW/SqKQyS\nHEaM5/2QT/Kr8OiXUgy+2Me5yfyXP6kUWEyjJNJJ95if89u1M5JxyT9K6GHQ7dP9YzyH/vkfkOf1\nq9HBFDwkap9AB+Z6n8aegrnOw6VdzYwmwHu5K/py36Veh0FRzLIx9k4H5nJ/QVs0UAVoNPtYOViG\nfVvmP/j2f0qzjHFFFABRRRQAUUUUAFQ3P+qepqhuf9U9AEVv/qlqaorf/VLUtSAUUUlAC0lFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQA2iiimAUUUUAFFFFABRR\nRQAUo60lFAFiiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDcsUicg4\nIHBoAkkkjj+8yj8arNqUKnAy30FZMjMWJJJ57n3plZ85VjpAwcZHIorKsLsqfLY5B/StWqTuSwoo\noqgCiiopLmKH77gEdu/4gUXAlorOl1eMfcQt7nAH9c1Rm1OeT+LZ/u8VNxm/x9cUVmaT5uH3iTae\nQT0z/P0rSqgFooooEFFFFAGZrKv5alS3XBAJ/DpWbDp9xP0jIHq3FdIRn/8AVS0hHOXmnPbQeY7D\nqBtHv6ms2uk1z/jzP++tc3TQwooooAKkjYfxHAqOlAzQNGkNVMSCNAWxxljj+Wciq0l9NL3C/wC7\nRb2Nzc4MceB/eJ2j8z/StCHQTwZZBn0T/E/4UrDMdmLHJJP1pMHtXTxaXaRD/V7ie7c8/wAqw5U8\nqRlx0OKHoIrCImrVisQuYxIodWyORnntUdGSrK442kH9aSZR1SIqDCgKPQDFOpsTiREYdCKcaokK\nKKKBBRRRQAUUUUAFFFFABRRRQAVDc/6o1NUNx/qj9KAIrf8A1S1LUVv/AKpfpUtIAooopAFFFFAB\nRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFL\nSUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2iiimAUUUUAFFFFABRR\nRQAUUUUATJTqZH0p9MAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvenED+pG\nP1qxVHVP9Un+9/SplsNGVSUm6jdWZQtalheBh5ch5HQmsktTS5OOtUriZ0Ml5bxjmQfQcmqUurAf\n6tfxY/0qjFZTzfdQgercD/GrsWjgf62T8FH9T/hTuwKct9PLnLkD0Xgc/So0trif7qM3v0/U1uxW\ncEONqDP+1yfwzUzyRxLlyFHenZiMaPSJn++yoPzb8uBWhDpsEPOC59W/zioptYto/uHeR6cCs+bW\n53yEAT6dadgN8Y6fpS1zFvfzJOJSxbPXPPHpWq+rIB+7UsfU0XsBpUVlW95PJMC2dnIPHy1alv4Y\nhyw/lS5h2LdBKjqR+NY02trzsBP6f/XrPl1C4l/i2/T/ABPNGojo5LuGMcn+n86z5tajXIX5voP6\nmsJnZ+WYk+9Pit5psbI3b3xx+fSnZgWLvUWul2bcLnv1qn2rSh0S5fl2WMe/JH4D/Go7jSLmDJAE\ni+qdf++f8M0CKFFKVZSQylSOxpKYBRRRQBoJqLIYo4yRGhGfVh3zXSqcgHrkZzWBpWmediaT7nVV\n/vY9a3wMYHSmMWsDVYfLn3f3xnFb1Z2rx74A3Taf58VMgMSjGaVVY9KlELdyBUXGbGky+ZaqD/Ad\ntX656GY2KNhuGHTA/QVc0i6adZFdiWzkE/3ataks1KKKKYBRRRQAUUUUAFFFFABRRRQAVDcf6o/S\npqhuP9UfpQBFb/6palqK3/1S1LSAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUlABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUANooopgFFFFABRRRQAUUUUAFFFFAEkZ5qSoU61NTAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5LiGH77qPr1qlLrES58tSx9egpXA0aa8iRglmC/U4rDl1SeQcME/\n3eP161XVZ7g8B3z37fnTuM2JdTgTOMufb/GqF1qElwNuAq/TJp8WkTH75CA/if51bj0uBAN25z7n\nj8ql3YGJu96RpAO9aVzouAzRyHgH5W/x4NYuxskY6UcqC49pj2rS0eATMZWYNsPC+57ms3yjg1oa\nJNsnaPPDD/x4dKNAudBRRRVCK95KYbeSQdQvH1zXLzXEs5zI5b+Q+grodWmjS2dSw3MMbc81zNAB\nRRRQA4HFTRTmLkKp+vNV6f2pNXHcmkvJn/i2+y8VXJLHuT+Jq/p9tb3Mm2Ytn+Fc4De1b8Nnbwfc\njUe+AT+ZosguczFYXU33Ymx6t8v8+taMOhE4M0n4IP6n/CtvH5UUxFSHTLSHpGGPq/zH/D8qtgAd\nKKKACiimSSBKTdhpGTrkCgJKBzyCf5ZrDra1O4RoyrHLE8Adqx1id+imhSCw2irKWMrdePr1qdbO\nNOXbP5UcwWNPRpg1thiAU4/DrV1riJf4s/SsAXEEIwn5Convm/hAo1HY3H1D+6v/AH1VG4vg42u4\nx6AZrJaaR/vEmoz71Nmxl5rxR91c/pUD3Mj98fSoBS4quVE3FLE9a0tF3m4OPu7ef6VnbOM102mR\nxrbRlABuGSfU0AXKKKKYgooooAKKKKACiiigAooooAKhuP8AVH6VNUNx/qj9KAIrb/VD6VLUNt/q\nxU1IAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooo\npgFFFFABRRRQAUUUUAFFFFABViq4qcdBQAtFFFMAopKqzalbw5y24jsOeaALdFZf9ptKMoAPrzVy\n2uPOXBxupcw7FiiiimAUUUUCCiiigCG4m+zxs+N2KxZtTnm4U7B6DrW7JGsqFG6EYqOKzgh+6gz6\n9f1pMDn0trm4OQrNnuf/AK9XodGc48xwB6L/AI1sEqn3mVadmlYZTi062i/h3H/a5/SrQUL0AH0p\naKoQUUUUABG4EHuK5q4jMcrL7n8q6WsfVocSBx/EPSplsNGdTImNvcRyL2apljJp4RB15NQpFWN+\nWeOIct+FZ8+oswIT5feqYWSVu7Veg03oZT/wEU7tisjIuem4jOe+O9VK6DWIkjtFCKB+8Hb2Nc/V\nokSiiimAUopKKAJEcqQwOCPSunsrtbqMf3gMNXKirNpctayhx+I9RSQHV0UyOZJEDhhgjPNMa6hU\n/ezTuhk1FUJNQP8ACAPc1Sm1Ec7nz7LUuQWNaS4ROjAn25qlJOXz1+tZT6gf4Vx7nmq73Ej9WNLk\nkyi8UgQkuQT/ALRyfyFMe8ROEXPv2qhk0lNQsTcsveyt0wPpUDOzdST+NJSVVhC0lFdFpdvbPAr+\nWGfuTzzQBhR2003+rjdvcA4/PpV+DRLh/wDWERj0+8fy6V0OAOgxRQFzm73TlswpDl88HIFVeK6L\nU4fNtnwORyPoOtc7UtjA9K2tFm3RvESSUPHstYtXdKkMd1jOFcc+5HSmhnQ0UUUyQooooAKKKKAC\niiigAooooAKhuP8AVH6VNUNx/qj9KAIbf/VrU1Q2/wDq1qakAUUUUgCiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACl\npKKAFopKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgBtFFFMAooooAKKKKACiiigAooooAKlTpUV\nSRmgCSiiimBnazIUtwoP3ziufrd1z/Ux/wC//SsKkxli1bBx61dR2jO4dqylbBFaCtuUGspaFI24\nJhMoPfuKmrFhnaFsjn2rXSVXUMGGK0i7iaH0VFJdQx9XH6VQm1mJPujJqiTVpjyJHyzAVz02sTyc\nKdoqi80sh5Yt7f8A6qQHQzavBH0+Y1TfVZZPunaKz4bC5n+7G2PVuP51q2ujMP8AXOPov+NDQFa3\nnlNwjElzmugqOK3ihHygfXvUlCAKKKKYBRUMtzHH3yfSqEt878KcCpc0VY0JbiKIcnn0FZ1xeecC\noUYqBEkmbABJq5Fp3eTH0FS7sexnF8UwvikmUpIynnBxUeamwGrpEnzSJzk85rWrnLGXyrhDnAJw\nfpXRVrHYTMvXXHkIvcvn8ga56trXzzCPZjWLTJCiiigAooooAM1NGgbljgCoaUfWgC99qjhXanzf\noM1C99I3Tj+f51Wox+XrSsMc0rt1J/Om0H2q1Z2Ul0wABC927Y9qYirU8drcTY2Rsc+1dHBpttBg\niME+rcmrYAHQYoA56LQ7huZCsY/M1Ld6TFbWzOrMzqQc+3etyo5oxLFIn95SPzFAHHUUp449KSgA\nrd0KYlZIz2+Yfj1rCq5pcoiuk/2vl/PpQB1NFFFADXAdGU9wa5WQbXZemCePxrrK57VIfKuSePm+\nb86mQyjTlby3R/7rA/kaSkpAdcjB1DDoQD+dLVPS5vNtVydxX5T+HT9KuVQgooopgFFFFABRRRQA\nUUUUAFQ3H+qP0qaobj/VH6UARQf6sVLUNv8A6tampAFFFFIAooooAKKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKAClpKKAFopKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAoNFBoAbRRRTAKKKKACiiigAooooAKKKKACnp97FMpR1H1o\nAnopTTJJY4xlmA/GmBla6flhHuf5ViVf1W7S5kXyzlVHWs7NIB1WYJgq4Y1UzSUOKY7l5rpB05pj\nX0uNqnA+tVOfzrdsNJjMayTKSSMhc9vehKwN3MbfJKcfMx9BzVmHSrqYj5Ng9W4/SukjgiiGERV+\ngqSmIyYdBiX/AFjs/qBwP8avxWVvBjZGowMZPJ/Wp6KACiiihggpelVZb1I+nJ/SqEt3JIf6VDmV\nY0prtI/cis+W8eTpxUKRvKeBmr0OngcyH8Kj3pMeiKCJJKeAT71di07oZD+Aq+iLGMKABTuB6Voo\noVxixrGNqilp3AHP61A91EnVh9BzRoIydUj2TbuzDP41QrVv547lQBnj+Ks7MSdTUsew0A1tx3yp\nEgbczAdO/wCdYjXKj7ozUT3Mjd9v0pxTBlrVbn7Q6YzgA1nUuSepzSVRAUUUUxhRRRQAUo9KSnRs\nEOevpQBbEUMCAvy392qrvvP90dsUjuztk1oadpbXB3vkJ/OkMjsdOe7O4/Kg7+tdLHEkChE4AoSN\nY1CqMAelOoEFFFFMAooooA5fVofKum9G+YCqVbmuw5EcoHThj7dqxKAEpVYqwYdQQR+FJRQB2ULi\nWNHGDlRT6z9Hl8y2C/3Dj8OtaFABWXrMW6NZAOQcE+3b9a1KhvI/Nt5F/wBkkfUcj9aTGctS4pOn\nFSLGW7VN0M0dDkw0kZPX5gP51t1y6QujB1fa3qKsC6uU6zsfwqlJCaN+iqGmXjXKybmyVb0xxV+m\nIKKKKACiiigAooooAKhuf9S30qaobn/UtQBFb/6talqG3P7pampAFFFFIAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKAFopKKAFopKKAFopKKAFopKKAFpKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAG0UUUwCiiigAooooAKKKjmuYrdcu2\nPYcmgCSjge1ZM+sD/lkp+pqjNezTdWP4UAb8lxFH1cVTl1aNOFBJrGVZZTgKzfnVuLS7iT7wCfXr\nTAdLq1xJwDge1VGkmlPVmP4mtuDRIB/rCz+2cD9K0IraCH7kaj8OaAOWSyuJRuWJ8euMVG8TofmD\nL9RXZAAdqZLDHKpDqGyO4oA42ipbiMwzOhHRj+VRUAKpwc11tpL50Eb+q/yrka6DQ590TRk5KnIH\nsfSgDVooprusYySF+tADqCQBzxWXPrcSHEQL+/aqgv5bnJb5QO1JvQo1pr1I+F5NUJbuSTvgVHHE\n8p+UE1fi08dX59qj3mBQSOSU/KCfer0OngY8w5PpVotFbrzhR/Oq02pxr9wFvc0+WwFtUVOAP0pW\nYL1KiseXVXx94L9OtUZL7d3LfWn6Ab8l7CnGd30qpJqR/hAHuaw2uXPt9KjLFupJotcDSmvi33nJ\n57VUa7Paq9CqWOACT7UcoXHtM7dTTKtRaddS9IyB6niknsntm2OecZ45qhXK1Kil2CgZJOBQwwcU\nkbbGDDtQK5oRaNcy9cIP9r/61Rz6XcwDO0OPVf8ACulibzI1fswB/Sn0WA4tgV4Ix9aSururOKdG\nyi5wcHHeuVZSrFT1BIoASiiigAooooA2NN0ovtllGF6qDnn3rdAC8DH4VT0ybzrWP/Z46+lXDQAU\nUUUAFFFFABRRRQBXv4vOtZV9sj6iuSrtSMgg9+K5G7iMM8iejH8jQBBRRRQBq6HPsmaM/wAQ4/Dm\nuhrkLOUwzo2cfMM/TPNdcDkAjvzQAdKz7u96xr+Jq5OWWJyvUKa5d5nJOT3qHcZY+RPSkNwi9Oap\nljSZpcg7lg3DHpio2djnkmos0sbDeu7pkZ+lVawrm5otrsUzNxv4H0rWqOHb5Ue0cbV/lUlUIKKK\nKACiiigAooooAKhuf9S1TVDdf6pqAIbc/ul+lTVDb/6pamqQCiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAoNFITQAlFFFMAooooAKKKKAGyDcjL6g9K5z7JcSMRt\nY89W/wDr10tFAGLDo0h5kYL7Cr0WmW8f8O/61cooARVVOFAH0paKKAJY+lPqOOpKYBRRRQBzmtQe\nXcb+cOP1rNrpNYg8y3390IPviueCM54GfpRcdhlX9IlMVyP7pGDTY7RV5kOT6DpVjhRhQF+lTKfY\nfKaVxfbeI8Zz1rEvpJWI3SM/sTxV2KCSb7oPPerq6XEcGXLMO3alFtgzn7e1luD8ik+/YVt2ekLD\n80p3tjoOlaUaKgwoCj0FOqiRAqoOgAFZ91q8UWQnzH1q+671K+oIrj5U8uR1PZiKYy1PqDzHP5VW\nMrN3NMAzwAT7CrUOm3U3SMgep4FFgKtFbMOhMf8AWyAey/48Vfh0u1h52bz6tQK5zSQySY2IzfQG\nr0Oi3UnLYjHuefyrolRU4UBfoMUtAzLi0OBP9Yxk/QVeitYIRhI1Hvjn86mooEL6VlaxENiSAdDj\n8/8A9ValQXsXnW8i+xP5UAcm3WkAJ6UGpIhxSuB0GjyFrfYT9z+R6Vo9a5/TZxbyHd90jH61qSX0\nYGUO4nj6UuYosSTLCMsa5a+H792xjcd351oTz7iWY1lzSea2fyoUm2DRFRRRVEhRRRQBt6FNy8RP\nuo/nW2a5TTpfJuoz2Jwfoa6qgAooooAKKKKACiiigArn9ch2yrIBwwxn1Yf/AFsV0FZ2sReZalsc\nocj8eDQBzdFFFACjg11dhL51tEx4OMH8K5Ot7QpQY5I+4O78OlAGsRWHd6PMGZ4iHB5x0IrdzxRQ\nBxro8ZKuCD70ytbXYsSpJgAEYJ9//wBVZNABRRRQB1eny+bbRnvjB9sVarG0KXiSM+zZ/StmgAoo\nooAKKKKACiiigAqG5/1TVNUNz/qjQBFbf6sfSpaht/8AVrU1SAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUjHAJ9q5+fUbiUsN20cjihIDce4jj+8wqtJqCr91c+56VhBzuBJJ5q4CD+VKW\ng1qbcEyzLkVJWJDKYWBHTv8AStlHEigihO4WHUUUUwCkNL2ptMQUUUUAFFFIzqn3iB+NAC0VVk1C\nCPjO4+1WQdwBHcUALRRRQAUUUUAFFFFADk61NVcdakeaOMZJoukBJTXkRMkkVRm1DslZ8kzN1OaX\nN2KL9zfKylFAIIwaz84HHHtUZlUd6ryTk9DUpMRaaRV6mq0tyxBC8fzqDdmkqlEGzodEn8yAqeqt\n/PmtOub0ebyrkKejjH410lVoK9wooooAKpz6ZBcTGRySTjI+lXKKAIYrWCH7kaj3xzU1FFABRRRQ\nAUUUUAFFFFABSO6orFjgY60tc1qN9LO7JyiLxt9frQBTl2mR9mduflNTwoFWqyZY8Vejixy3WpkU\niREpJJFjFMlnCcA81RdixyamMQYskjSHJpYoXnbbGMnr+FOt7Z7qRY179/QV09nZR2i4Xk45PrWh\nJydJU11H5U0iYwAeB7VDQAUUUUAKDggjtXW2kvnQRv6r/LiuRroNDm3QtGTyrZ/A0wNWiiikAUUU\nUAFFFFABTZY/MjdD0ZSPzGKdRQBxjDaSPQkU2ruqwmK6f0b5h+NUqACruly+Xdx84DfKfx6frVKn\nIxRlYcYIP5UAdnS1HE4lQN64PFPoAzdbi32wcfwNn8DxXOGuxuI/NikT1Uj8a5BlKkqexxQA2inb\nKXbQBY0yYw3SZJCk4P4j/GuqrjgdhDDsQfyNddA/mRo/dlBP5UAPooooAKKKKACiiigAqG5/1TVN\nUNz/AKpqAILf/VLU9QW/+rWpaQDqKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANf7rfQ/yr\nkz3rrJDhGPop/lXJHrVIAq3C+RiqlSxNhqUlcaLWasW05gb27iq9HWs0ykb6sHG4HINLWTaXXkna\n33f5Vckv4U77vpVolosk0YrLk1Uc7QBVKXUJXPU49uKYG49xFH1YfnVWTUo1+6M/WsQzO1M5PXJo\nEaUmpyN0IH0qu0zOeWPWooreaX7qMffFakGld5Wzx0FIZmhGkOFBY+1b1ojRwqr8EfrUkUMcP3FA\np9MAooooEFFLUbzJH1NK47D6ZJKkfU1SlvWbIXiqhcseSTUuQ7F6W+OML+dUpbk/xHNVppHU4Ax7\n1WJpqN9wLL3BPSoTIT3qOiq5UhXFyaKSimIWikpaAHxSeXIjehBrr0YOoYdCK42uk0ifzbZQeWTg\n0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALWDfaS+55kddpOcHtWtdXkVom5yM9h61zl3qE10xO\nSq9lFAEkUSxDLdaZLcYBC9aql2bqaSpsMCSTSqCxpVT1qUAUxHS2KRJAhjGAR17k981YrN0ebfCY\nyeVP6GtLj2p3AwNch2TLJ/eGPxWsmul1iLzbYkdU5/DvXN8t0BpXGJRUiwu3apVtD3IobSFYritD\nR5vKucE4VwQf6UxbRB15qdUVegAqPaIrlNhryFf4s/Sq02qCMHCj8aoFgoJNZ00pkb2qotsGdVaT\nefCjnGSOcdqnrI0KUNE8f905/OteqJCiiigAooooAx9dhyscmPYn27VhV1moRCW1lX23flXJ0gCi\niimB0ujTebahT1T5efzrQrmdOvzaMVPKt+hrXGoEj7g/Ok5WDcv4rmdRh8m5fAwDyK24b9ZJRERh\nj0/CqOtRcxyDvlT+FK47GPRRRQAV0GjTeZbbecoSOfzrn60tEl2zNGTwy5A98/4UwN+iiimIKKKK\nACiiigAqG5/1Rqaobn/VNQBBb/6palqK3/1S1LSAKdTaKAHUUUUgCiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiigkDk4AoAhu3McErDgha5augvryEwSIGySMcVz9NAFFFFMC6HXGc0wzKPeq2aSp5ENMlMxPtTD\nIzdTUlvAbiQIO/f2rbi0u2TqC596pKwmznwrMeAT9AatRadcy/w7R78V0CxRp91QPoKdSAyo9GUc\nySE+y1cjsbaPpGM+p5qzRTuAgAHQAfSloopALSUtQyXCR980XGtSbFQyXMceec1RlvGfOOBVYsWP\nrUN9irFuW9Y525FVSzN1JNSxW0kvQYHqauxWUact8x/SlZhcpxW0svQYHqauxWaR9fmNWOlFUkTc\n5zUf+Pyb/eqrUty/mTSN/tGoqsQUUUUAFFFFAC0UlLQAVp6LOI5zGejjj61mVJBIYZFcHGDmgDsK\nKRWDgMDkHvS0AFFFFABRRRQAUUUUAFFFFABVK91KK1GPvPjhR/Wi7v0iykZy+Oo7VjOyglmwSf51\nPMMrzSy3TF3P/wBaoTT5JCx44FM5xVAJTlFXrKzjP7y5IC9h6/8A1qgZBuOzgE8D2pNgMApRmnha\ncBiochk+nzfZ5ssMKRg+1aMmpp/CrH6nH8qyhS0XYWLk1+8wK7QAfWqmxfSgkCmmVF70tWPQkpar\nNdKOgqNrhj0wKfIwui7nHpTTMi9W/Ks9nc9WptHs/MXMTTTtJ9KhopVUkgDnnitNhN3NDRpdlyF7\nPweO/aukrO0uwFunmSAeY3T/AGRWjQIKKKKACiiigBsjKi5bp/OuQnTy5HXtuOPpXSSP5jFj07Dt\nWLqiqJQykHI5xUqV+hTRRoooqiRatW91s+VunaqlFK1wLMM7m6Rh1L4H410WoQ+dauO4Ab8qy9Ft\nCz+ew4X7vua3SNwYHuCKdkM480VJMhjkdTxgmo6kBafaytBcRsP7wH4Hg1HSGmI7Kiq9jKJraJhn\n7oH4jr+tWKYBRRRQAUUUUAFQ3X+qapqhuf8AVNQBBb/6palqK3/1S1LSAKKKKAClFJRQA6iiikAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRTZJFjTcxAHqaAHUmcdazptWiThBvPv0rOm1GeXIJIHoKYG+88cYyzAVVk1SJOi5/SsJ5nc8k\n00ZY9CaLDNGXVpG6EL/u1TkuZH6kn6kmpI9PuJekZ/HirkWinjzHx7Lz+tAjKLs3WkxXRx6bbR/w\n7vduf/rU97K3kGDGv4DFFwOYNFad7pggQyIxI7g9h9azKYBRRRQBraMwBdT36evFbBrn7KTypEb3\n5rf6ipAKKKKACikJA5PAqvLepH05NDYyzwOtV5btI/eqE108nfFQZ9am9wsWZLx5OBwKr5J681ND\nayS84wPU1oRWccXUbj6mhJsexQitZJe2B6mr0VnHF1+Y+9WKKpKwmwooopiCiiigDlJPvt/vH+dN\np7/fb6n+dMpgFFFFABRRRQAUtJS0AFFFFAGtpWoGMiGT7h+6fQ1vVxfTmug0rUPNXyX++Oh9RQBq\nUUUUAFFFFABRTXkROWYL9TVSTVbaPOG3n/ZGf1oAu8DknFZd5fbiUjPHc+tUrnUpZ+Pur6f41T3E\nnrUyZViV229Mk1AQznJp1FJegDRHTwgH4UfnRkDvSHoL04FKKjMg7UwyGq5WwuuxYFDMFGc1ULE9\n6SjkFzFgzqOlMMzH2qKinyoVxSSepNJRRTEFFFFABRRRQAorZ0jTzxPKP90H+dYorrbGXzraNsg8\nYOOxFAFiiiigAooooAKo6q8sdsWibGDzj0NXqiuIfPhkj6blIzQBybTyyfedj9Sf5Uw1dm0q5h52\n7x6rzVIgjg8Uh3EooopiCiiigDq9OcPaxkemPxHFWxWNoUuUki6kHcPpWzQBz+sRCO43D+MZP16V\nm1v6zDvgD8fIefXn0+lc/UgLSGloNO4zb0KbMckWeVOQP9n/APXWtXOaPKY7oL2cY/LpXR0xBRRR\nQAUUUUAFQ3P+qP0qaobn/VH6UAQQf6sVLUcH+rFSUgCiiigAooooAWlptLQAtFFFIAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr30kkMJeMjI69\n65yWaWYkyMT/ACrqXQSKVPRhiq0WnW0fO3cfVuaLgc/HDJIcIjNx2FXItIuH+9hPr1reVQowAB9O\nKWncRmxaNCn32Z/0H9aux20MX3EUfhk/malopDCiiigAooooAbIu9WU9wRXKzRmN2U9iRXWVg6vF\nsmDAYDD9RTQGdRRRTAsR5AHNb9pJ5sKn8D9awBwBmpor9rdGVRknoew/CkgZvFlXqQKqy6hCvCtu\nPt0rClupZjl2J/l+nFEIy3vR0BF+S6eb1A9Kh5PqaswWUkoyflHqavxWkcXbcfU1HKMz4bWSXtge\npq/FZRxcn5j79KsdKKpKwNhRRRTEFFFFABRRRQAUhIUEnsKWo7jHkyZ6bG/lQBzD/eb6n+dNoNFM\nAooooAKKKKACiiigBaKSloAKcjtGwZTgjpTaXFAHT2F8tzF8xAZfvZ4/Gny39tDwXBPovP8AKuYB\nI70UrgbMutj/AJZxn6sf8M1Tk1S6f+IL/uj/ABzVLNG4VIxzO78sxb6kmm0m6m7qqwEvFJkCoiSa\nSiwiUvTTIaZRRYBdxNJRRTAKKKKACilCn3pdtA7DaKkC0uMUrhYWO2mlPyRsfwNXItFuX5bag9zz\n+lbVhKJbeNvbHPqO9WaYjkry2NpL5ZO7gHPsar1ta9DzHKAORtJ/lWLQAUUUUAFb2hS5SSP+6QR+\nNYNXtJl8q6T/AG/l/OgDp6KKKACiiigAooooAWsTXYB8kwGCeD/MVtVU1KMy2soHYbv++c/0oA5W\niiigAooooAvaVKIrqPJwGyv59K6iuLRtjq390g/ka7CKTzI0f+8oPHuKAG3EfmwyLjOVP51yhGMg\n9Qa7CuWvovJuZFHPOfz5qR3K9FJRQA6N9jq/90g/lXXo4dFYdwD+dcdiuk0mYS2qjJJXg5/z6UxF\n6iiimAUUUUAFQ3P+qapqhuf9U1AEFt/qlqWorf8A1S1LSYBRRRQAUUUUAFFFFADqKbS0ALRRRSAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiikoAWqWqwebblscqc57+9WmkWMZYgVRuL9CCijORyTRew0jECFjwDUnkEdWH0q\nbPoAM0mRS5hlaTrgZ/Om9adt3k08LjpTEya306ebBxtX1ata2sIbfn7zf3j/AEFPs5PMhU9xwfwq\nxTFsFFFFABRRRQAUUUUAFFFFABRRRQAUyf8A1Uv+438jT6in/wBTJ/uN/I0AcvRRRTAKKKKACiii\ngAooooAKWkooAcBThxTMmkoYDy1IWNNopDFyaSiimIKKKKACipo7S4m+5Gzc4zg4/OrseiXLfeKR\n/wC8c/8AoOaAM2jFb0OhRLgyuzewwB/U1ejsraL7sSfiN3880AcvHbTS8JGzfQGrsWi3L/e2x/U/\n4V0QAHQYpaAMqLQoV/1js/0wP8auR2FrF92Jfqef51ZooAzdZh3RK4GSp/nWFXVXMYlhkU91P6Vy\ntSxhRRRQBr6LNw0Wf9oD+dbFc1p8vk3CHIAJwc+hrpatAU9Ti862kGMkDI+tcsa7RlDKQe4xXIXE\nXkzSJ/dYgUhEVFFFABQODmiigDsopBLGjg5DDOafWfo0vm220kZjO3j860KACiiigAooooAKQjcC\nD3GPzpaKAOPuYzDM6HjDGoq0tah8qfcAcOOvv3rNoAKKKKACul0eXzLULzmM7f61zVauhzbZmQk/\nMvA9x/8AWoA6CsTW4/mjk9QV989a3Ko6pD5tqxAyV5/x/SiwHNUUUVIwrX0KX55I+Om78ayamsZf\nIuo2OcZx+dMR1dFFFMAooooAKiuf9U30qWorn/VNQBXg/wBWKlqK3/1S1LSAKKKKACiiigAooooA\nKKKKAFpabRQA6iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRRYAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5Z44vvN+ArPm1FjwgwP1oCxoyTJEMscVQn1HsnHv3rPaRn5JNNGe\nnepuytB7zPIckk00ZNWoNPlkwWG1ffrWlDZww4wuT/ePWmlcVzEnSSBVLKRu6VUZya6DU4fMtmx1\nX5s1z1UkguPRsGpqrA81OpzSkCNHTJMOY+55Falc/A/lyq/+0PyroOtCBhRRRTEFFFFABRRSEgcn\nGKAFoqrJqFtH/Fu9lGf/AK1VJNXP8Ef4sf6D/GgdjVpryIgyzKv1OKwpL64kz8+M9l4/Xr+tVyxO\nSSTn1JoA231O3XoS/wDuj/HFUrnVHdSqLtz3PJqhmmkii4hlFFFMAooooAKKKKACiiigAooooAKK\nKUDJoASlx704gL3zTKAFJzSUVpadpv2r53yIx/499PagCLT9Pe8bJDBB1b+ldBDZW8AAWNeO5GTU\n0caxKFUAAdqdQAUUUUAFFFFABRRRQAUUUUAHWub1OLyrl/8Aa+b866SsrWocoko/hOD689KTQzFo\npKWpAAcHPoc11VvL5sKPx8ygn61ylb2jS7oWj/uH+dUmDNKuf1uDZMsg6OMfiK6Cs7WIfMtiwHKc\n/h3piObooooAKKKKANXQ5ds7R/3x/wCg10FchbSeVNG/91h09K64HIz60ALRRRQAUUUUAFFFFAGZ\nrcW63D5+4fzzXO12NxH5sLrxypHNcg42nHpwaAG0UUUAFT2shinjYHHzDP0J5qCigDtsggH1pkib\n0dPVSPzqKxl8+3ic9SOfwqegDjnXY7L6Ej9aSr2rwmO6LcfP8wA/LmqNIYUA4OfSiihCOut5BLCj\n5zlRyPXHP61JWboshe3KH+A4/PmtKmAUUUUAFRXX+qb6VLUN1/qm+lAEFt/qlqWorb/VLUtIAooo\noAKKKKACiiigAooooAKKKKACnU2loAWiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRTJJUiGXYLWbPq6qdsK7jnqRxTsBq01pEHBYA+mawpLyebq5HsvFRZpMd\njpKKp2V2JlCt98frVygVgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigApKhmuo4upyfQVnT6hI/C/KP896VxmnLcRxDk/gKzp9RdsheB+tUSxY0KCTgc57ClqMV\nmZiST1oAz61bg06R8FzsU8+pP4dq0oLaKAfKOf7x60WAzINPkkwW+VffrWlDZww9FyfVuTU+aSqs\nK4UtFFAhGAYEEdRiuWnjMUroexrqqw9Yi2yK4/i4P4dKaAzKlQ1FT04pPUaJa3bGTfCvqOKwd1WL\nW9+zbvlznoM0LQLm9SEhepA+vFYkmqXL9CE/3R/jmqryvIcs5b6nNMRuyX1vF1kDH0Xk/pVR9XH8\nEZ/4EcfyrKzQTQMtyajcv0fA/wBkD+uT+tV2ld87mY/U1Hmmk0CH0ZphOaSiw7km6mbqSiiwhcmk\noopgFFFFABRRRQAUUUUAFFFFABRRRQAU4HFNooAKUUlXNPCi4jLgH5uhoAt6bpXm4knUheoX+97n\n2/Kt1VCAKoAA6AcAUv8AhRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5H5tvImAcqcfXtU9FAHH0VY\nvoTDcOuMDOR9DVepGFXtKkEd0o5w42/ielUadGzIysOqkH8qaA66myIJEZWGQwINKjCRdy8g9KWm\nI4yWMxuyHscU2r+rxeXdMQDh+cn171QoAKKKKACup02US2yc5KjafqK5atrQpjmSIsAPvAe/egDb\nooooAKKKKACiiigArltTi8m6cbcAnI+ldTWJrkP3JB9D7AUAYtFFFABRRRQBvaHKDG8eTkHd+Fa9\nc1pEvl3QG7arAg+/pXS0AZOtw7o0lC/dOGb0HasOurvYxNbyKc9MjHqK5Q8EjGKQwopKKBGnosoS\n4KEn5xgenFdDXIW0hhmjYHGGH5d664EMAR35pgFFFFABUV1/qm+lS1Dc/wCqb6UAQW3+qWpaitv9\nUtS0gCiiigAooooAKKKKACiiigAooooAKKKKAClzSUUAOooopAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFRXX+ol/3G/lUtV7w4tpv9xqAOZPPXn680KcGkoqgLXaikU5ApayZd\nxUYqQQelbNndiYbSfnA/OsWlRih3AnIppiOkoqtaXa3C+jDqP8Ks1QmFFFFAgooooAKKa8iRjLsq\n/UgfzqpJqlunQl/90f44oAu0dKx5NXkb7iKvucsf6VTlu55PvSMfYcD8hxQB0lFZOkXBbfGckjBB\nPp6VrUAFFFFABRRRQAUUUUAFFFJ0oAWjpVaa9ih4zlvQdvrWZPfSSnGcD0FIZqTXcUWecn0FZ0+o\nSycL8g9uv41SPJpVBJwBk+3WgYpZj1oAJ4AyTVyDTHfBk+QenVq0obWGD7q8+p5NFhGbb6bJLgv8\ng/8AHj+H+NaUNrFB91fxPWpqKYgooooAKKKKACiiigANUtTRWt2yQpHIzTbrU44DtX53/QfWsaa5\nkuGy7Z9B2H4VVgIgKWk6UmaVgHik4puaTNFgHE0maSimAUUUUAFFFFABRU8VpPNjZGxB6HGF/wC+\njgVbj0edsb2VPUfeP6cfrQBm0VvRaTbp9/dIfc4H5Dn9atxwRRfcjVffHP59aAOejsriX7sT/UjA\n/M4FWo9HlP33VPplj/QfrW3RSAzW0aLHyySZ9SFP6DH86py6VcJnaN49iK3qKYHJlWU4ZSD6EUld\nYyJIMOoYe4rPvdLhETPENpHOMnGP1xQBh0UUUAFFFFABRRRQAUUUUAPTrUynYQw6jkfWoV61Lmp6\njOpgk82JG9QOn61JWdpEu+Epx8p4/GtGqEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYutw/Okgzy\nMH046fzrJrpNUi822b1X5vyrmzUjEooooA6LS5jJbKDjKZGPbtmr9YeiykSvH/eXr9K3KoDK1uHd\nCsmfunH/AH1XP1193H5sEiDqV4z61yLDBI9DQISiiigAq1ps3k3UZ45YLz/tcVVoB5oA7akqlDqV\nu8ak/KcDjBP8hUn2+2/56f8Ajrf4UroZZoqt9vtuP3n/AI63+FWfTvTEFFFFABVTUk822kHTA3fl\nVukYblI9QRQBxdFTXMZimkQ9jUNABRRRQA+J/LkR+6sD+RzXYRtvRG9VBrjK6bSJvMtVGPuHb9e9\nAF89K5S8i8meVM5wev15rq+lYOuRkSpIAMEYJ46/zpAZVFFFABXUabOZrWMtjcOPy4rl609Jvo7V\nJVk3c4Ixz0HpTA6Cisl9cX+CEn3ZgP0Ab+dVJNXum6FI/wDdX/4rdSuB0NV7uaGNCHkRcjuwz+Vc\n5JczyZ3yu2eoycfl0qGi47HSW/8AqlqWorf/AFS1LQIKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACnU2igB1FJmlpAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBe/wDHtN/uN/Kp\n6r3v/HtNn+41NAcxRRRTAliPaparKcGrNRNDQUUUlQMfHIYmDLwRW3bXKTrnIB7jNYORSCQochiv\n0OKtXEzpWkRPvMq/UgfzqpLqdtH03SH/AGen5nH6VhGTPU5/P+dNL+lOwGrLq79I41X3Y5/QYx+Z\nqpJfXD9ZWH+78v8ALFU9xNFFgH7xTSxpMVZhs5rg/Kpx/ePA/wDr/hTEV+alht5Z+I0Lep7D6mte\nDSYo8GT9435L+Xf8a0FVV4UYA7DgCgDPstM8hg7ud3ovT8fWtGiikAUUUUAFFFFABRxjPaqt5d/Z\nEDbd2Tj2rGmv55jycD+6Ogpjsa82oRR5A+Y+3TNZs17LNwTgeg6flVXJI5pyqWOACT7CpYBn8aAC\nxwBk1et9MeTmT5B6d604reOAfIoB9e/5nNFhmdBpjtzIdo/u/wAVaMVvHCMIoHv3qWimK4UUUUCC\niiigAooooAKKKKAIp7iK3TdI2PbuaxLrVJZ8qnyJ7feP41p6nF5tuxGMrz+Fc7VAFFFFABRRRQAU\nUUUAFLSx7d67hlcjI9vwrpIbaCLBjjToMHGT+ZyaAMCO0uJcbI2IPfGB+ZwKtx6PM2C7onqOpH8h\n+tbdFAFCPSLdeWLv7E4H6YP61ajt4YfuRovvjn8+v61LRSAKKKKACiiigAooooAKKKKYBRRVW6vE\nt+B8z+np9aAMG5j8qaRfRjUVTTkuxYnJPJqGgAooooAKKKKACiiigBVOKl4xUNSocikBoaVL5dwq\n8fPx9K6CuTR9jK2M7TmuqR/MRX9QDSQx1FFFUIKKKKACiiigAooooAKKKKACiiigBG5BHqMfnXKT\nx+VI6ddrEV1lYWsw7Jg/GHHb1HUmkNGXRRRSAmglMMqSAfdOea6vrz2rj810unSiW1TrlflOe+O9\nMRbPIxXKahD5Fw64wM5X6GumuJxbpuIyew965u/lM8m89cYpX1Ap0UUVQBRRRQBfX7o+lLUatlRS\nswUZrOzuVcinc/dBrprKXz7aNzjJXn6iuSYkkmum0qBoLYburndj09BWhJeooooAKKKKAOe1uHZM\nJAPvjk/7VZddFrUYe3DZ5Rs/gf8A69c7QAUUUUAFa2jXSQGRJH2gjPPr9ayaUHHSgDp5NVs4/wDl\npvI7IpOfx4X9ay9R1KG6QKkT9fvNgEfgM/zrNooAKKKKQBRRRQA+iiipKCilpKAOjt/9UtS1Hbf6\npfpUlUSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOoptOpAFFFFABRRRQAUUU\nUAFFFFABRRRQAUUUUAFFBIXqcVWlv7aHO6TJ9F+b+VAFmqWq/wDHq31FQS6uv/LNPxb/AAH+NUbm\n/nnXaSAPQD+vX9aYFKiiimAVYQ8VXooeoExkFM8w0yilZDuOLk03JorRsdN+0je7FU+nJ+hNGiFc\nzqUAk4HP0FdEml2iY+TcfVyT+Y+7+lWViRBhVVR6AAfyouM52LT7qTpEQP8Aawv6Ng/pVyPRHP8A\nrJVX2QZ/U4/ka2KWi4inFplrEQdm8+r8/pwP0q4ABwOB6UUUXAKKKKQBRRRQAUUUUAFFFFAFPUoP\nOgOB8y8isOK0uJMbInI9dpA/M8V1FFO4XMiDSWPMrBf9lev/ANb9a0oreKAYRce/epaKQ7hRRRQI\nKKKKACiiigAooooAKKKKACiiigBkih1KnoRXLyRGN2THQ11NN2JnO1c+uBmmBzsVhcy9I2H+98v8\n8Z/CrkejOf8AWSBfZQT+pAH862KKYFFNKth1Bc4/ibj64XFYtxF5MrpjGD+nauorG1mLEiyDPzDB\n9OKAMulAyaSlU80AS7RW7p774FH93isMVcsZvIZsqSCPWp5irG1RUH2y3/v/AKN/hQt5bsQA/J6D\nB/wp3JJ6KKKACiiigAooooAKKKKAFopp4GTxWVdXxfKJ8q+vc0DsT3l9t+SI89CfT/69ZZJNJUTv\nngVO4xZD2qKiiqsSFFFFMAooooAKKKKACnJ1ptKKAJQa39Il8y328/If51z69K0dHl2TlDzvGKkZ\nv0UUVQgooooAKKKKACiiigAooooAKKKKACqGrweZb7gOUOc/7Per9MlQSoysMhhigDkaKUqVJB4I\n7GkqRhWxo04HmRs3+0v9eax6kjlMZzkj6UAXr66M0hwflHSs+XpQZvao2ctQlqA2iiiqEFFFFADg\n7DvSFie9JRSsBb061+1Tqp+6OW98dvxrqCyRL8zKoAxlmA/WuQjmeL7jMh77TtP6HP50O7SHLMzH\n1JJz9aYHTyajaRdZk/4Dlv8A0HNVJddgX/VxyOffCj8+T+lYHNLQBpya5cH7iIg/76I/l/Kqr6jd\nyfemf/gPyf8AoOKrUUgA02nUhoASiiimAUUUUAOopBS0gCiiigAooooActOqMdakpMoKSlpD0pAd\nHB/qxUtR2/3BUlWSFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBc0ZpKW\nkAtFFFABRRRQAUUUjEIMsdoHvigBaCR3NZlxq8aDEa7z69h7+v8AKs2a9mnPzMcf3RwPyppAbc+o\nW8GRu3t/dX+p6VmzatK/3MRj25P+fpWZS8+5p2AnkuJJfvyM3sSaiL02nRwyScKjN9BQA0sTRmrs\nelXT/wAKp/vH+gzVyLRVH+skLf7ox/PNAGNSVvS6PA/3GZP1H68/rVGXSZ0+5iQe3B/I/wCNAGfR\nTiCCQRgim0AFFFLigAFdLYzLNbpj0xgdq5wdK1NImw7Rk/eGR9aTHY2KKKKQgooooAKKKbJIkQyz\nAfWgB1MkkWIZchR71nz6mORGMH+8f6Cs6SZ5CSxyTSHY1JdVjT7ilvrxUdvqTySqrBQrfh/Wsunx\nK7ONiliDQgsdLRTUztG7g45HpTqYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkoNJ\nQAUUUUwCiiigAqtfxedbOuORyPwqwzhFLMcAVjX2p+blI+F/vdzTAzSMUoFNqQEAdqGBYRBUnA9q\nrLLigyE1DVyrkrS9hULEk+9JuFT2UBu5cfwjkmmoibNy2fzYkY+nNS0iqFAA4wKWmIKKKKACiiig\nApk0qQruY4/nTbi5S3HPXsvesWe4e4bLdOy9qlsZLc3j3HT5U9P8fWquaQkCoCxJosFxzvk0yiir\nEFPMThVcqdrZAbsSK0dP01pWDyghOoHdv/rVo6rb+ZaYRR+75XjGB3oA5qiiigAooooAKKKKACii\nigCRDU0T+W6tk8EHiq68GpTwKnqM61GDqrDoRmlqlpc3m2wycleP8Ku1QgooooAKKKKACiiigAoo\nooAKKKKACij3NRNcwITulQY7ZGfy60Ac/qkJhun/ANr5uffriqdaOq3cNz5flkkr1OMDHpzzWdUs\nYUlLRQBHRTttNpgFFFFMQUUUUAFFFFAC0tNp1ABRRRSAKKKKACkNLSUAJRRRTAKKKKAFFLTadSAK\nKKKYBRRRSAKkqOnqeKTGhaKKKkZ0Vv8A6talqK3/ANWtS1oSFFFFIAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKWkooAdRSZpaQBWJrMbCRHGdpXBI9QTW3Uc0CTrtcZHWm\ngOVxUiQSy/cRm9wDj866KOxtosYjX6kZ/WrAVR0AH0GKdwOej0m5k6gJ/vEf0zVyPRV/5aSE/wC6\nAv685rWpKLgVo9PtosYiU+7c/wA6sBQvQYpaKkAooooAKKKKAMbWYMMso6Hg/h3rJrqL2ETwOnfG\nR9RXLkbeDTTAKeKZTh0oYDqlt5TDKj+h5+neoqKQzqkYOoYdCM0tUdLm3w7c/c4/CrEl1FF95ufQ\ndaVwJqjlnjhGWYfTvWXcamz5CfL/AD/OqLSM3U9aBGhcaoxyI+Pw5qg8rPksck1HT44nlOEUsfag\nZHUiI8hwqlj7VowaUeDMf+Aj/GtKOGOIYRQo9qYGbBpXQzH/AICP8a0o4UiGEUAU+igVwooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACg0U2gAooopgFFFFABRRRQBkavNIpEY4QjP4//WrJ\nrodQs2uUGzG4evTmsV7SeP70bfXqP0pgQUUUUALTs0yikMM1taM4MbJ3U5/CsbFXdOk8mdQc4bii\n4jfooooAKKKKACqt1eLACq8v/wCg+5qG91DblIj9W/p/9eskkk9aQ7EjuzksxyajLYpGeoaFELis\nSaSij2HWqEABJwASfStiw00r+9lxnsh5/wC+u1SWOmrFh5Pmk7Dsv+JrRoAWpQN64PfNQ1Kh4oA5\nGaMxSOhGNrEVHWnrMGy4LjOJB+GR6VmUAFFFFABRRRQAUUUUAKOtSZ9ef6VFTxSA1tGm2yNGTw3I\nHvW5XKW0pilRumCK6pTuAPqAfzpgLRRTHmii+/Ii/VgP/r0APoqjJq9mnRy/+6p/rgVVk15eRHCT\n6Fmx+Y/+vQBsUVzsmtXT/d2R/wC6P6nJqpJdzy/fldh6bjj8qAOokubeLO+VAR2yM/l1/Sqr6xaI\neC7/AO6v/wAVtrm80uaANmTXDzsiHsWb+gx/Oq0mrXT5wwQeigf1yf1rP3CjdSuMleeWT70jt9WJ\n/rUefc0zcaM0AOJoFNpwoAWiiikAUzrT6FFAEdFKw5pKoAooooEFFFFABSikpRQAtFFFIAooooAK\nKKKAENJSmkpgFFFFABTqbS0AOFBGKVRSsOKkdhlFFFMQU5abSjiiwD6KWkqLFHRQf6talqOD/VrU\nlaEhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAXNL\nTaKAHUUgpaQBRRRQAUUUUAFFFFABRRRQAVzeow+TcOAMBvmH410lZesQBoxIByp5x6VSQGJSikpR\nQA+lAzTN9SCk0MkjlaHO04JprOW6mmipIoZJThFJpWAjp8cTynCKWPtWlBpPRpTn/ZH9TWjHGkY2\noAo9qAM+DSRnMrZ/2V/qa0I4kiGEUKPan0UCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiim5oAU0lFFMAooooAKKKKACiiigAooooAw9Wh8uYPjiT+YrOrf1SLfbkjqhz+HesCm\nAUCilHWgCQAUtIKWpYHRwSebGr+o/WpKz9Km3IydxyPpV2WdLddzn8PWgY5nVBuY4ArIu9QMmVj4\nX17mo7q9e5OAdqDt/jVXigBT6k1EX9KQuabTsgCiipIoJJ2CoMmmIakbyNsUbjW9ZWK26hmGZPX0\n+lPtLNbVfVj1b+n0q1QAUUUUAFPjOc0ynJw1AFXWIBLb7+8fIx6HrXNV2brvRl9QRXITR+VI6+jE\nflQBHRRRQAUUUUAFFFFABTl602lHWgCQcVdbV7kKEXy029wOenvxVIGmmpGSyXtzJndNIQe244/L\npUG4nqaSiqEFFFFABRRRQAUUUUAFFKBQaLAJRRTgKAEAp2KdRSGNpaSikAuaUU2lBoARxTKkao6p\nAFFFFAgooooAKKKKAHUUUUgCiiigAooooAKbTqSgBKKKKYBRRRQBKtO4xUYajJqR3G0tFFMQUUUU\nALmkoooA6a3/ANUtS1Fb/wCqWpaYBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig\nAooooAKKKKACiiigAooooAKKKKAClFJRQAopabSikAtFFFABRRRQAUUE4FU7jUoYc4O9h2HT86AL\nnTmqN5f26oyE7yQQQv8AjWRPfzXH3mIH90cCq1UgEooooAcopxpgNOpMB1a2kyZVkPUcjjtWRViz\nl8mZG7Hg/jQM6KlpAcjNLSEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaSi\nmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1lDqVPQg1zE0ZidkPY11NYmrxbZQ4/iH6imBm0UUUA\nSr0paYnpTjUtDJ7af7NJv68Uy5vHuDlvwHYVXJNJTWgh240maSimAUUVYtbSS5fABC/xNigBtvbP\ncPtQfU1v2tqlsmF5Pc0+C3jt0wgA9T60/cq8llH4igB1FQPeW8f3pF/A5/lVd9WgH3Vdv0oAv0Vj\nvq8hzsRR7nJNVX1C5f8A5aEf7uB/KgZ0RIQZJA+vFRG+t4T80i/hz/KubZ2flmJ+ppM0BY6CTWrd\nfuK7n8APz5rDu5lnmZ1Tywe2c8+tR5pppIQlFFFMAooooAKKKKACiiigB45pSOKatPNSBHijFLRT\nAMUYpQKdik2MjxSVJikK07gMooopiCiiigBRTt1MooAeCTTqjBxTw2akoSiiigQUUUUCBjTTS0hp\noBKKKKYBRRRQAUUUUAKKWmj+lSBaQDaMGnbRT8UrjIsGlwakxRii5Vhm2msuKmpj8ihMViKiiiqJ\nCiiigBRS02nUrAFFJmimAtFFFIApKSimB1Fv/qlqWorf/VLUtABRRRSAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkLBRknA96pz6jF\nHwnzH9KALp4GSQBVKfUY48hfnb9BWXNdyTfebNVyaQya4vZZj8zceg4FVc5oNSwWk1wfkU4/vdBV\nCIamhtprg4jUn37D8a1bbSETmY7j6DpWkiKgwoAA9KVwMV9JaOBnZsuOcDpWZXXkZ61y95CYJnXt\nuOPpQBBTxTKUUAPooopDOltJfOhRvbH4jipqyNImwzRHvyK16dhBRRRUgFFFFMAooooAKKKKACii\nigAooooAKKKKACikzSUALSUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqMXm27eq/M\nPw/+tVqkKhgQeh4oA5OipJ08qR1PYkVHTAUHFHekpaAEooooAKKKWgBybARvzj2rQGqeUu2GIAf7\nXPPrWdRSAtSajcyfx7f90YqBpXbqxP40yigAoopaACiiloGJRS02kAZpKKKoQlFFFABRRRQAUUUU\nAFFFFACjrUlRU8dKTAU0gpaMUrjQClpaSluMKKQ0madgGmjFHWpAtO4iKipCuTTSppiG0UUUAFFF\nFADs0tMp1KwC0UlLSASjFOFPxkU7jIKKUjBpKYgooooAKKKKAFFTVBVyFQy1L2KjqRiirARRRgel\nRcdiDBp3ln0qeii47EPlNSPD8pqeihN3FYzaKcwwTTa1IegUUUUAFFFOCEjNADaKKKAHUUUUgENJ\nSmkpgdRb/wCqWpait/8AVLUtIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACimvIkYy5xVCfUwvEYz7n/CgDQZlQZZsCqE+pomRH83HXtWZLcSS\nnLGoaQyxPdyTHljj0qDNJU8NrLP90HHqelICCpYraWc4RT9e1asGlxpzId59O1XgqoMKMD2pgULf\nSY05k+c/pV9VC8AAfSlopiClpKKAFzWRrEA+WUfRv6VrVDcwieF09uPrQBzFFKwwSD24pKYDxS0g\npaQySCUwyq47H9K6ZX3qGHQgGuVrd0uXzIdvdOPwoAvUUUUCCiiikAUUUUAFFFFABRRSU7AFFJRQ\nAtJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU1pY4/vOo/EZ/Kq76jbIfvFv90UAWqKzJNXU\nZ2IfbP8AhVdtUuG6YX6CgDbpjTRJ951H1P8ASufe5mk+9Ix/GoiSe9AG62pWyn7xb6Cq0mr/ANyP\n8zWVRSGPuZmuH3NjPtUFPplMQUopKBTAfto206ipGMxRSkUlNCCiiimAUtFGKQBRRS0DCiikpAIT\nSUUVQgoopaQCUlOptMAooooAKKKKACiiigAp4PamUo60rAPpaSikMcaTpQTTCc07BcCaTrSCnUAO\nUYp2aZk0maAH7qTdTaKAYpOabilooENop1JimAlOptKKTAWloFFIAqVaaiEmrKx4pNlWKcqFWplW\n7lflzVSqTuJhRRRTEFFFFABVq1bgjP4VVqWFtrik1oOJdooorKxdgoopaQCUUtIaAKlyuGz61BVy\n4XKZ9Kp1utUS0FFFFBIVYt2/hqvT4m2tmkBYnIC9KrUsr7zTaAClptOpgFJilpKAOnt/9UtS1Fb/\nAOqWpaACiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTJJ\nkhGXbb/Os641TqIhj3NFwNJ5Ei5ZgKz7jU8cRj8TWZJNJIcsxNR1IErzvKcsSetRUVYgtJp/ujj1\nPSmMr1PBaSz/AHV4/vdq1INMii5f52x+FXgAAAOKAKMGlxx4Mnzt+lXQAowMAD0paKYgooooAKKK\nKACiiigAooooA57UYPKuG44bkVTrc1eHfEJB/B1PtWHTAUU+o6eDSYxav6VN5U23s/8AMVQpVcxs\nGBwQRQB1NGajilEsauO4p9AgooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUVBJeQR5Bfn0F\nAE9FZ8mrRD7qlvrVZ9WlI+VVX9aANmms6J95lH1Irn5L24kzmRsHsOB+lQliepJ+ppDN97+2T+Pd\n7Dmq76tGPuIze5/wrHooAvyarO33Qq/Tn+dVnu53zmVsH0OP5VDRQApJPU5pKKKACiiigAooooAK\nKKKAEplPpppoQlFFFMB60/FRLUmaloYhptOPNJTQCUUtApAFFLRQAUUUmaAAmm0UUwCloooEFFFF\nABSUtFADaKKKYBRRRQAUUUUAFFFFAElB6U0UppAMpcUYpaYBiiiikAUUUUAFFFFABRRRQAUUUUAF\nOxSDmpAtJsYgX0qRY+eaciYqQVPMygAA7CnUlLUDEcblIrPIwa0apTjEh98GtIMmS0IqKKKskKKK\nKACiiigDSQ7lB9qWobZsqR6VNWEtGWFFFFIApKDSUxg43KRWeRg1o1SmXaxrSLJZFRRRVkhRRRQA\nUppKWgBKdTaWgBaSlpKAOnt/9WtS1Fb/AOrWpaQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUfnUU1zFD95ufQdazJ9TduE+UeopAaclxFD99ufSs6fVGbIiG3371nF2fkn\nOaaaBkjSPJ1NR0oqxBZSzngYHqaAK1WILOac/KOD/Ef6VqwadFDjd85/SrnTpxTAo2+mRx4Mnzt+\nlXQMcClooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkTzEZOzAiuWkQxsynqDiurrD1eDZKJB0c\nfqKYGdTgabSigB9FFFSM2NJm3I0Z6ryPoa0a56ym8mdTnAPB/GuhpiCiiigAooooAKKKKACiiigA\nooooAKKKKACmvIsakscVDc3cdsOeW7CsW4uZLg/MfoOwoAsXmotNlI/lT9TVCiikMKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACkpaSgApD0paKBDKKKKoYop9R08UmAtFFFIBKWiigAoopKAAmm\n0uKXFMBtLTsUUgG0uKWloHYbil20tLRcLDcUu2ilouBDRTm602qEFFFFAgooooAKKKKAFXrTqZTx\nQAlFKaSkAUUUUAFFFFABRRRQAUUUUAFFFKBmgB8a1OFpEWpMVm2UIBTsUUtSUFFFFABUFymQGqem\nyLvQj2q47ilsZ9FFFakBRRRSAKKKKAJ7ZsPj1q5WchwRWgDkA1nURSFpDS0lQMSiiigYVXuR0NWK\nZMMxtVQeomijRRRWpAUUUUALSUUUAFAopRQA6iiikM6W3/1S1LUVv/ql+lS0CCiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKrzXsMP8WT6Cs2fUZJPunYPQUgNSa6ihB3Nz6d6zLjU5JPl\nT5R+v51RJycmkoGKXZuSaZThViCymnOQuB6mgCtVmCyln6DaPU1qQadDEMkb29+n5VcxjgUxFO30\n6KLDEbm9+lXMYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnqMPnQH1Xkf1FXK\nMZGPXigDkqKnvIvJndegzxUFMBwNOpgp9IYZx9a6Gzm86FD3xg/UVztaekS4Z4yevIpCNeiiimAU\nUUUAFFFFABRRRQAUUVHNPHAu52/DufwoAk6VnXepBMpFgt69h/8AXqrd6i82VT5U/U1RoYxzOXJL\nGm0UUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigApKWkoAKKKKBBRRRQMaaSnmmVQgpV60lK\nOtAD6KKWpGRmloNJTAXFKBSilpNgJRS0UXGFFFFIAooooAWiiikAUUUUAI3SoqnPQ1CapCYlFFFU\nIKKKKACiiigApy02lXrQA/FNp9NpDEooooEFLSUUALSUUUALSUUUAFTRrUaKSatKuBUyY0OFKKAK\nWsygooooGFFFLQAUtJRTuIzpBtZh702rF0uCD61XrVbEsKKKKYgooooAKvwNuQe3FUKs2rdRUy1Q\n0WTSUUVkWFFFFABQKKKAKDjDEe9Nqe5XDZ9agrchhRRRQIKKKKAClApKeopAFFO2mk2UFWOkg/1S\n1LUVv/q1qWgkKKKKACiiigAooooAKKKKACiiigAooooAKWqdxqEUPH3j7VmT6hLLwCVHoKANWe/h\nh6Hc3oP61lz6hLLkZ2r6CqdFSMCSeaKAM9KtQWEs2ONo9TTAq4zVqCwlmxxtHqa1YLCGHBI3H1NW\nulAipDp8MOCRvb1PQVboopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQBlavBkLIByODWPXUXEQmidD3BrmGBUkEYIpgJT6ZThQA6pbaQwSq/vz9DUNLj+VSFjqFO4A\njvS1jw6k8UaoUBwOpzUg1Y941/OmOxqUVk/2w3/PNfzNaFrP9ojD4x7UCJqKKKACikJCjJ4FZV5q\nW7KQ/wDff+H+NAy1d36W+VX5n9Ow+tYssrzPuc5ph+uaKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABSUUUCCiiigAooooGFMp9NNNCEooopgPWnUwU6kxhRRRQAUtFFSNBRRRQA\nUUUtABRRRQAUUUUgCiiigA7VEwqQmmNVoTG0UUUxBRRRQAUUUUAFFFFADx0opFpTUgJRRRTAKKKK\nACiiigApQM0lTwp3NJ6DRIibRUlJS1m2UkFLRRSGFFFFABS0lLQAUUUUhEU67kNUa0iMis9xtYj0\nNbQ2FIbRRRVEhRRRQAU+Ftjj34plApNAaNFNQ5UGnViy0FFFFAwooooAiuFyufSqlWbhu1Va1RDC\niiiqEFFFFABU6jioKsL0H0pMqItBxiig1Azftv8AVrUtRQf6sVLVkBRRRQAUUUUAFFFFABRRSEgc\nk4oAWkLKvJOKoz6pGnCDefXtWZNdyzdW49O1IZrXGpRxcL8zfpWVPeyzE7m49B0qtS0CFyaSirdv\nYTT9ti+pH8qBlXrx1q3Bp003JGxfU1qw2MMGMDcR3NWKYirBp8MHON7epq1RRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALXP6pAYp93Z+f8a3ZJEi\nUs5wBXPX14bpxgfKvT1osBVpRSU5abAeFp4AFIOlBbFSMWmsaaTSUBcD1rU0iX76duorL5OABkmt\n6wtRbx5b7zcn2pgXKinnjgXLn6D1qvdaikIKp8z/AKCsaWV5m3McmgCe5vZLnj7q/wB3/GqtFFIA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApKKKBBRRRQAUUUUDCiiigApDRRTQ\nhtFFFMBc08VHTwaTAWiiikUhaKKKQC0UUUAFFFFABRRRQAUUUUgCiimsaYhCabRmkqgCiiimIKKK\nKACiiigAooooAVafTBT85pANopaKAEooooAKKKcq5NAx0SbjVoDHFNVcU+s2ykgpaSlqRhRRRQAU\nUUUAFLSUtABRRRSEFU7ldr59auVBdLlAfStKe4Mp0UUVoQFFFFABRRRQBatmyCPT+tWKp25w/wBa\nuGspKzLQlFFFSMKDwKKimfauO5pxVxFR33NSUoGTT5FxitiWR0UUUCCiiigBQORVioFPIqepZSCh\nqKQ1AzoLf/VLUtRW/wDqlqWtCAooooAKKKZJLHCDvYD9TQA+kd0QZYgfWs6fVVGRGM/7TVmSTyTH\nLMTSA1bjVETIiG4/3j0rMkuZJydzZ/lUFFABRSjOeO9W7fTppsFhsX36/lTAp4PvVy306abk/Ivq\na1oLGCDGFDH+8asUAVYLCGHtub1I/pVqiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigAooooAKKKKACop7mO2Ulz9B61LWXrERZUcdsg/pigDMuLh7hyzfgO\nwqGiimAUtJRQA7caXrTKXNKw7imkNJRTEXtOWHe0kpxs6DsalutSaT5Y/lX9TWf2paQwooopAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJS0lABRRRQIKKKKBhRRSUALSUUUxBR\nRRQAhFJT6ZTAKVaSlFJgPooopFIKWkp1IAopaSgAooooAKKKKACiikJxQkAhao6KBV2JClFApaAE\nNJTqbQAUUUUAFFFFABRRRQAU5abTloY0OpKWlA5pDsNoqTZ7Um2lcLEY5q1EmBmkRKlqeYLBS0Ut\nQUFFFFABRRRQAUUUUAFFFFABS0lFAC0jDcpHqKKKFoxWM08UVJMu1zUdbEsKKKKYgooooAVTgg1o\nA5APtWdVy3OU+lTNaXLiS0UUVmMOlU5ZNzdanmbapqn1q4rQlkiLzUjfdP0pEGBS0X1HYr0Up4NJ\nVEsKKKKYhR1qcHIqvU8fIqWUh1IaWlxUDN63/wBUtS1Fb/6paJbiKHlm/Ada0IJaZJKkQy5ArNn1\nQ8iIY/2j1/Ks6SV5SSzE0AaU+qdoh+J/pWbLM8xyzFjTe1NpAFFLjPSrtvpss2C3yL79T9BQBRxn\ngVdt9NlmwW+RfU9TWrDZRQAYGT6nrVimBWgsYIcYUM2OpqzRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzwieNkPepKKAMO\nbSZ1J2bXH4Zqm9vLH95GH4GuooOCMEZHSmByVFTXUXkzOno1Q0AFFFFAwpRQBThQIKWkpaQwooop\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE0ABNG6m0lMQ+iiikAUUUUAFFFFAxKSlop\niCiiigApwFIKdQygqM9akprUJgxlFFFMkctOpgp9SxoKfTKcKGMKKdSVICUUuKMUAJRS5FNLCmlc\nAJxUROaCc0uKtKwhKUU4Lml20NgNop2KUClcdhtNIqbbTHFFxWI6KKKYgooooAKKKKACiiigB+RT\nl5qMVInFSxofmnqKTFSLgVBQop1ICKWkxhS0tJSAKKKKEAUUUUAFFFFABRRRQAUUUUAFFFFAFe6X\no1VavyruQ1QraL0IYUUUUxBRRRQAVPbthsetQU+M4YGk9hpl6j/GimSNtWskiytO240yMZNNPNTo\nMCtHoiEOoooqCiGQc59aZU0gyM1DWiJYUUUUxBUsZqKnJ1pPVDRPmpB0qMVKOlYvQslbU32bU+X3\n71RZ2c5JJJ7k00UlakC0UoGelXbfS5ZeX+Revv8Al2oApAZ6davwaZLLy/yL+taUFpFbgbRk/wB4\n1YpgQw2sUH3VGfU9amoooEFFFFABRRRQAUUUUAFFFU7m/ih6fOfQf1oAuUdBknFY0urOeEUD361V\ne+uH6ucUAdCzqn3iF+px/OonvrZOsqn2Uhj+hrnZJZJDlmLH3plMDcbVoBnAJ96rSaxIfuIF9zzW\nZRQBdfU7lv4gvsB0q9YX/nfJI3z/AJZrEpKAOtorOsNREw2SnD9j/e+natGkAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBIGSSAPegDJ1iEDZIO/yn/GsitTUL5ZVMaD\nIz94/wBKy6YBRRRQMfRRRUgFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGmGn\n009aaASiiimIcKWkpaTAKKKKQwpKKKYgooopgFKBShadSbGhMUdKM0ZqRhRSZFGaqwmR0UppKYhR\nTs0ynikwFpQcUlBoHcXdRuplFFkFxd5oyaSkzSsFxSabRRVCFAqRVpAQBRvpDH0UzzBR5gpWHsPx\nRUe+k3miwXJs01+lRbqM00hXEooopiCiiigAooooAKUDJpKkjXmhgS4AFLS+tJWbepaCiimO2KEg\nED/vBz3q4Kzh1rQjbKg0TQkOooorMYUUUUwEpaKKBiUUtFACUUtFFwEooooAKKKKADqKz5BhiPet\nCqlyvOaumyWQUUUVoSFFFFABS0lFAF6NtyioJ3y2PSiJ8IRUJOTSSSKvcVRk1MKbGuKfSlYEFFFL\nUDGkZFQVYb7pqt3NaIlhRRRTEFFFFAFhTkVJnioozxinGspF3IkUscAEn2q/Bpcr4MuEHp3rRs4I\n44wVUZPfvVmtCSGC1jgA2qMjuep/GpqKKBBRRRQAUUUUAFFFFABRRTHkSMZdgv1oAfUE91Hb/e/L\nvWfcaqWysX/fZ6/hWaSWPJoAt3GoyzEhCY06Y9fqapUUUwCikzRmgBabRRQAUUUUAFFFFABWzp2o\nb8Qv17HPX6571jUUAdbRWXp2o79sMud3RW659j71qUgCiiigAooooAKKKKACiiigAooooAKKKKAC\niiigAooooAKKOtZ15qYT5Ivmbu3Yf4mgC5POluu5z9B3rFur6W5OPup2A/rUEkrzNuc5NMpDA80w\nin01qaAbRRRTEKKdTRTqljCiiigApaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKSigAphp9\nNNNCEooopgFPplOHSkwQtFFLikMbRS0tMY2gGiiggNxoyaKM0FXDNFFFAgooozTAQ0lLSUAFKOtJ\nQKAJKDRRSGNopDSUxC0lFFABRRRQAUUUUAFFOCE07y6GFiOjFTBBS49qVx2IcUbDU4prNii9waIt\nppKcTTaYgooooAKKKKACrEfSq9TRv2NJ7DRJRRRWZQVXc5NSu2Kgq4oTFFXohtQVVgTcwPYVcpTG\ngpc0lFZjFzRmkooAdRTaXNAC0UUmaBC0UUUgCiiigAopKSmMKjmXchqSg8jFVDRiZnUUrDBpK1IC\niiigAooooAKcnJptSRCk9holAxS0UVmUJRRRQAyQ4FQ1LKe1RVrFEsKKKKBBRRRQA+M81KelQpwa\nmNTJFHQW/wDq1qWorf8A1a1LTJCiiigAooooAKKKKACiqdzqMVv0+dvQH+ZrJnvZbgnLYH90dKAN\nK61RY8pF8x9ew/xrIlnklOXYsaiozTAWikpKAHUU2igAooooAKKKKACiiigAooooAKKKKAF9K19O\n1DO2GQkt2brn2NY9FAHW0VkafqP/ACzmb02sf5Mf61r0gCiiigAooooAKKKKACiiigAooooAKKKK\nACmvIsalmYKKhubuO2HPLHoo/wA8ViXFxJcNlj9F7CgZYu9Raf5Uyqfqao0UUgCiiigAooooAYeK\nSnEU2qEFOFNpRQMdRRRSAKKKKQC0UUUAFFFFABRRRQAUUUUAFFFFACUUUUAFFFFAgppp1FNbgMoo\nopgFKDSUUAO3UbqbiigB26kzSUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAPWlpgNPpANIptSGo\nzQAUUUUwCiiigApyrmgLmpQMVLkUkLRRRUjCiiigBDwKjY5oZ+1NzVpCYlFFFMkKKKKACiiigAoo\nooAmWT1p+arU/fxU2Q7iMcmkpKkhG5hmquBZhj2L7nmpaKSspO7LCiiipAKKKKACiiigAooooAKK\nKKACiiigAooooFcKKKKAKlwMNUNWrgZGfSqtbIlhRRRTEFFFFABU0fSoafGcZpS2GiaiikrIoWlp\nKDTQEMh5plOfrTa1RLCiiigQUUUUAA4qdTuFQVItJ6lLU6S3/wBWtS1Fb/6taloJCiiigAooooAK\nz9VdkhG04y1aFZusf6qP/f8A6UAYlFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigArW0/Uf+WUzf7rn+THP61k0UAdbRWNp+olcRSkBf4W9PQGtmkAUUUUAFFFFABRRRQAUUVHc\nTx267nOPQdz9KAJKzrvUlTKQ8t3bsPp6/wAqo3N/LcZ52r/dU9f971qrSAViXO4kk0lFFAwooooA\nKKKKACiiigBDTKeaaaaBiUUUUxDgaWminUgCiiigYClpBS0gCiiigAooopAFFFNpgLRRRQIKKKKA\nCiiigAooooQDaSnbaMVQDaKdtpdo9aAGUU7AoxQA2lpcUUANop2KTFIBKKdiimA2lxS4opXAbS0t\nFMBKKWigBtFFFABTxTKUUAPpNuaKUdaQxPLNGypaKVwsR+XSiOn0Umx2DGKKKKQwooooAKY54p9R\nydqa3BkdFFFWQFFFFABRRRQAUUUUAFFFFABRRRQAU5G2sDTaKANGimRNuQGpKxe5oJRRRSAKKKKA\nCiiigAooooAKKKKACiiigQUUUUAFFFFAhrjcMVQIwcVoVTmGHP8AntWkGJkdFFFWIKKKKAClHWko\noAsDpRQvSlrNosKQ8DNLTXPy0JAyCiiitCAooooAKKKKAHAVNtGKYgqwV4po3prQ27f/AFa1LUVv\n/q1qWpMAooooAKKKKACs3Wf9Qn+//StKsbWv9ZF/un+dAGXRRRTAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACtTT9QMe2KXG3oGPG369BisuigDraKxdOv/ACsQycrnhs/d\n9jk421tUgCiiigAopNwA3EgDrnPFZd5qWfkh/F//AIn/ABoAsXV+lvwPmk9P8f8ACsWSR5m3Pyab\nRSGFFFFABRRRQAUUUUAFFFFABRRRQAUjUtBpgR0UUUxCilptOpALRSUUALS0lJSC4tFJS0DCiiig\nQUUUUAFFFFABRRRQAUUUUDCnYpBTqBhSYooJpagKaZRmkqiQooooAKKKKACiiigAooooAKKKKACi\niloASg0U3NABRRRTAKKKKAH0UlLUsaJB0paYtPpMoKKKKkQUUUUxhRRRQAUhGRS0UICvRUnl/Wm7\nSK0FYbRRRQSFFFFABRRRQAUUUUAFFFFABRRRQBYtn5K1ZqjGcOp96vdRms5lR2CiiioKCiiigAoo\nooAKKKKACiiigAooooJCiiigAopM0ZphYKguFyAampsgyhqo6MGUqKKK0JCiiigAooooAljp9Qr1\nqcVMi0xKZIeKkqKQ9KSEyOiiirJFXrSuMUsfWnSClcLEVAooFMETxirH8NQR1O3AqkddOKSNm3/1\na1LUVv8A6talqDkCiiigAooooAKxda/1sX+4f51tVi61/rYv9w/zpgZlFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFaOn3/kfu5MlOx67f64rOooA63OahnuYr\ncZduf7o+8foKxINRmhjKA5/u5/g+lV2ZnJLEknuaQFm5vZLk88J2X/Gq1NzS0MApaSikMWikooEL\nRSCigYtFFJQAtFFJmgBaKTNLTAKKSikA0jFJTjTaaEFKDSUopgLRRRSAKKKKAFooopAFFFFMAooo\npAFFJRTAWikpaQBSgUmaXNAx1JSbqTNFgHE00mjNJTQmFFFFABRRRQAUUUUAFFFFABSGlptMBRS0\ngpaQADQaKbmgAzRRS4pgJRTwKGHFJO47DKKKKYhwpabTqTBAODUtRU9allIdRRRSGFFFFABRRRSE\nFFFFMYUUUUABwe1ROMVLTHGRTTYmiKiiirJCiiigAooooAKKKKACiiigBRV6Ntyg1Qq1bNnIzUTK\niT0UUVmUFFFFABRRRQAUUUUAFJS02gBaKSimAUUUUCCiiigAooo/woApONrEU2pJsF+KjrVEBRRR\nTAKKKKAFBwanFV6mjNS9hpj6gc81MTUB60RQ2JRRRVEkkY5qQ8g02MU8ipe5ZWopzCm1RBNGasE5\nFVEOKshsinc6aTVtzct/9WtS1Fb/AOrWpak5gooooAKKKKACsXWv9bF/un+dbVYutf6yL/dP86YG\nZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAO\npAaSigB9FJS0rAFFFFABRRRSAKKKKACiiigAooooAKKKKACmU+kpgNopcUYpgLRRRSAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbQAUUUUwClzSUUAFFF\nKKAClpaAKQIcBS0UVJRCeKKe4plWJhThTacKBC04Gm0VLRRIDS00UoqQFooooAKKKKACiiigYUlL\nSUALUgXFIq06k2BTYYJFJUs64aoq1IYUUUUAFFFFABRRRQAUUUUAFSwNteoqUdaBo0OtFNjO5RTq\nxluWFFFFIAooooAKKKKAEzSUUUxBRRRQAUUUUAFFFFABTZG2qadVaZ8nFVFAyGigUVoQFFFFABRR\nRQAU5G2mm0UATM3FRGlNNoAKKKKAJFbFLvptJSGITmkoopgFL+VJSikB09v/AKtalqCCRPLHzCpP\nNj/vr+dAh9FN82P++v50nmx/31/OgB9FNMif3l/OkMiL1ZR+IoAfXP6qT9qYZPAAHt9K3fMj/vD8\n6wNSObqQg5+7/KmgKlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAOFLSCikAtFJRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRRYAooooAKKK\nKACiiigAooooAKKKKACiiigAooopgFFFFIAooooAKKKKACiiigAooooAKKKKACiikoASiiimAUUU\nUAFFFFAC4paKKGAU8UgFPFQxiUUfnRQMRhkVFU1REYqkJiUopKBTsIfRQKKTGOFOpq06pGFLSUtI\nAooooAKKKKBhSgZpBzUoGKBXFpKM0nFSMbKu5aq1f25GKosMMR71pHYliUUUVQgooooAKKKKACii\nigAooooAtWz5BX05qeqcDYce9XKzmtS47BRRxRxUBcKKTI9aMigaFpDSE+9Ju96Yri0UmR6ij8aN\nQFoqNpgrYxTlcN0p2YrjqKQHikzRYY6ijNFFgGu21Sapk5NTXDdqgFaxRNxQKCMUgpxoENooooAK\nKKKACiiigAooooAKBRSigB1BpaQjikVYbSUtOC0xWGgUuKdS0yuU/9k=\n', u'text': [u'<IPython.core.display.Image object at 0xa2c42d0>']}], u'collapsed': False, u'prompt_number': 278, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 271, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 271, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 272, u'input': [u'def imgOpen(object):\n', u' img '], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'AttributeError', u'evalue': u"'str' object has no attribute 'show'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-273-145edbdcb3a0>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimagRandz\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mAttributeError\x1b[0m: 'str' object has no attribute 'show'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 273, u'input': [u'imagRandz.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 273, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 274, u'input': [u"img2 = Image.open('street1715.jpg')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 275, u'input': [u'img.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 81, u'input': [u'img2.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 82, u'input': [u'imgAgain = img2.rotate(180)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 83, u'input': [u'imgAgain.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 83, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'ImageChops' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-84-02f8b06c2543>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgLower\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mconstant\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgAgain\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m2\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 84, u'input': [u'imgLower = ImageChops.constant(imgAgain, 2)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'imgLower' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-85-0ff9e4822fa9>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgOver\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageEnhance\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mBrightness\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgLower\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m3\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'imgLower' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 85, u'input': [u'imgOver = ImageEnhance.Brightness(imgLower, 3)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'enchane' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-86-b3d275ea4a7a>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgLaw\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0menchane\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0menchancer\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgOver\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'enchane' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 86, u'input': [u'imgLaw = enchane.enchancer(imgOver)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'imgLower' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-87-f45aaf132dd9>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgLower\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'imgLower' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 87, u'input': [u'imgLower.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 88, u'input': [u"img4 = Image.open('edit.jpg')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 89, u'input': [u'img4.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'SyntaxError', u'evalue': u'invalid syntax (<ipython-input-90-b812af2a111f>, line 1)', u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-90-b812af2a111f>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m from\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m invalid syntax\n'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 90, u'input': [u'from '], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'ImageChops' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-91-aa706f946102>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgNever\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mblend\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg4\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimgAgain\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m.5\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 91, u'input': [u'imgNever = ImageChops.blend(img4, imgAgain, .5)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 91, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 92, u'input': [u"imgTitle = Image.open('street0276.jpg')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 93, u'input': [u'imgTitle.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'ImageChops' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-94-afe2112b29e2>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgComt\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mblend\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgTitle\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimgNever\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m.5\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 94, u'input': [u'imgComt = ImageChops.blend(imgTitle, imgNever, .5)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'imgComt' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-95-0d98e3d93c85>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgComt\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'imgComt' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 95, u'input': [u'imgComt.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'imgComt' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-96-7c27bff797eb>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgConvertz\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageEnhance\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mColor\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgComt\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'imgComt' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 96, u'input': [u'imgConvertz = ImageEnhance.Color(imgComt)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'imgNever' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-97-d984b3647799>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgNever\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'imgNever' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 97, u'input': [u'imgNever.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'ImageChops' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-98-d324501a7059>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg3\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mcomposite\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimg2\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 98, u'input': [u'img3 = ImageChops.composite(img, img2)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'ImageChops' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-99-56e9844e5ec6>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mbighImg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdarker\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimgNever\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 99, u'input': [u'bighImg = ImageChops.darker(img, imgNever)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'bighImg' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-100-e14f7a6ba4e5>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mbighImg\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'bighImg' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 100, u'input': [u'bighImg.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 101, u'input': [u'import random'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 102, u'input': [u'randomNumbz = random.randint(0,20)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 103, u'input': [u'lizt = []'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 104, u'input': [u'lizt.append(randomNumbz)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 105, u'input': [u"hello = 'hello there. i am going'"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'hello there. i am going\n']}], u'collapsed': False, u'prompt_number': 106, u'input': [u'print hello'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'string' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-107-71f4a7bc2988>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mrevHello\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mstring\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mhello\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'string' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 107, u'input': [u'revHello = string(hello)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'[18]\n']}], u'collapsed': False, u'prompt_number': 108, u'input': [u'print lizt'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 108, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 108, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'hellothere' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-109-c782da6e04dc>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mlizt\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mappend\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mhellothere\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'hellothere' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 109, u'input': [u'lizt.append(hellothere)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 109, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 110, u'input': [u'from PIL import ImageEnhance'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 111, u'input': [u'enchan = ImageEnhance.Brightness(img)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'enhancer' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-112-b8eb66ca3f31>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mchanEnv\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0menhancer\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0menhance\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m9\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'enhancer' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 112, u'input': [u'chanEnv = enhancer.enhance(9)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'chanEnv' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-113-3a5f90d5fb40>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mchanEnv\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'chanEnv' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 113, u'input': [u'chanEnv.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 114, u'input': [u'import cocos'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'SyntaxError', u'evalue': u'invalid syntax (<ipython-input-115-cf7488254da9>, line 1)', u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-115-cf7488254da9>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m cocos.\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m invalid syntax\n'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 115, u'input': [u'cocos.'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'AttributeError', u'evalue': u'read', u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-116-85cf29b63596>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 6\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 7\x1b[0m \x1b[0;31m# pick an image file you have in the working directory\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 8\x1b[0;31m \x1b[0mimg2\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg2\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 9\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 10\x1b[0m \x1b[0;31m# factor 1.0 always returns a copy of the original image\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1991\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1992\x1b[0;31m \x1b[0mprefix\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mread\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m16\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1993\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1994\x1b[0m \x1b[0mpreinit\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36m__getattr__\x1b[0;34m(self, name)\x1b[0m\n\x1b[1;32m 512\x1b[0m \x1b[0mnew\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'data'\x1b[0m\x1b[0;34m]\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtobytes\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 513\x1b[0m \x1b[0;32mreturn\x1b[0m \x1b[0mnew\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m--> 514\x1b[0;31m \x1b[0;32mraise\x1b[0m \x1b[0mAttributeError\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mname\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 515\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 516\x1b[0m \x1b[0;31m##\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n", u'\x1b[0;31mAttributeError\x1b[0m: read'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 116, u'input': [u'# PIL_ImageEnhance_bright1.py\n', u'# darken and lighten an image using PIL\n', u' \n', u'from PIL import Image\n', u'from PIL import ImageEnhance\n', u' \n', u'# pick an image file you have in the working directory\n', u'img2 = Image.open(img2)\n', u' \n', u'# factor 1.0 always returns a copy of the original image\n', u'# lower factors mean darker, and higher values brighter\n', u'for k in range(0, 9):\n', u' factor = k * 4.0\n', u' print(factor), # 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0\n', u' img_enhanced = enhancer.enhance(factor)\n', u' \n', u' # safe images as Audi_bright025.jpg to Audi_bright200.jpg\n', u' # to the working directory\n', u' img_enhanced.save("twar_color%03d.jpg" % (int(factor*100)) )'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 117, u'input': [u'import ImageChops\n', u'import random'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 118, u'input': [u'wireNum = random.randint(1000, 6000)\n', u'\n', u'wireDub = wireNum + 50'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'3872 3922\n']}], u'collapsed': False, u'prompt_number': 119, u'input': [u'print wireNum, wireDub'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 120, u'input': [u"imgName = 'wire'\n", u"imgTwo = 'wire'"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'IOError', u'evalue': u"[Errno 2] No such file or directory: 'wire3000.jpg'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIOError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-121-b4d3201bba56>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"wire3000.jpg"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2\x1b[0m \x1b[0mimg2\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"wire2000.jpg"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1986\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0misStringType\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1987\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1988\x1b[0;31m \x1b[0mfp\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mbuiltins\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"rb"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1989\x1b[0m \x1b[0;32melse\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;31mIOError\x1b[0m: [Errno 2] No such file or directory: 'wire3000.jpg'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 121, u'input': [u'img = Image.open("wire3000.jpg")\n', u'img2 = Image.open("wire2000.jpg")'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 122, u'input': [u'img.show(img)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 123, u'input': [u'import random\n', u"ranz = random.choice(['constant','invert','lighter','darker', 'difference', 'multiply',\n", u" 'screen'])"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'screen\n']}], u'collapsed': False, u'prompt_number': 124, u'input': [u'print ranz'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 125, u'input': [u'screen = ImageChops.difference(img,img2)\n', u'screen.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 126, u'input': [u"screen.save('edit.jpg')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 127, u'input': [u'brightLight = ImageEnhance.Brightness(screen)\n', u'\n'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 128, u'input': [u"img3 = 'ImageChops.' + ranz + '(img, img2)'"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 129, u'input': [u"openFilz = Image.open('edit.jpg')\n", u'openFilz.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 130, u'input': [u'lightFilz = ImageChops.lighter(screen, img)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 131, u'input': [u'lightFilz.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 132, u'input': [u"party = Image.open('33561.jpg')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 132, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 133, u'input': [u'imgSwap = ImageChops.difference(party, img2)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 134, u'input': [u'imgSwap.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'ImageOps' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-135-386d9f1b8114>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgBlack\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageOps\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mcol\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgSwap\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m50\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m100\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'ImageOps' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 135, u'input': [u'imgBlack = ImageOps.col(imgSwap, 50, 100)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'imgWhite' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-136-21c051a20798>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0;32mprint\x1b[0m \x1b[0mimgWhite\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'imgWhite' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 136, u'input': [u'print imgWhite'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 136, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 137, u'input': [u'lightXus = ImageChops.darker(img2, img)\n', u'lightXus.show()\n'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 138, u'input': [u'lightFilz.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 139, u'input': [u'lightNope = ImageChops.multiply(img, lightFilz)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 140, u'input': [u'lightNope.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 141, u'input': [u'lightGone = ImageChops.invert(lightNope)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 142, u'input': [u'lightGone.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 143, u'input': [u'lightCheck = ImageEnhance.Sharpness(lightGone)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'AttributeError', u'evalue': u"Sharpness instance has no attribute 'show'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-144-15ea9899b633>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mlightCheck\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mAttributeError\x1b[0m: Sharpness instance has no attribute 'show'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 144, u'input': [u'lightCheck.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'ImportError', u'evalue': u'cannot import name ftp', u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mImportError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-145-78a382fad531>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0;32mfrom\x1b[0m \x1b[0mftplib\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mftp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u'\x1b[0;31mImportError\x1b[0m: cannot import name ftp'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 145, u'input': [u'from ftplib import ftp'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'ImageChops.screen(img, img2)\n']}], u'collapsed': False, u'prompt_number': 146, u'input': [u'print img3'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 147, u'input': [u'import ImageOps'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 147, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'img5' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-148-92af25d77188>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg5\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'img5' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 148, u'input': [u'img5.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u"Problem opening -f : [Errno 2] No such file or directory: '-f'\n", u'Problem opening']}, {u'output_type': u'stream', u'stream': u'stdout', u'text': [u' /home/will/.config/ipython/profile_default/security/kernel-5361de15-41f5-4815-877b-800068dbe0b1.json : cannot identify image file\n', u'Problem opening --KernelApp.parent_appname=\'ipython-notebook\' : [Errno 2] No such file or directory: "--KernelApp.parent_appname=\'ipython-notebook\'"\n', u"Problem opening --parent=1 : [Errno 2] No such file or directory: '--parent=1'\n"]}], u'collapsed': False, u'prompt_number': 149, u'input': [u'#!/usr/bin/env python\n', u'# Batch thumbnail generation script using PIL\n', u'\n', u'import sys\n', u'import os.path\n', u'import Image\n', u'\n', u'thumbnail_size = (28, 28)\n', u'\n', u'# Loop through all provided arguments\n', u'for i in range(1, len(sys.argv)):\n', u' try:\n', u' # Attempt to open an image file\n', u' filepath = sys.argv[i]\n', u' image = Image.open(filepath)\n', u' except IOError, e:\n', u' # Report error, and then skip to the next argument\n', u' print "Problem opening", filepath, ":", e\n', u' continue\n', u'\n', u' # Resize the image\n', u' image = image.resize(thumbnail_size, Image.ANTIALIAS)\n', u' \n', u' # Split our original filename into name and extension\n', u' (name, extension) = os.path.splitext(filepath)\n', u' \n', u' # Save the thumbnail as "(original_name)_thumb.png"\n', u" image.save(name + '_thumb.png')\n"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'ImageChops.screen(img, img2)\n']}], u'collapsed': False, u'prompt_number': 150, u'input': [u'print img3'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'showImg' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-151-23b4cba0268d>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mshowImg\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'showImg' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 151, u'input': [u'showImg()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 152, u'input': [u'doeRung = os.uname()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'AttributeError', u'evalue': u"'builtin_function_or_method' object has no attribute 'doeRung'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-153-5ad541b89365>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mlenNumbz\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mlen\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdoeRung\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mAttributeError\x1b[0m: 'builtin_function_or_method' object has no attribute 'doeRung'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 153, u'input': [u'lenNumbz = len.doeRung()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 154, u'input': [u'class WireLoad(object):\n', u' def showImg():\n', u" return('hello there')\n", u' \n'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 155, u'input': [u'ranNumbz = random.randint(0,50)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'0\n']}], u'collapsed': False, u'prompt_number': 156, u'input': [u'print ranNumbz'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'0\n', u'1\n', u'2\n', u'3\n', u'4\n', u'5\n', u'6\n', u'7\n', u'8\n', u'9\n', u'10\n', u'11\n', u'12\n', u'13\n', u'14\n', u'15\n', u'16\n', u'17\n', u'18\n', u'19\n', u'20\n', u'21\n', u'22\n', u'23\n', u'24\n', u'25\n', u'26\n', u'27\n', u'28\n', u'29\n', u'30\n', u'31\n', u'32\n', u'33\n', u'34\n', u'35\n', u'36\n', u'37\n', u'38\n', u'39\n', u'40\n', u'41\n', u'42\n', u'43\n', u'44\n', u'45\n', u'46\n', u'47\n', u'48\n', u'49\n', u'50\n', u'51\n', u'52\n', u'53\n', u'54\n', u'55\n', u'56\n', u'57\n', u'58\n', u'59\n', u'60\n', u'61\n', u'62\n', u'63\n', u'64\n', u'65\n', u'66\n', u'67\n', u'68\n', u'69\n', u'70\n', u'71\n', u'72\n', u'73\n', u'74\n', u'75\n', u'76\n', u'77\n', u'78\n', u'79\n', u'80\n', u'81\n', u'82\n', u'83\n', u'84\n', u'85\n', u'86\n', u'87\n', u'88\n', u'89\n', u'90\n', u'91\n', u'92\n', u'93\n', u'94\n', u'95\n', u'96\n', u'97\n', u'98\n', u'99\n']}], u'collapsed': False, u'prompt_number': 157, u'input': [u'for data in range(ranNumbz,100):\n', u' print data'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 157, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 157, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'IOError', u'evalue': u"[Errno 2] No such file or directory: 'wire1337.jpg'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIOError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-158-56827c5a5194>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 6\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 7\x1b[0m \x1b[0;31m# pick an image file you have in the working directory\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 8\x1b[0;31m \x1b[0mimg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"wire1337.jpg"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 9\x1b[0m \x1b[0menhancer\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageEnhance\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mColor\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 10\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1986\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0misStringType\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1987\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1988\x1b[0;31m \x1b[0mfp\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mbuiltins\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"rb"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1989\x1b[0m \x1b[0;32melse\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;31mIOError\x1b[0m: [Errno 2] No such file or directory: 'wire1337.jpg'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 158, u'input': [u'# PIL_ImageEnhance_bright1.py\n', u'# darken and lighten an image using PIL\n', u' \n', u'from PIL import Image\n', u'from PIL import ImageEnhance\n', u' \n', u'# pick an image file you have in the working directory\n', u'img = Image.open("wire1337.jpg")\n', u'enhancer = ImageEnhance.Color(img)\n', u' \n', u'# factor 1.0 always returns a copy of the original image\n', u'# lower factors mean darker, and higher values brighter\n', u'for k in range(0, 9):\n', u' factor = k * 4.0\n', u' print(factor), # 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0\n', u' img_blend = enhancer.enhance(factor)\n', u' \n', u' # safe images as Audi_bright025.jpg to Audi_bright200.jpg\n', u' # to the working directory\n', u' img_enhanced.save("twar_color%03d.jpg" % (int(factor*100)) )'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'AttributeError', u'evalue': u"'int' object has no attribute 'convert'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-159-e7bdce99b631>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mcolorSwap\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageEnhance\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mColor\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m0\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/ImageEnhance.pyc\x1b[0m in \x1b[0;36m__init__\x1b[0;34m(self, image)\x1b[0m\n\x1b[1;32m 48\x1b[0m \x1b[0;32mdef\x1b[0m \x1b[0m__init__\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimage\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 49\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mimage\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mimage\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m---> 50\x1b[0;31m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdegenerate\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mimage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mconvert\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"L"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mconvert\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmode\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 51\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 52\x1b[0m \x1b[0;31m##\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;31mAttributeError\x1b[0m: 'int' object has no attribute 'convert'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 159, u'input': [u'colorSwap = ImageEnhance.Color(0)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 160, u'input': [u'import os'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'TypeError', u'evalue': u'chdir() takes exactly 1 argument (0 given)', u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mTypeError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-161-a19011a11b63>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 1\x1b[0m \x1b[0mx\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mos\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mchdir\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 2\x1b[0;31m \x1b[0;32mprint\x1b[0m \x1b[0mx\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u'\x1b[0;31mTypeError\x1b[0m: chdir() takes exactly 1 argument (0 given)'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 161, u'input': [u'x = os.chdir\n', u'print x()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'pn' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u"\x1b[0;32m<ipython-input-162-37883efbb6ea>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mswapImg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mpn\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mconvert\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m'p'\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mcolors\x1b[0m\x1b[0;34m=\x1b[0m\x1b[0;36m8\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m", u"\x1b[0;31mNameError\x1b[0m: name 'pn' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 162, u'input': [u"swapImg = pn.Image.convert('p', colors=8)"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 163, u'input': [u'from PIL import ImageFont, ImageDraw'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'AttributeError', u'evalue': u"'str' object has no attribute 'getmask'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-164-95255cd68980>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 3\x1b[0m \x1b[0mfont\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageFont\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mImageFont\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 4\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 5\x1b[0;31m \x1b[0mdraw\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtext\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m10\x1b[0m\x1b[0;34m,\x1b[0m\x1b[0;36m10\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"Hello World"\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mfont\x1b[0m\x1b[0;34m=\x1b[0m\x1b[0;34m\'love.ttf\'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/ImageDraw.pyc\x1b[0m in \x1b[0;36mtext\x1b[0;34m(self, xy, text, fill, font, anchor)\x1b[0m\n\x1b[1;32m 265\x1b[0m \x1b[0;32mexcept\x1b[0m \x1b[0mAttributeError\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 266\x1b[0m \x1b[0;32mtry\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m--> 267\x1b[0;31m \x1b[0mmask\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfont\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mgetmask\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mtext\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mfontmode\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 268\x1b[0m \x1b[0;32mexcept\x1b[0m \x1b[0mTypeError\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 269\x1b[0m \x1b[0mmask\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfont\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mgetmask\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mtext\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;31mAttributeError\x1b[0m: 'str' object has no attribute 'getmask'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 164, u'input': [u'draw = ImageDraw.Draw(img2)\n', u'\n', u'font = ImageFont.ImageFont()\n', u'\n', u'draw.text((10,10), "Hello World", font=\'love.ttf\')'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 165, u'input': [u'randnum = random.randint(1000, 6667)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'5831\n']}], u'collapsed': False, u'prompt_number': 166, u'input': [u'print randnum'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 167, u'input': [u'doubNum = randnum / 2'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'SyntaxError', u'evalue': u'unexpected EOF while parsing (<ipython-input-168-5eab49ae8019>, line 1)', u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-168-5eab49ae8019>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m nameNow = (\'wire\' + doubNum\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m unexpected EOF while parsing\n'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 168, u'input': [u"nameNow = ('wire' + doubNum"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 169, u'input': [u'daStrng = []'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 170, u'input': [u'daStrng.append(doubNum)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'2915\n']}], u'collapsed': False, u'prompt_number': 171, u'input': [u'print doubNum'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'[2915]\n']}], u'collapsed': False, u'prompt_number': 172, u'input': [u'print daStrng'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 173, u'input': [u'daStrng.append(randnum)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 174, u'input': [u'for numz in range(0,8):\n', u' daStrng.append(randnum)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'[2915, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831]\n']}], u'collapsed': False, u'prompt_number': 175, u'input': [u'print daStrng'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'pyout', u'prompt_number': 176, u'text': [u"'[2915, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831]'"]}], u'collapsed': False, u'prompt_number': 176, u'input': [u'str(daStrng)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 177, u'input': [u'strngNum = str(randnum)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'5831\n']}], u'collapsed': False, u'prompt_number': 178, u'input': [u'print strngNum'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 179, u'input': [u'import os'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'pyout', u'prompt_number': 180, u'text': [u"'.'"]}], u'collapsed': False, u'prompt_number': 180, u'input': [u'os.curdir'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'<built-in function chdir>\n']}], u'collapsed': False, u'prompt_number': 181, u'input': [u'print os.chdir'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'pyout', u'prompt_number': 182, u'text': [u'<PIL.Image.Image image mode=RGB size=1280x720 at 0x8539830>']}], u'collapsed': False, u'prompt_number': 182, u'input': [u'ImageChops.difference(img, img2)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'pyout', u'prompt_number': 183, u'text': [u"'street2877.jpg'"]}], u'collapsed': False, u'prompt_number': 183, u'input': [u'imagRandz'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 184, u'input': [u'fileSwap = ImageChops.lighter(img, img2)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 185, u'input': [u'fileSwap.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 185, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'filzSwao' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-186-ad01e1fb8daa>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mfilzSwao\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'filzSwao' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 186, u'input': [u'filzSwao.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'input': [u'import ImageDraw'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 187, u'input': [u'draw = ImageDraw.Draw(img)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 188, u'input': [u'draw.line((50, 100) + img.size, fill=1)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 189, u'input': [u'draw.polygon((100, 1000) + img.size, fill=1)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 190, u'input': [u'draw.line((0, img.size[1], img.size[1], 3), fill=128)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 191, u'input': [u'del draw '], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 192, u'input': [u'img.save("hello.PNG")'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 193, u'input': [u'helloz = Image.open("hello.PNG")'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 194, u'input': [u'helloz.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'IOError', u'evalue': u"[Errno 2] No such file or directory: 'wire1232.jpg'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIOError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-195-7eacd8267433>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 1\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mImageDraw\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 3\x1b[0;31m \x1b[0mim\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"wire1232.jpg"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 4\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 5\x1b[0m \x1b[0mdraw\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageDraw\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mDraw\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mim\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1986\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0misStringType\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1987\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1988\x1b[0;31m \x1b[0mfp\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mbuiltins\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"rb"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1989\x1b[0m \x1b[0;32melse\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;31mIOError\x1b[0m: [Errno 2] No such file or directory: 'wire1232.jpg'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 195, u'input': [u'import Image, ImageDraw\n', u'\n', u'im = Image.open("wire1232.jpg")\n', u'\n', u'draw = ImageDraw.Draw(im)\n', u'draw.line((0, 0) + im.size, fill=128)\n', u'draw.line((0, im.size[1], im.size[0], 0), fill=128)\n', u'del draw \n', u'\n', u'# write to stdout\n', u'im.save("hello.PNG")'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'input': [u'import feedparser\n', u'\n', u"compLink = ('http://compohub.net/feed/13/28')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'feedparser' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-196-ba3be5bf02c8>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mdafeed\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfeedparser\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mparse\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mcompLink\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'feedparser' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 196, u'input': [u'dafeed = feedparser.parse(compLink)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'dafeed' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-197-cb873d03631c>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0;32mfor\x1b[0m \x1b[0minfo\x1b[0m \x1b[0;32min\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2\x1b[0m \x1b[0;32mprint\x1b[0m \x1b[0minfo\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;31mNameError\x1b[0m: name 'dafeed' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 197, u'input': [u'for info in dafeed:\n', u' print info'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'dafeed' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u"\x1b[0;32m<ipython-input-198-5a3b086da897>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mtitle\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;36m1\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtitle\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2\x1b[0m \x1b[0mdescription\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;36m1\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0msummary\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 3\x1b[0m \x1b[0murl\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;36m1\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mlink\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n", u"\x1b[0;31mNameError\x1b[0m: name 'dafeed' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 198, u'input': [u"title = dafeed['entries'][1].title\n", u"description = dafeed['entries'][1].summary\n", u"url = dafeed['entries'][1].link"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'dafeed' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u"\x1b[0;32m<ipython-input-199-f5ae7c7b5cd4>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 1\x1b[0m \x1b[0mposts\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m[\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 2\x1b[0;31m \x1b[0;32mfor\x1b[0m \x1b[0mi\x1b[0m \x1b[0;32min\x1b[0m \x1b[0mrange\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m0\x1b[0m\x1b[0;34m,\x1b[0m\x1b[0mlen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 3\x1b[0m posts.append({\n\x1b[1;32m 4\x1b[0m \x1b[0;34m'title'\x1b[0m\x1b[0;34m:\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0mi\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtitle\x1b[0m\x1b[0;34m,\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 5\x1b[0m \x1b[0;34m'description'\x1b[0m\x1b[0;34m:\x1b[0m \x1b[0mfeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0mi\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0msummary\x1b[0m\x1b[0;34m,\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n", u"\x1b[0;31mNameError\x1b[0m: name 'dafeed' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 199, u'input': [u'posts = []\n', u"for i in range(0,len(dafeed['entries'])):\n", u' posts.append({\n', u" 'title': dafeed['entries'][i].title,\n", u" 'description': feed['entries'][i].summary,\n", u" 'url': dafeed['entries'][i].link,\n", u' })'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'IndexError', u'evalue': u'list index out of range', u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIndexError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-200-3efaf7f7f3f2>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0murlGetz\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mposts\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;36m0\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u'\x1b[0;31mIndexError\x1b[0m: list index out of range'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 200, u'input': [u'urlGetz = posts[0]'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 200, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'urlGetz' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u"\x1b[0;32m<ipython-input-201-44441cf6c790>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0murlGetz\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'description'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m", u"\x1b[0;31mNameError\x1b[0m: name 'urlGetz' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 201, u'input': [u"urlGetz['description']"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'/home/will/Desktop/wirepil\n']}], u'collapsed': False, u'prompt_number': 202, u'input': [u'print os.getcwd()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'urlGetz' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-203-34fc76a8aa11>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0;32mprint\x1b[0m \x1b[0murlGetz\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'urlGetz' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 203, u'input': [u'print urlGetz'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 204, u'input': [u"imagRandz = random.choice(os.listdir('/home/will/Desktop/video'))"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'IOError', u'evalue': u"[Errno 2] No such file or directory: 'wire1398.jpg'", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIOError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-205-100f1bcda21e>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mnewImage\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimagRandz\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1986\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0misStringType\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1987\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1988\x1b[0;31m \x1b[0mfp\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mbuiltins\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"rb"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1989\x1b[0m \x1b[0;32melse\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;31mIOError\x1b[0m: [Errno 2] No such file or directory: 'wire1398.jpg'"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 205, u'input': [u'newImage = Image.open(imagRandz)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'newImage' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-206-d1e66199b3e7>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mnewImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'newImage' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 206, u'input': [u'newImage.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 206, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 207, u'input': [u'import ImageFont, ImageDraw\n', u'\n', u'draw = ImageDraw.Draw(img2)\n', u'\n', u'# use a truetype font\n', u'font = ImageFont.truetype("love.ttf", 42)\n', u'\n', u'draw.text((400, 25), "a film by William Mckee", font=font)\n'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 208, u'input': [u'img2.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 209, u'input': [u'ranNumz = random.randint(2, 22)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'SyntaxError', u'evalue': u'invalid syntax (<ipython-input-210-5706a6b018a4>, line 11)', u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-210-5706a6b018a4>"\x1b[0;36m, line \x1b[0;32m11\x1b[0m\n\x1b[0;31m \'\'\'\nfor i in range(2):\n factor = i / 0.5\n enhancer.enhance(factor).show("Sharpness %f" % factor)\n\'\'\'\x1b[0m\n\x1b[0m \n \n \n \n ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m invalid syntax\n'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 210, u'input': [u'import ImageEnhance\n', u'\n', u'enhancer = ImageEnhance.Brightness(img2)\n', u'\n', u'enhancer.enhance(show()\n', u'\n', u"'''\n", u'for i in range(2):\n', u' factor = i / 0.5\n', u' enhancer.enhance(factor).show("Sharpness %f" % factor)\n', u"'''"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'input': [u'blahNow = ImageChops.darker(newImage, img)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'input': [u'blahNow.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'blahNow' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-211-feb65a09a084>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahChange\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdarker\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mblahNow\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mnewImage\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'blahNow' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 211, u'input': [u'blahChange = ImageChops.darker(blahNow, newImage)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 211, u'input': [u'\n'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 212, u'input': [u'import random'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 213, u'input': [u'randz = random.randint(0,20)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'12\n']}], u'collapsed': False, u'prompt_number': 214, u'input': [u'print randz'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'0\n', u'1\n', u'2\n', u'3\n', u'4\n', u'5\n', u'6\n', u'7\n', u'8\n', u'9\n', u'10\n', u'11\n', u'12\n', u'13\n', u'14\n', u'15\n', u'16\n', u'17\n', u'18\n', u'19\n']}], u'collapsed': False, u'prompt_number': 215, u'input': [u'for numz in range(0,20):\n', u' print numz'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'blahChange' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-216-8f39e5ca4d2a>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahChange\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'blahChange' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 216, u'input': [u'blahChange.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'input': [u'blahNope = ImageChops.invert(blahChange)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'blahNope' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-217-1cc8142a657b>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahNope\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'blahNope' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 217, u'input': [u'blahNope.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'blahNope' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-218-3d4b6b97ec22>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahWhite\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdifference\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mblahNope\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mblahChange\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'blahNope' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 218, u'input': [u'blahWhite = ImageChops.difference(blahNope, blahChange)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'blahWhite' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-219-3377270a1f8f>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahWhite\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'blahWhite' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 219, u'input': [u'blahWhite.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'blahWhite' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-248-ba3101d68696>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahBlack\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0msubtract\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mblahWhite\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mnewImage\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'blahWhite' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 248, u'input': [u'blahBlack = ImageChops.subtract(blahWhite, newImage)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'blahBlack' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-249-e17cc0b165de>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahBlack\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'blahBlack' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 249, u'input': [u'blahBlack.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'blahBlack' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-220-875b1ce42ff3>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahGray\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageOps\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mgrayscale\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mblahBlack\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'blahBlack' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 220, u'input': [u'blahGray = ImageOps.grayscale(blahBlack)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'NameError', u'evalue': u"name 'blahGray' is not defined", u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-221-b0ad072c27a0>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahGray\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u"\x1b[0;31mNameError\x1b[0m: name 'blahGray' is not defined"], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 221, u'input': [u'blahGray.show()'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'33561.jpg hello.PNG README.md street1016.jpg wirePIL.ipynb\r\n', u'artcontrol.ipynb LICENSE smerk-color.png street1715.jpg\r\n', u'edit.jpg love.ttf street0276.jpg Untitled0.ipynb\r\n']}], u'collapsed': False, u'prompt_number': 226, u'input': [u'ls'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 223, u'input': [u'from wand.image import Image'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 224, u'input': [u'from wand.display import display'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'ValueError', u'evalue': u'missing method data', u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mValueError\x1b[0m Traceback (most recent call last)', u"\x1b[0;32m<ipython-input-247-711ded140086>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg2\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtransform\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m'300x300'\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m'200%'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m", u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mtransform\x1b[0;34m(self, size, method, data, resample, fill)\x1b[0m\n\x1b[1;32m 1634\x1b[0m \x1b[0mmethod\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mdata\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mmethod\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mgetdata\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1635\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0mdata\x1b[0m \x1b[0;32mis\x1b[0m \x1b[0mNone\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1636\x1b[0;31m \x1b[0;32mraise\x1b[0m \x1b[0mValueError\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"missing method data"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1637\x1b[0m \x1b[0mim\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mnew\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmode\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0msize\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mNone\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1638\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0mmethod\x1b[0m \x1b[0;34m==\x1b[0m \x1b[0mMESH\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u'\x1b[0;31mValueError\x1b[0m: missing method data'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 247, u'input': [u"img2.transform('300x300', '200%')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'ClosedImageError', u'evalue': u'<wand.image.Image: (closed)> is closed already', u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mClosedImageError\x1b[0m Traceback (most recent call last)', u'\x1b[0;32m<ipython-input-244-71e5fc9139b3>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mdisplay\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mnewzImg\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m', u'\x1b[0;32m/usr/local/lib/python2.7/dist-packages/wand/display.pyc\x1b[0m in \x1b[0;36mdisplay\x1b[0;34m(image, server_name)\x1b[0m\n\x1b[1;32m 64\x1b[0m library.MagickDisplayImage.argtypes = [ctypes.c_void_p,\n\x1b[1;32m 65\x1b[0m ctypes.c_char_p]\n\x1b[0;32m---> 66\x1b[0;31m \x1b[0mlibrary\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mMagickDisplayImage\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mwand\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mstr\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mserver_name\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mencode\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 67\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 68\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n', u"\x1b[0;32m/usr/local/lib/python2.7/dist-packages/wand/image.pyc\x1b[0m in \x1b[0;36mwand\x1b[0;34m(self)\x1b[0m\n\x1b[1;32m 459\x1b[0m \x1b[0;32mreturn\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mresource\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 460\x1b[0m \x1b[0;32mexcept\x1b[0m \x1b[0mDestroyedResourceError\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m--> 461\x1b[0;31m \x1b[0;32mraise\x1b[0m \x1b[0mClosedImageError\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mrepr\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m)\x1b[0m \x1b[0;34m+\x1b[0m \x1b[0;34m' is closed already'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 462\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 463\x1b[0m \x1b[0;34m@\x1b[0m\x1b[0mwand\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0msetter\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n", u'\x1b[0;31mClosedImageError\x1b[0m: <wand.image.Image: (closed)> is closed already'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 244, u'input': [u'display(newzImg)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 230, u'input': [u'from __future__ import print_function\n', u'from wand.image import Image'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'width = 1280\n', u'height = 720\n']}], u'collapsed': False, u'prompt_number': 233, u'input': [u"with Image(filename='hello.PNG') as derbNow:\n", u" print('width =', derbNow.width)\n", u" print('height =', derbNow.height)"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'IndentationError', u'evalue': u'unexpected indent (<ipython-input-237-a67f999b541a>, line 1)', u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-237-a67f999b541a>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m derbNow.size\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mIndentationError\x1b[0m\x1b[0;31m:\x1b[0m unexpected indent\n'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 237, u'input': [u' derbNow.size'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'pyout', u'prompt_number': 263, u'jpeg': u'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a\nHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy\nMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCALQBQADASIA\nAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA\nAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3\nODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm\np6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA\nAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx\nBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK\nU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3\nuLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyi2iT\nyF+VfyqXyo/7i/lTbb/UJU1ZlEXlR/3V/Kjyo/7o/Kn0UAReVH/dH5UnlR/3F/KpabQAzy4/7i/l\nR5cf/PNfyqSkoAZ5af3F/Kk8tP8Anmv5VJSUAR+Wn91fyo8tP7q/lTzRQAzy0/ur+VHlp/dX8qfR\nQIZ5af3V/Kjy0/ur+VOooAZ5Uf8AcWhkjXnC/lSuwQZNZNzN5p68elawpcwCT3IlOAihfYVXyPQU\n0kk4FKEzXcoJKxmKSD0UflSbTT1XFOpvyC5FtNLtNSU1mo3JuNwPWk4pO9O2ihIpIbgUu0dqcVpo\np6AxMClAoo/CnYGGBRilpKEgQtSKvsPyqIVMv3aTRohdgqQIvoPyqOng1nYoRo09BUe2pqSgYwAe\ng/KghfRfyp60jrSAjwtLt+tKKWqAbtX2pdq+gpaWkAbV/uj8qdsX0X8qKKQBtT+6Pypf3f8AcH5U\nUw0gHYj/ALq/lR8v90UlFAD1K+i/lUqunov5VBSUcqA0ElTui/lUy+W38C/lWYHIqeOY1jKn1E0X\n/KT+4v5UeUn9xfyqBJ6nWQGs3Fkh5Mf91fyo8mP+4v5U+ioAZ5Uf9wflR5Uf9xfyp9FADPKj/uL+\nVHlJ/dX8qfRSAb5Sf3F/Kjyo/wC4v5U6lpgM8uP+4n5UeXH/AHF/Kn0UCGeXH/cX8qPLj/uL+VPo\noAZ5Uf8AcX8qPKj/ALi/lT6SgBnlR/3F/Kjyo/7i/lT6KAGeVH/dX8qPKj/ur+VPooAZ5Uf9xfyo\n8qP+4v5U+igBvlx/3V/Kjy4/7q/lTqWgBnlx/wBxfyo8mP8AuL+VPooAZ5Sf3Fo8pP7q/lT6KAGG\nJP7q/lTfKT/nmtSGkpgM8pP7i/lR5Uf91fyp9FADPLj/ALi/lR5cf91fyp9FADPLj/ur+VHlx/3V\n/Kn0UAM8uP8AuL+VHlR/3V/Kn0UAS+VHj7i/lR5UX9xfypUPFOpgM8qL+4v5UeVF/cX8qfRQAzyo\nv7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UARmKLP3F/Kjyov7i/lT6KQxnlRf3F/Kk8qL+4v5\nU+ihgM8qL+4v5UeVF/cX8qfRQAzyov8Anmv/AHzSiKL/AJ5r/wB80tOFAhvlRf8APNf++aPKi/55\nr/3zT6KYDPKi/wCea/8AfNHlRf8APNf++afRQAzyov8Anmv/AHzR5UX/ADzX/vmn0UAM8qL/AJ5r\n/wB80eVF/wA81/75p9FADPJi/uL+VHkxf3F/Kn0UAM8mL+4v5UeTF/cX8qdRQAzyY/7i/lR5Mf8A\ncX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UAM8mP/nmv5UeTH/zzX8qfRQAzyY/\n+ea/lR5Mf/PNfyp9FADPJj/55r+VHkx/881/Kn0UAM8mP/nmv5UeTH/zzX8qfRQAzyY/+ea/lS+T\nH/zzX8qdRQA3yY/+ea/lR5Mf/PNfyp9FADPJj/55r+VHkx/881/Kn0UAM8qP+4v5UeXH/cX8qfRQ\nAzyo/wC4v5UeTH/cX8qfRQAzyY/7i/lR5Mf9xfyp9FADPJj/ALi/lR5Mf9xfyp9FADPJj/uL+VHk\nx/3F/Kn0UAM8mP8AuL+VHkx/3F/Kn0UAM8mP+4v5UeTH/cX8qfRQAzyov7i/lR5UX9xfyp9FADPK\ni/uL+VHlRf3F/Kn0UAM8qL+4v5VDcRR+Q3yr09Ks1Dc/6hqAI7f/AFC1LVe1kRoVG4Z9O9WKzKCi\niigAooooAQim06koAYaSlpDQAtFJS0AFFFFAhKY0gUdabNKIx7/yqhI+45zW0Kel2BNcZkBP5Vln\nOTk81pRPng1DdQDBdRzXTTVtCGU14qwqgiq+c9KcsmOtbNX2JHtxTAaefmFIFpLbUQh6ZptSEYFR\nHrTTASnKTSUqnB5plokprDilzSMwqUMjpaSl71ZLQtLSUdaQ43FAqRaAKWpbNUPooFFQMSloooAU\nUEg02kpAFLTc0uaYBSikpaAFpKKWgA5opc0xjQA6lxUQJzUwoYCUUtJSABS9KSloAcr4qZJveq1L\nU2QGik1Tq2ay1arEcuKxnC2wmi9RUaSZqSsWiQooooAWiiigGFFFFAgooooAKKKKAEooooAKKKKA\nCiiigAooooAWikooAWiiigApDS0hoASiiimAUUUUAFFFFABRRRQBLH0p9Rx9cVJTAKKKKACiiigA\nooooASg0UUhiUUlLQwCiiigBKdTacKYhaKKKACiiigAoopKAFpKKKACiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkpaACiiqFzeujlFAGO9JsaL2QOpoVlbO0g49D\nWK9xLJ95zSWtz9lm55Rzz7GpTHY3KKKKskKKKKACiiigAooprOqfeIH1NADqKpy6jBHkAlj7VSl1\naQ8RgKKm47GwSF6kVGtzE8nlBwW54rnZLqWTq5qbTkdr9GALAdc9BTCx0NFFFMQVDc/6hvpU1RXP\n+oegDmx9wVOl1NH0c49DyKrJ9ylrv5U1qSacWpE8Sr+IqzHeQyfxBfZuDWKDTqzeHi9h3OgorAV2\nX7rEVYj1GReH2sPXpXPKhLoNM1qSqyX8L98VZVlcfKVNYOLRQlNp1JQIKKKKBBVO5uguUXqO/aoL\nm+LZRAQO7etVN1dNKi92BJuJ69+9GaYDThXTYQobBq0pDDBqmRT0crUtDI5o/LbPY1EePpWiQsiV\nQkTymK9u1VGRL7jeR0p8Z5wajHymnJy1W9VcTtuSPUeKeRTelJbEjKUUhpKrcaVxSKKTNLQOzEpc\nZpO9SCi5aQzBNSgUopeKTZSQZoptLUlDqWkp4GaTAbmjNBGKSgBad1plOBoAMU2n02kgEp1NpaAF\noxSiigBDTDUlRmhAAp+aYBTitNgOzmjFRg4qUVLAQilANLTxikAzFJipcU3FCYDBkU/NGKTFDAni\nkxVuOTNZoqdJMVlOHYGjRpagjlzU4OawasQFFFFIQUUUUAFFFFABSUtJQAUUUUAFFFFABRRRSAKK\nKKYBRRRQAUtJRQAtIaWkNACUUUUwCiiigAooooAKKKKAHJ96pqrirFMAooooAKKKKACiiigBKKKS\nkMKKKKGIKKWkoGJT6aKdTEFFFJQAtJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWHM+6Zvqa3KwJT+8bHrWci0FIyhgRSUZqUMvaZd5/0e\nU8j7pJrUrmHJUiVeCpzW9a3sU0AYsAR1BPetEyGWaKz5dWiX7g3GqUuqTv8Ad+Ue3FO4G28iR/eY\nD6nmqkmqQJ0+asNpHk6sxqWKwuJvuxNj1Y4GKkZal1aVuE+UVSknkkPzMT+NaMOi955R/urV6Kxt\n4sbYgT6nmnYDBitppj8iM3vjirkWjyHHmuF9hya2cUtOwrlWLTbaLB27z6tzVnaF4AwB2FLRTEFF\nFFABUNz/AKh6mqG5/wBQ9AHMKelLTB2pc16cVoQOpwNMoBoaGSZpKbmkzSQC05GKnIJB9qZmlpaC\nZcjvZkGMhv8Ae5qymor/ABoR/u81mZoJrJ0oyGbX2mHZuEq9M9eazLi7ac4BwnpVOnLSjQUSrj6W\nikrQBwp1NBp/WkxADRTaM0DJY5NpqZ0EqVUqeN+1Jq2qApsCpwaQHmr0sQcVRZSjYNVF3JaJN/rS\ncGmZoqrIiwUlLQOTTRURKKk204LRctIjxTgKeRRipuWkFJmkOaTmkMWingUlACing0wU6gANJQKW\nkAUlLS8UAN5pQDTgKeKTYEdGaeRTMUXAUGloxxTckUgFIpmKkzmlwKAGCn0YoNADCKUGlxRtouAt\nAJFOApcUmAuaKZRmlYB1FKKWhsBlLmlIpKAJUcirUcmapA1MjVnJCaL9FQxyZqasGiAooopAFFFF\nABSUtJQAUUUUAFFFFABRRRSAKKKKYBRRRQAUUUUAFBopDQAUUlLTAKKKKACiiigAooooAKnX7tQV\nNH0oAdRRRTAKKKKACkpaSgApKWikMSiiigApKdSUALRRRTEFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS1FcS+RbySgAlVJ5rm5tRupjhpCo9F4oA6C\na8t4PvygH06mqq6zC8gjVTtJA3Mf6VzxpV4YfWgDshzSms7Tb0SJ5L4BHQk9asSX0EXVs+wpXAnJ\nwCawJGy7E9zVqbV+yLj3rNZy3WpepSJi1MLioSfemGQUco7k5cnikG5ztGWPoBmq24k10ml2vkW4\nY/fcZJ9BTsIzItNuZv4Ng9W4q9FoyjmZyfZRgVqUhIHUijQCCOzt4fuRKD6kZNWKhaeJec1Sn1eJ\nM4OfpzRcDSphkjXqwrBm1eR87AcerVTkuppc7nOPQU9RG/PqcMIOME44BNT2dwbq1WQ4yeoFclzX\nR6RDJFaZYbd5yPXFAjRooopgFFFFABUNz/qHqaobn/UPQBy1JTwOKWvRT0JGc0Zp1FO4hoNLSGlz\nTGgp1NzSbqVhD6aTR1oxTC42lFFFIY8E0uabRQMfT1NMFL0qBjjTadmkNACZpynBplKKb1Qy4j5F\nQ3EO7kUiNg1aBytZfCxMy+hpRVieLHIqFRW17isJTkpCuDSrQUlYlxR0pR0ppqC0hCaA1MJopgSE\nigUyigB+abRSigAXipKTFJmkA6im07FIBKKXFLincBRTqjpamwDqTFJmn0AJnFHBpDQKAEPFIDTj\nSYoAcDS4pFFOoABS8UwmikA/NJmkpDQAuaKbS0APFOpgNOpAGaKbSigAp6tTTTaLAWkarUbVno1W\no2rGaJZaopFOaWsSQooooAKSlpKACiiigAooooAKKKKACiiigAooooAKKKKACkNLSGgBKKKKYC0U\nUUAFFFFABRRRQAVJHUdPX71AEtFFFMAooooAKSlpKACkpaSkAUUUUDCikpaAFooooEFFFFMAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACijp7VSm1OCHgHeR2FICS/\n4sZs/wB01ytal5qjzxNGAAGrLpgFFFFAEsb471NHFJMTtVnqovWr9ncm3mDZOO4qWhosxaRO/Lss\nY9OppJtImUZikDY7EYraRxLGGU8GgyIvU+1CA5KWKSFtsqlW9DUVbmppDO6t5wUqMHNUN1pF0RpT\n/tcCquFisqMx+VSa6OG6EVpH53DbcfSsNr2TGECoP9kVXZmY/MxJ96QG5LrEa/cOT7CqM2rTSfd+\nX681TSKSU4RGY/7IzV6HRrqQZYLGPc5P6UWEUXmkk++xNMwSfU10EOh26f6xnc/kKvRwRQ8JEqfQ\nYphc52HS7uYjEewHu/FX4dCUczSE+yDFbFFAFaDT7WDlYRn1bk/rVnGOKKKACiiigAooooAKhuf9\nQ9TVDc/6h6AOaH3KSlH3aK9CIhKKdijFO4hhFJinUYouA3FAFPFOxQ2SxlFOxSUANNNqSmGmgDNL\nSUCixZIKWmg0uamwxaWkpwFIBKKdijFK4yLcQatQvUJTNPT5aJbFJF3YHFUZYijZxVyKSpJFEgrJ\nPlY7GZkGmY5qWWPYaaEJHFbXTAVHzTic1DjBpckUrBccy0zBp+aSqQBRSilpAMp4ptPoAdnimmin\nYoAFNOJqPpS5pAOpaZmlzSsAtFJmloAKXNGKMGgAzThUdOFIB5pKSloAQ04GmmkosBJikoBoNACg\n0tMpwNAC0UUmaQC0UlLQAhpAacabimA7NFJiikA4Gp0NVhU61nJCLqGpKro1WBWDWpDCiiipASii\nigAooooAKKKKACiiigAooooAKKKKACiiigAoNFBoAbRRRTAKKKKAFooooAKKKKAClHWkooAsUUUU\nwCiiigApKWkpAFFFFAxKKKKQBQKKBTELRRRTEFFFFAwooooAKKKKACiioblikDkHBA4NAEkkkcf3\nmUfjVZtShU4GW+grJkZi5JJPPc0yo5irHSBg4yORRWVYXZU+UxyD+latNMlhRRRVAFFFRSXMUP33\nAI7d6LgS0VnS6vGPuIW9zwKozanPJ/Fs/wB3ipuM3+PriiszSfNw+8SbTyCen+elaVUAtFFFAgoo\nooAzNZV/KUqW64IBrNh0+4n6RED1biukIz/+qlpCOdu9Oe2tvNdh1A2is6uj1r/jx/4GK5ymMKKK\nKACnoRnBPFMpaARorqbRRCNAWA7k1WlvZpO+36UtvZXFzgxx8f3jwKvxaG3Hmyj6LQMx2Ysckk0g\nrpotMtY1/wBXuJ7tzWHKnlTMuOhxQ3YViAKTVmxEf2uMSqGRuMEVFRkq6uONpzSuVY6pEVBhQFHo\nBinU2JxJGjDoRTjTEFFFFAhaKSigBaKKKACiiigAooooAKhuf9QamqG4/wBQfpQBzo6GlxQn3adx\nXfckZRQaKYCEU2nUUAAFLSUuaTJYppppSRTCwoSAQ03FOzSfhVAkxtAp+0mnrHTuXYYAaeFqVY6k\nEdQ5DsRqlOCVKFxS1k5FJDQtIyVJSGlzFWIsUmKfS4FUAxSQato+ar7ad0qWgHzRBxkVV2lDV1G3\nDFRTJkcU4u2jAqSLmoqmzjrTGFagIKKbnFOoAUUGlphNABS9KRTTjQAmakBqKnU2A80lITSikA4U\n6mUtACYpaKdU3AKcOaYaUUWAcRTKkJ4qM9aQDxRTRS0AOpMUoooASilpKACloApaACjFJTqQCUE0\ntJQAmaUUYpwpMBuadjNNZaFJpiHgVIKizT1aoYE6GrSHIqolWkrGRLH0UUVmISiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAbRRRTAKKKKACiiigBaKKKACiiigCZKdTI+lPpgFFFFACUUUU\nhiUUtIaACiiloASikp1MQUUUUAFFFFABRRRQAUUUUAFV704tX9SMVYqjqn+oT/eqXsNGVSUm6jdU\nFC1qWF4GXypTyOhNZJamlycdaauJnQyXlvGOZR9ByapS6sB/ql/FjVGKynm+6hA9W4FXYtHA/wBd\nL+CinqBTlvp5c5cgei8Co0trif7qM3v0rdis4IcbUGf9rk1M8kcSZchR3p2YjGj0iZ/vsqD8zWhD\npsEPOC59WqKbWLaP/VneR6cCqE2tTvkIAg9qdgN4Y6fpS1zMF9NHdCVmLeuea1H1ZAP3Slj6mi9g\nNKisq3vJ5LgFs7OQeOKtS38MQ5YfypXHYt0EqOpH41jTa0OfLUn9KoS6hPL/AB4+lPUR0Ul3DGOT\n/SqE2souQnzfQVhszOcsSTT47eWU/u42b6DinYVyxd373K7MYXrVGtOLRbh8FysY9+TTLjSrmDLA\nCRfVf8KAKFFOZShweD34ptABRRRQBfXUHjMUcZIiQjPqa6RTkA9cjOawtM03zyJpfuDkD1rdAxgd\nKYxawNVh8u63f3xnFb1Z2rx77UN02mpYGJRjNKqselSiFu5AqbjNjSZfMsVB/gO2r9c9DMbKNsPw\nw6Yq5pNy0yyJIxLZyCfSqRLNSiiimAUUUUAFLSUUALRRRQAUUUUAFQ3H+oP0qaobj/UH6UAc4kEh\nGRTvKl9a2YI1MC5FP8hD2roVcXKYPlP60eQ/rW99nT0pPs6elH1hCsYfkP60nkuO9bvkr6VWmRap\nV3sPlMry29aPKb1q9gUmBV+0HyFMRE96eIKsbaKXOVykIhp/lgU/NJmldlWG7RTxikozRdhYeKKb\nmjNIB1FJmjNABml6000ZoAMUuabmimA6lqPdS7qLAPBwc1NncKrbqkRqlxAZKmagNXThhVOVdpqo\nPoBCeDRRxRWwC5pKSnCgBMUtLSVIBRmikxVALTqaKdUgOooooAWijNJmkAZoFFLigBaKKKQCinUL\nTqQCYoozRQAlLRS0AFNzQaSkA8Up4pVxSkCk2IizSilIpKLjHUUlLTAWjFJRQAtOAplSLUsCSP71\nW0NVkHzVZQVjIlklFFJWRIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFIBtFFFUAUUUUA\nFFLRQAUUUUAFFFFAEkZ5qSoU+9U1MAooooASiiikMKSlpKAClpKWgBKWkpaYgooooAKKKKACio5L\niGH77qPr1qlLrES58pSx9egpXA0aa8iRglmC/U4rDl1SeQcME/3eKrqs9weA7579qdxmxLqcCZxl\nz7VQutQkuBtwFX6ZNPi0iY/6whAfxNW49LgQDduc+5qXdgYm73pGkA71p3GjbQzRyHjs1Yu05xjk\ndaLILjzKT0rS0i3Eshlds7DwvvWb5Zwa0NFlMdyYyeHH609BXN+iiimBXvJTDaSSjqF4rmZZ5J2z\nI5b2rf1WaNbN0LDewxtzzXN0AFFFFACg4qaKcxHIVT9agpe1Kw7k73kz/wAW0eg4qHlvU1d06CC4\nl2zMwP8ACM4zW9DZ28H3IlHvjJpiObisbmblYm+pGK0IdDJ5mlx7KK2sflRQBUh0y0h6Rhj6vzVs\nADpRRQAUUUySQJSbGkZOtwKAkoHPQmsWtjUrhGiKscsTwB2rKVGb7qk00IZRVlbOVuox9alW0jTl\n2zRdBY1NHmVrQhiBs4/CrjXES/xZ+lYIuIYh8n6VE14x+6AKQzbfUP7q/wDfVUbi+Drtdxj0AzWW\n0rv95iab9KLdx3LTXij7q5/SoXuJH74+lQmiiyFcUknrWjo283Zx93HNZ+35c10umRxrZxlABuGS\nfU0xFyiiigAooooAKKKKACiiigBaKKSgBahuP9QfpU1Q3H+oP0oAitv9QPpUtQ23+pFTUgCiiikA\njVSmq433apS1pAtEBptKaK6Bi5pKQ03NAAaKKKYBRS02mAZpc03NFIB2aXNNzRTsMWim0UhD6TNJ\nSUwAikzSg0jUDDNIHpKjbNUkBdR6JVDiqscmKsq2RUNWdxFIgqcGlA3VakQMKrgba0jIBmCOtFPf\nBqOmgFzS02lpgLRSU7FSAlLRiloAWkp1FABRSU4UgEp1LSEVIDqQihadQA1afSU4UANIpBTjTc0A\nPFBpAadSAZSgUUvSmAUZNGaWkAmaSlxSUAOFIaWigBBUigUynCpAVgMUitQx4pBRYRYQ1bQ1TSrK\nVhIlkoopRRWYhKKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKWkooAbS0UUwEpaKKACiiigAo\noooAKKKKACrFVxU4+6KAFooopgJRSVVm1K3hzltxHYc80hlukrM/tNpRlAB9eat21x5yYON1K4WL\nNFFJTGLRSUtMkKKKKAIbib7PCz43YrFm1OebhTsHoOtbskayxlG6EYqOKzgh+6gz69aTA59La5uD\nkKzZ7mr0OjOcea4A9FrYJVPvMq07NKwynFp1tF/DuP8Atc1aChegA+lLRVCCiiigAI3Ag9xXNXEZ\njnZfc10tY+rQ4mDj+IelS9hozqSFzb3KSL2apFjJp4RB15NSpDsb8s8cQ5b8Kz59RZgQny+9Uwsk\nr92q9BpvQzH/AICKLsLIyLnpuIznviqldBrESR2ChFA+cdq5+rRItFFFMAo70UUAPVyjBgcEV01l\ndrdQj+8Bhq5arFpctaziQfiPWgDq6KZHMkkYcMMEZ5pjXUKn72aLoZNRVCTUD/CAPc1Sm1AHO58+\ny0rhY1pLhE6MCfbmqUk5fPX61mNfMfuKB9eartNI/wB5qmzHcuFIEJLkE/7RyaY94icIufeqOaKp\nRFcsNeSt3C/SoCzN95j+NNpaYhKWiug0u3tntVfygz9yeeaAMSK3mm/1cTMPYVeh0a4c/vCEH5mu\ngwB0GKKAOcvdPFmFIctnrxVTiui1OHzbJ8DkciudqWxgelbWizboniJJKnj2FYtXdKkMd9jOFYc+\n9NDOhooopkhRRRQAUUUUAFFFFABRRRQAtQ3H+oP0qWobj/UH6UARW/8Aqlqaobf/AFS1NSAKKKKQ\nDW+7VKWrrfdqpLWkNy0VSKaaeetMNdKGFNopKYDqSim5NAD800mm5pM0WGOzSZpKKBDs0ZptFMB2\naM02iiwx9JSZozRYLiilNNzRmgA20u2lBpaLgVyuDT0Y0rU3FN6oC2pyKjkTvTFbFS7s1FrAVDSY\nqSRec0zd2rRCG9KdTT1ooAWnZpmadQA7NLUdOBoAdS4oFLSATFOFJRmgB9JTC1JmpAkWpKjU1IKQ\nC4pMU6koAaaZinmm5pgFGTTqTFACg0ppBS0AJilozS0gCkNGaaWoAfRTA1O3UAFLmlGDScUALnNP\nUU1alUVDYD4xVlBUCVYWsZMljqKKKzJFpKKKACiiigAooooAKKKKACiiigApaSigBaKKKACg0UGg\nBtFFFMAooooAKKKKACiiigAooooAKlT7tRVJGaAJKKKKYGbrMhS0Cg/fOKwK3Nc/49o/96sOgZYt\nmw2PWraO0Z3DtWarYIq6rbkBrOatqUjcgmEyA9+4qWsaGdoXyOfatZJVdAwYYppiaH0tQyXUMfVx\nVGbWIk+4uTVkmrTHkSPlmArn5tXnk4U7RVJpZJD8zE0WA35tXgj6fMapvqssn3TtFUYrG5nOUjP1\nPFadrozD/XuPoKTQFa3nlN2jElzmugqOK3ihHygfXvUlCAKKKKYBRUMtzHH3yfSqEt878KcCpckV\nY0JbiKIcnn0FZ1xeecCoUYqBEkmfABJq5Fp3eXH0FS7sZnF8UwvikmUpMynnBxUeaVgNXSJPnkTn\nJ5zWtXOWMvlXaHOATg10VaLYTMvXXH2ZF7ls1gVs68fmhHsTWNTJCiiigAooooAMVJGgbljgCo6P\n0oAu/aY4U2x/N/Ko3u5G6HFVqWiwXHF2bqxNMo+tWrWzkupAACF7tQBVqaO1nlPyRs2fQV0UGm20\nGCIwT6tzVsADoMUAc/Folw3MhCD86lu9KjtrNpFZmdSDn2rbqOaMSwSJ/eBFAHIUUHOcUUAFbehz\nErJEe3IrEq5psvlXqZ6NxQB09FFFADXAeNlPcVysg2yMvTB6V1lc9qkPlXhPHzfNSYyjTlby5Ef+\n6c0lJSA65GDoGHQgGlqnpc3m2K5O4r8pq5TEFFFFMAooooAKKKKACiiigAqG4/1B+lTVDcf6g/Sg\nCOD/AFIqWobf/VLU1IAooopAIaqTVcqtOKuD1KRRamE096Ya6UUNpCaDSVQxc0pplLmiwBimmlpD\nVIBKKKSmA7NJ+dJRQAtGaSkoAdS5plLQA6lptFILEgozTAaM0WAU0UmaTJpiHU8Go80ZpNDJjyKr\numKnVs051DCpuIqYpCMUpyGp3UVYDBTxTDSg1QDsUlGaM1IDhS7qbSUAPzSUlFAC0tIKKTQDhUoN\nQU8Gk0BPmjNQ7sUvmUrBYeRTcUbxUbPQOzJM0m+o92aQmgpRZMHpC9RUUh8o/fS76jxRii47Di5N\nNyfSjFGKVwF3U7dTM0ZpjsiTfSebSZpuKAsidHzUoaq8YqwFqGwsiRXqdZarYxRurJoORMuedSiT\nNUd5pwc1LSJdJF7cKdmqO804SmixLpl3dRVXzDUiyetS0Q4MmopobNLmkTYdRRRQIKKKKACiiigA\nooooAKDRQaAG0UUUwCiiigApKWigBKWiigAooooAKen38UylHUfWgCekpxqOSWOMZZgPxpgZWun5\nIR7msSr+q3aXMy+Wcqo61n5oSAXNWYZgq4Y1VFKaGr6MLlxrlR0Gaja9l27VOBVetqx0pGiWWdSS\neQuaVkht3MgmSU4yWqzDpl1MfubQe7V0UcEUS4RFX6CpKYjKi0OMHMsjN6gcVeisreDGyNRgYyeT\nU9FABRRRQwQUvSqst6kfTk/pVCW7kkP9KhyKsaU12kfuRWfLePJ04qFI3lPAzV6HTwOZT+FTq2PQ\noIkkp4BPvV2LTuhkP4Cr6IsYwoAFO4HpVpIVxixrGNqilp3AHP61A91EnVh9BzQIydUj2XG7swz+\nNUK1b+eO5QAZ4/irOzEnU0mPYaAa2475UgQNuZgOnesRrhR90ZqN7iRj1x9KaTBlrVLn7RImOgFZ\n9KTmkqiUFFFFABRRRQAUdaKcrbWzjkUAWvLihQNJy/pVZn3HOMD0pGYucnrWhYaa10Q8gxH/ADoA\nisdPe7OT8qDvXSRxJAgROAKEjWNAqjAHpTqQBRRRTAKKKKAOa1OLyb18dG5FUa29chyI5QvsTWHQ\nAtOVirAjqKbRQB2ELiWFHGDlafWfo8vmWYT+4cVoUAFZesxboVlA5BwTWpUN5H5tpIv+ySPrSYzl\nqXFJjHFSLGW7UhmjocmHkjJ68gVt1y6QujB1fa3qKsC6uU63DH8KaaE0b9FUNMvGuEk3tkqfTHFX\n6YgooooAKKKKACiiigAqG5/492+lTVDc/wDHu1AEdv8A6palqG3P7hampAFFFFIAqGUVNTWFNaMD\nOmXFVzV2ZapsK6oPQ0Qw0lBpK0QxKKDSVQC0lGaM0AFNzS0hoABTsimUZqgH0lNzRmpAdSUUlUAu\naWm0tSAuaUGmUtOwD6SkBozSAWkNJSigB6GpQ1VicU+N6loQ+VM1Bypq1nNMdaEwIzyKjqSgrV3A\nTHFGKTkGnZpAJtpKdS0AJRSmmdaBjqMikxS4qeZArCZpeaB1p4qXJivYZto2+1PzRmo5mUmNxSYp\n+KSnzFJjaKKKLg2LSYp9FJSsJOw2iiimir3CiiihjENFLSUxhTwKaKkApNjJUFS1CjYNS5BrNhYC\naSnYzTKQITFOWlpwFANhxSYp4WnbaCWxoFPApQKeBSIbEFPFAFKDipZDJBRmoi9HmUibEtLUYenZ\nqRDqKQGloEFFFFABQaKDQA2iiimAUUUUAFFFFABRRUc1zFbpl2x7Dk0ASUcD2rJn1cf8sVP1NUZr\n2abqxoA35LiKPq4qnLq0acKCTWQqSSHADMatRaXcSfeAX60wFl1a4k4BwPaqhkllbksxrbg0WEf6\nxmf2zir8VtBD9yJR+HNAI5hLS4kXKxMV9cVG0bIcOhH1rsAAO1MlhjlQh1DZHcUXCxyFFSTxmKZ0\nPBBqOmIAcGuqtJfOtY39RXKVvaJPuhaInJU5ApMaNWiimu6xjJIX60AOoJAHPFZc+tRIcRAt71U+\n3y3BJbgDtSexRrTXqR8LyaoS3cknfAqOOJ5T8oJq/Fp46vz7VOrAoJHJKflBPvV6HTwMeacn0q0W\nit05wo/nVabU41+4C3uaLAW1RU4A/SlZgvUqKx5dVfH3gv061SkvS3ct9afoBvSXsKcZ3fSqkmpH\n+EAe5rFM7t3x9KjLEnk07CuaE18W+85PPaqpuWPSq9OALHAGfaiyC4rSu3U0yrUWn3Mv3YiB6mku\nLN7eTZIRnGeKYitTlUuwVeSaQjBxSqxRge4NAF6LSLmTkgJ/vUyfTLiHnbuX1WujibzIVfswzT6A\nONIIOCCDSV1N1ZxTxtlFzjg471zDKVYqeo60ANooooAKKKKANfTtLaTbNMML1APetwALwMfhVPTJ\nvOsY/wDZ461cNABRRRQAUUUUAFFFFAFe/i86xlX2yPrXKV2ZGQQe/FcldRmG5kT0JoAhooooA1NF\nm2XBjP8AGOK6CuStZTFco4OORn6V1gOQCO/NAB0rPu73rEv4mrk5ZYHK9QDXLvM5Jye9TqMsfInp\nSG4RenNUyxpN1LlHcsG4Y9MVGzsc8k1FmnoRvUt0zzVWFc2tFtdiGduN3A+la1Rw7fIj2jjaKkpi\nCiiigAooooAKKKKACobn/j3apqhuv9Q1AEVuf3C/Spqht/8AULU1SAUUUUAFFFFAEEyVRlWtQ1Tm\nj61rTZafQzjTc1K64qGupPQYZpKKSqGLSUlGadgFpKKKLhcKKKKBDqKKKAExRiiimK4lFGKKQXCj\nNFFA0woooFFh3ClBooxSAMZoAwaUUhNAEitUnUVBmno1KwCOMU0NU55FQMuKYhSKZThzTT1poBc0\nuSaULSgVDkFxMUoFOorNybE22JQaKKENBS0YopMpi0UlFArBTadTTQioiUUvG2kqmi2h1GaSio0I\nsgoooxTSRaSCkopRVDFGKXFIpwaeBSbGNVamC0zFSA1DYIQrRyKfSgVJQisRT8ZoEdPCmghsQLTw\nMUqVKBSbM2xqrT9tKBS1LZDYm2kpS1Rk0gSY7NFMzS5pjsIaSnUlUMUGnZqOnbqkTQ7NPD1DmnA0\nNA0Tg0tQ5pwapsQ1YkoNNBpSaRIlFFFMAooooAKKKKAGyDdGy+o7Vzotbh3I2Mfc10lFAGNFo8jc\nyMF9quxaZbx/w7/rVyigBFVU4UAfSloooAlj6U6o46koAKKKKBnPavCY7veOj881m10Orw77TzO6\nHP4VghSx4GaYWG4q9pUpivAex4NMS2UcyH8BVjhRhQF+lS5AomjcX23iLGc9axbuSR3AklZh71di\ngkm+6Dz3q4ulxHBmyzDt2oi2NmDDbS3BxGhI9a2bTSFhO6U7mx0HStKNFQYUBR6CnUyRAqoOgAFZ\n91q8UWVj+Y+tX3XehX1GK5GVCkrL/dNMZZnv5JmzVZpGPc00Ak1ai066m+7EQPU0CKlFbEOhsT+9\nkA9hV+HS7WHnZvPq1AHNpFJJ9xGb6Cr0OjXUnLAIPc810KoqcKAv0GKWgZmRaJDGcyOX+nFXYrWC\nEYSJR745qaigQvpWVrEQ8tJQOhxWpUF7F51pIvtmgDk260AZoqRBnNAG/o8ha02E/crR61z+mzi3\nmO77pGK1JL6MDKHcTx9Km5RYkmWEZY1y96P9KdsY3HNX559xLMazJZPMfNNNtgyOiiimSFFFFAGz\noU3Lwk+4FbZrldPl8q+jbsTg11NABRRRQAUUUUAFFFFABWBrUO24WQD5WGCfU1v1n6vF5llvxyhy\nKAOcooooAM11VhL51nEx4OMGuVrc0OUeVJF3B3UAaxFYd3o8wdnhIcHnHQit3PFFAHHOjRttcEH0\nNNrW1uMi4SQDAYYOPWsmgAooooA6nT5fNsoz3xg+1WqxtDl4kiP+9mtmgAooooAKKKKACiiigAqG\n5/1DVNUNz/qDQBHbf6ofSpaht/8AVLU1SAUUUUAFFFFABTJF3Cn0ULRgZs0dU3GK2JYsrxWfNFXV\nCZaZSpKey4pldCKCiiikIWiiimIWiijFIVwopaKYXEopaKQXEooxRimFwooopDCkpaKBjaXNJRTu\nFx9GKYDTs0hhQDR1ptAFhTmkdc1EhxU26p6gRKtO20dDSk8VLvcUrp+QClxTacKmSaE4tBRS4oqb\niuJRilopXHcbRRRTRaCiiikAmaKO9JTsOwUUGimMKKKShjFoooosCQUoptLQykmBqQUgSn7DUlpB\nThSrHmpliqGwbVhiipkSnKmKlAouYuQ0KKXFOxTaRFxcUvSm7qN1SKw7NNZqTNIaqw7CbqKaaUUx\n2Fp1NpaBi02hmwCfasp7iSU5Zjg9hUtpEOSjuaD3Ecf3mFV3vwPuJn3NUiOKZU81whPmNiCdZlyK\nlzWNE5jfcPxrWRxIgIpp3LSuSZpc02lqxkgNOzUOeKA1TYzaJ80tQhqeGpWIsPoopGdU+8QPxpCF\noqrJqEEfGdx9qsg7gCO4oAWiiigAooooAKKKKAHJ96parjrUjzRxjJNK6QySmvIiZJIqjNqHZKzp\nJmbqc0r9ii/c3yshRQCCMGqGcDjj2qIyqO9QPMzHg0kmySy0ir1NQyXLEELxVcmm1aQXOj0WbfbM\nh6q1aVc5o83lXgU9H4ro6YhKKWkoASqk+mQXFwZXJJPUVbpaAIYrWCH7kSj3xzU1FFABRRRQAUUU\nUAFFFFABSO6ojFjgY60tc3qF9LPK0fKoONtAFSTZ5rFPu54qaJcLk1WAOcCrscWOW60mNEiJSSSL\nGKZLOE4B5qkzFjk1MYgxXkMjZanRQvM+xFyadbQPcTLGnU10tnZR2iYXk45PrViOTpamuY/KuHQD\nGDxUNABRRRQAoODmurtJfOtY39RXJ1v6JMGt2izypzQBqUUUUAFFFFABRRRQAU2WPzIXQ9GBFOoo\nA41hhiPQ0lXdTi8m+f0bkVSoAKuaZL5d9HzgMdtU6crFHDDqDmgDsaWo4nEsYb154p9AGbrUW+zD\nj+Bs/hXPCuvuI/NgkT1BFciylWIPUGgBKKXBo20AW9Pm8m9iOcKTg109ccp2sGHY5rroH8yFH7sA\nTQA+iiigAooooAKKKKACobn/AFDVNUNz/qGoAht/9QtT1Bb/AOqWpaQDqKKKQBRRRQAUUUUAFQyx\n5qaimmNMypYcZqm6YrdkjDCs+aGumnU6FpmfS050200GujRiaFopaKRLYUUUUCCiloosAlFLRQAl\nFLSUAFFFFACUUtJTKCiiikMKSlptMoKUUoFLSbC4uKToad2pCKi9mJaMeCCKZ900iGn4yKp6liUA\n0nsaKz8mTfoySlpoNOrNohoSkpaShIaQUUUUFCUUUlNFIQ0UUUyhaKMUuKVxXEopcUlCYJjaWigA\nnpTuWhRzTgtSRxcVMsWO1TcbaQxEqcRihUxUgqGyG7iBakHFJ0pC1BDY+jdUW+gnNILD99N3UzBo\noHYeKU0xafTATNGaQ0lAxaKSigBc0dabThQAj/cb6VkDtWxIcRsfRTWQOlZ1Ohz1ugU0in0h6Vmj\nOnKzI6mgnML57dxUFOHSqTsdaNpWDjcDkGnVl21x5Jw3Kn9KtPexL0+b6VqmBYJoxVB75z91QKga\naR+rn8KXMhOcUaT3MUfVh+dQNqSj7ik/Ws/Ap3HbApcxk6nYnfUpW6cfSoGnZzyx60gjZ+EUt9BV\n2DS+8rdugpBuUQjSHCgsfat60Ro7dVfgj9afFDHD9xQKkoAKKKKBBRS1G8yR9TSuOw+mSSpH1NUp\nb1myF4qoXLHkk1LY7F2W+OML+dUpbk/xHNV5ZGU4Ax71XpqN9wuTvcE9KiLk96ZS1aSJuJRS0lMQ\nd6KSlpDHxN5cqv8A3TmuuRg6Bh0Irjq6TSpxLaAdShxQBoUUUUAFJS0UAJRRRQAUUUUAFFFFABRR\nRQAtYV7pTh3nR12E5xWrc3cdrHucjd2HrXPXV/LdSZJ2r2UUAOiiWIZbrTJLjAIXrVYsW6mkpWAC\nc0oG40oXJ5qQAUwOlsUiS1QxDAI69yasVm6PNvtzETyp/StLj2ouBg63DsuVk/vDH5VlV0erxeZZ\nlh1TmudxzQgYlFPWJ26CpRasepFFwK+K0NIm8q9AJwrDBpi2qjrzUyoq9ABUuaHY2GvIV/iz9KrT\naoIwcKPxqgWCgk1QlkMjE0JtjZ1FpN59ujnGSOcdqnrJ0STMLxHsc1rVRIUUUUAFFFFAGPrkXyxy\ngexPtWJXVahEJbGVfbdXK0IAooooA6TSJhLZ7O6fLzV+ua0++NoxU8q36VrDUCR/qx+dJuwF/Fcz\nqMPk3r4GAeRW3DfrJOISMMelUdai5jlHfINK47GPRRRTAK6DR5d9ns7ocVz9aeiy7bhoyeGHA96A\nN6iiimIKKKKACiiigAqG5/1Bqaobn/UNQBDb/wCoWpait/8AULUtIAp1NooAdRRRSAKKKKACiiig\nApjoGp9FGwFCa3PpVGSE+lbhXNQSQA1tCr0LTMQcGn1amtvQVUKsvaulSTQmri0U0GnVWxDVgooo\npCCiiigAooooASiloplCUUUUAJRS0YoHcSloxSik2O4tIaWkNShxClFJQKBsCvelDYPNLnimE0ot\nji2PbDcikFMBxTj603qW1cdkUZFNzSVO5K10JBS9qaKfWbViGrDKKKKaKQUlKKKL2KWglOpKXPFJ\nsTY00maUDcad5dVbuWo6ajQC1SiAU+OOrAWpbsVsVvJHpUiRYqwFzTtmKhyE5DVTFPxRSE0rmd22\nBppNBeoyaZSQ7fRuqOloKsh2KeopBS0iWO4pppM0ZpCQUuaTa3oacEPoaY7oKSn7KPLNF0TcbSVL\nto20uZC5iCnUrLimFgOTgCqLG3DFbeQjg4xWVmr1xdRvC0anJNUTWcznrPVBmlzSUVmY2G04Cilz\nTua+1fQTFLilVS7hV6k1dSziH3izH8qpRbEoykUcjFPSCST7qH6mtRYo0+6oH0FKatQRoqSW5RTT\n+7yfgoqwtpAv8GT7nNS0tVoi1FIQADoAPpUgNMpRQwaJlNOqMGmPcpH3zUNk2LOKhkuY4885qjLe\nM+ccCqxYsfWob7BYty3rHO3IqqWZupJqWK2kl6DA9TV2KyjTlvmNKzC5TitpZegwPU1dis0j6/Ma\nsdKKaRNzndR/4/pv96qtS3D77h29TUVaCClpKKBBRRS0hiUUlLQAVp6NOI7kxno44+tZlSQSmKZX\nBxg0AdfRQrBwGByD3ooAWiiigBKKWkoAKKKKACiiigAqleajFbDH3nxwBRd36RZSI5fHUdqxnZQS\nzYJNTcZBNNJcuZHOahp7vuPHAplUIKUcmr9naxk+ZcHbH2HrVZkG87OATwPalcLDAKUZp4WnAYqb\nlE+nzfZ7nLDCkYPtWjJqafwqx+pxWUKWldhYuTX7zArtAB9aqbF9KCQKaZUXvRqxklLVc3I/hWo2\nuGPTijlYXRczj0ppmRerflVEux6kmm0+QnmJZZmk69KiopRlmwOpqxbl/SJSl6qno/FdHWdpdgLe\nPzZQPMbp7Vo0AFFFFABRRRQA2RlRMt0/nXJTJsmZR0B4ropH8xyx6dh2rH1JV88FSDkdqSdxtFGi\niimISrdvc7Plbp2qrRQwLMMrm8R1PO6ug1CHzrFx3ADVmaNaFpftDD5V+77mtwjcGB7gigZx5oqS\nZDHM6njBqOkAtSWshhuo3HUHFRUhoEdlRVexlE1nEwz0x+NWKYBRRRQAUUUUAFQ3X+oapqhuf9Q1\nAENv/qFqWorf/ULUtIAooooAKUUlFADqKKKQBRRRQAUUUUAFFFFADWQNVWa2z0q5SYzVKTQ0zJlt\nsdqrGNlreZA3Wq0lsprojW7juZOaWrclp14NVmhZe9aqSewOK6DcUYpDuHUUb6ohxY6iiipEJRRR\nTEFJS0UFBS0ClxRcYlFFFQAUUUUIpCUUUUFB2ptOpDSvYIuwh6U9OaaaRTg1Vy0x7JtNGKfnIpmc\nHFTJdUEl1QUtBx60mR61G5PxC0Um4VJ5Up6Rt+VCY0mRZoDVKtnOedtTLZP/ABAUuaPUrQqk0ojJ\nq4th71OtqBS54oOZIpRx4qYIKs+QKesYFZuoL2hXVKeBU20Uu0UucjnIgKdT6KVxcxCQ3oaQoxqe\nilzBzPoVvJb1FOWHHWp6KXMHMyLyF9TR5K1LRSuK8hoUDtS7R6UtFFxXYm0Dpil/KiilcQUUU2SR\nY49zEAeppgOpM461ny6pGoxGu8+/SqEt7PMMF8A9qpRbA3HnjjGWYCqsmqRJ0XP6VjszNyzZpuPz\np8ncLl2TUZ5Ony/Soly3LMT9aSOyuZPuRn8aux6XIPvyAZ9Bmm7Cd3oirgCkzV9bSNTgkt9aebWB\n/wCHB9uKXKP2L6szcU2rM9sYVDA7lz6dKrkVDTRnKLi7MAKQilBoNBJZ09gJnU9xWgwrGhk8qdX9\nDWxnIrVHVDYKSloqixtOppIHJ4FV5LxE+7yaGxlngdaglu0jPrVGW4eU9cVBiouJlqS9eTgcCokY\nk8806G1kl5xgeprTtrOOMnI3H1NKzZDVkVorWSXtgepq9FZxxdfmPvViikkQ2FFFFMQUGikoA5Z/\n9Y31NNpz/fb602qEFFLSUAFLSUUhiUtJS0AFFFFAGtpWoGMiCT7h+6fQ1vVxfvXQaVqHmp5D/fHQ\n+tAGpSUtJQAtFJS0AFJSPIicswX6mqkmq20ecNvP+yM0AXOByTisu8vtxKRnjufWqdzqUs/H3V9K\npbiT1pMqxK7bemSagIZzk0tLSQDQlPCAfhR+dGQO9K7HoL04FKKjMg7U0uTTsF0TihmCjOarZPek\no5Sbk5mHYUwysajop2Qri5J680lFFMAooooAKKKKADvWzpVhki4kXj+EGsY11djL51lG2QeMHHY0\nAWKKKKACiiigAqjqjyx2ZaJsYPOPSr1RXEPn28kfTcMZoA5V5ZH+9Ix/Go6uzaXcw87dw9VqmQQe\naAEooooAKKKKAOp05w9jGR6Y/GrYrH0OXMckPcHcK2KAOf1iIR3e4fxjJ+tZtb+sw77YScfIeawK\nSAKQ0tBoGbehzZikizyDkD2rWrnNHlMd8F7OMV0dMQUUUUAFFFFABUNz/qD9KmqG5/1B+lAEMH+p\nFS1HB/qRUlIAooooAKKKKAFpabS0ALRRRSAKKKKACiiigAooooAKKKKAGlQajaBT2qaimm0MpSWm\nelVpLT2rWpCoNaKqx3MRrcjvUZjYVuGJTUTWymtVW7juZHPpRurSa0qJrSq9pEdolHIpc1Za1qJr\ncjoatSixciEopuxqNrUrJh7Ji0UnNHNIPZMWjNN5pCTSZXI0AyzYUEn0FSLbTt0jI+vFXrC1EUQk\nP3m/SrlYyq2diboyPsNwf4Vx67qd/Z0/qtatFS6r6BczV0w95efYU5dOVTyxNX6Kj2khXZWWxjBz\nz+dPNpCeqCpqKXPLuF2RC3hUYESfiuaeEVeiqPoMU6ilzMWoUUUUgCiiigAooooAKKKKACiiigAo\noooAKKKKBBRRRQAUUUUAFFFFABRRRQBXvpJIbcvGRkde9YckrStuZix966J0EiFT0YYqtFp9vHzt\n3H1bmqjJIDFWN5DhFLH2FWo9NuH+8An1raVQowAB9OKWjnYXM+PSYwcyOW+nFW47aGL7iKPwyalo\nqW2wCiiigCN1qGrVV2+9WiNYsHG9GU9wRWOAVYg9Qa16z7lAs54wDzRJaE1V7tyvS0YoFZnKNPWt\nS2fzIF/I1l1JFM8SsF7+taRdtzpjJLc1Cyr1IFV5b1FGFyx9ulUmLO2WbJ96aelHP2D2t3ZDpZ3k\n6nA9KiqeK0klGfur6mrsVpHF23H1NFjTUpRW0kvQYHqaux2UcfJ+Y+/Sp84oqkrFBUsVRVND92hm\nctiWiiioMwooooAKQkKCT2FLUVzj7PJnptNAHMv99vrSUCiqELSUtJQAUGig0DEooopALRSUtABT\nkdo3DKcEdKbS4oA6ewvluYPmIDL97PFPlv7aHguCfRea5gEjvRSuBsS62P8AllEfqxqnJql0/wDE\nF/3RVPNIWFIY9nd+WYt9Tmm03dSbqdgJeKbkCoySaSiwiQvSbyabRTAUn3pKKKACiiigAopfwoxQ\nFhKKcFpcYouOw6O3mlOEjY/hVyLRrl+W2oPc1s2EoltI29sc+tWaBHKXdsbWcxls8ZzVetnXIfmj\nmA6jBNY1ABRRRQAVuaFLmOSP0ORWHV3SpfKv0H975aAOmooooAKKKKACiiigBaxdchAKTgYJ4NbN\nVNSjMtjKB2G78qAOXooooAKKKKALulyiO/TJwG4NdPXGoxV1b0Oa66KTzIUf+8ueKAG3Efm28i4z\nkVyhGMg9Qa7CuWvovJvJFHPOaSHcr0UlFMQ6N9kiv/dINdejh41YdxmuOxXSaVMJLILkkrwc0gLt\nLRRTAKKKKACobn/UNU1Q3P8AqGoAhtv9QtS1Fb/6halpMAooooAKKKKACiiigB1FNpaAFooopAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNIp1NY0AiB6gNSO1RVojpS0DaKaUFPppNO7KRF5dL5dPF\nOp3YyIxCpIbYO/PQUoq9GgUUnJmU5WVh2KbT6aetYs5xKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACUUtFIQlFLRTASilooASilooASilooASiiloGJRRmigQ\nVFJUtRuMinF6lR3GVWvYz5YkxyDUpkWMZYgVUnvA6lEXIPUmtGzVpNWZWyAKbuHpTaKzMVTSJB0p\nvQ07OBTCaDK12TRwSS8qvHqeBVuK1SPljub1pbV98A9RwanrVRSOiMFHYKKKKZYUUUUwFqaL7tQ0\n9DUsmS0J6KKKgyCiiigAqOf/AFEv+6akqGf/AI95P900AczRRRVCCiiigApKWkpDClpKKAClpKKA\nHAU4cUzJpKAHlqQsaSiiwBk0lFFABS0lLQAlFTxWs0x+SN2HTIFXI9EuW++UT/eOf5UAZtFb0OhR\nLgzSM3sOBV6Oytovuwp+IzQBzEdvNKfkjZj7CrkejXTn5tqfU10QAHQYooAy4tDhX/WOzfTircdh\naxfdhX6nmrNFAGbrMO6BXAyVNYVdVcxiW3kU91rlaljCiiigDX0Wbhoc/wC0BWxXNafL5N2hyACc\nHPpXS1aAp6lH5tnIMZI5H1rmBXZMoZCD3GK5K4j8m4eP+6cUhEVFFFABS5pKKAOwikEsKODkMM5p\n9UNHk82z2k8ocCr9ABRRRQAUUUUAFIRuBB7jFLRQByNxGYp3QjkGoq0tXh8q73AcMM596zaACiii\ngAro9Il8yyC85Q4rnK1NFl2XTISfmXgUAb9Ymtx/PHJ6jH41uVR1SHzbFiBkrzRYDmqKKKACtfQ5\nD5kkfqNwrJqexl8i8jc9M4pAdVRSUtMAooooAKiuf9Q30qWorn/UNQBBB/qRUtRW/wDqFqWkAUUU\nUAFFFFABRRRQAUUUUALS02igB1FFFIAooooAKKKKACiiigAooooAKKKKACoHapXOBVWQ81aLgtRj\nmos08mmVZ0IM0oop4pDYgFOooQbyB+dBN+pNAmfmNWaRQFHFLWTOVtthTT1p1NNJjQlFFFIAoooo\nAKKKKACiiiiwBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJQAtFJupN1ADqKbk0l\nADs0ZptFIBc0ZpKKACiiigAoqOWeOL7zfgKz5tQY8IMD9aANJ50iGWOKoXGodo+PfvVBnZ+STQM9\nO9UotBcC7OcscmiporKV8FhtHvV+K1ijxxk+pqlG5ok2ZxQrjcCM8jNLxVy7T9yGHO05NUMmplGz\n0Mat0xDSU7HFNpCgy1ZPiXZ69Kv1kI2x1b0Oa1+taweh0RegUUUVYwopaSgApqt89ONREgHJxihj\ntcuoc0+s77dDH6n2AqJ9YP8ABF+LGs2YyRrU15EQZZlX6nFYUl9cSZ+fGey8VXLE5JJOfU0hG2+p\n269CX/3RVG51R3Uqi7c9z1qjmmHFAhKKKWqEJRRRQAUlKaSkMKKKKACiiigAoopQMmgBKXHvTiAv\nfNMoAUnNJRWnp2mm6PmSZEY/WgCKwsHvH5BEY6sK34bK3gACxrx3IyamjjWJAqgADtTqACkpaKAC\niikoAWkpaKAEopaSgA61zepxeVev/tfNXSVla1DmNJh/CcH1pNDMWikpaQADg59Dmuqt5fNt0fj5\ngCfrXKVvaNLutmi/uGmmDNKsDWoNlwso6OMVv1navD5lmXA5Tn8KYjnaKKKACiiigDU0SXbdNH/f\nFb9cjbyeVcRvz8rCutByM+tAC0UUUAFFFFABRRRQBma1FutVfP3T+dc/XX3Efm27rxyuOa5JhhiO\n4oAbRRRQAVNbSGO5jcHHIzUNFAHaZBAPrTJE3xunqCKisZfPtInPUjmp6AOOddkjL6HFJV/VojHf\nM3Hz8gCqFIYtIDg59KWkpiOut5BLbo+c5A5FSVm6NIXtCh/gOK0qACiiigAqK6/1DfSpahuv9Q30\noAhtv9QtS1Fbf6halpAFFFFABRRRQAUUUUAFFFFABRRRQAU6m0tAC0UUUgCiiigAooooAKKKKACi\niigCOWqchqxK9Vm5rRHRBEeadTcUoqjUfS02jNAh1WrdNqZPU1XgXc9Xaze5hN9ELRRRUmQUhpaQ\n0gG0UUUhhRTJJUiGXYLWdNqoXiFQeepp2A1Ka0iDgsAfTNYUl5PN1cj2Xios0NDsdJRVOyuxMgVv\nvj9auUhWCiiigAooooAKKKKACiikzQAtFJmk3UAOopmaM0AOyKTdSUUgF3UZNJRTAKKKKQBRRRQA\nUUUUwCiiikAUlQzXUcXU5PoKz5r+R+F+UUJN7AaUtxHEOT+ArPm1B2yF4H61SLFjQoJOBznsKtQS\n3HcVmZiST1oAz61ah0+R8FzsU8+pNaMFtFAPlHP949aHNLYLGbDYSSYLfKvvWjDZww9FyfVuanzS\nVLbYhj02lY5NJWq2NlsIwDAgjqMVkkFTg9QcVsVm3aBZ8/3hSkrozqq8bkFIaWg8iszni9RK0bOT\ndCB3HFZlSwzNCxIGc1cXZm8JJM1aTIXqQPrxWc13Mx+9t+lQkknLEk+9U5obqI02u4I/49x/2arv\nqXPyR/maokUnep5iee+xZNzLJ958ewpCKjSpsVLbZjOTGnpVdxg1axxUUi5FCYQnYg3U3NIwwaSr\nRqLk0UUUwCiiloEJRRRQAlFFFIYUUUUAFFFFABTgcU2igApRSVc08KLuMuAeehoAuadpfmkS3CkJ\n1C+tbiqEAVQAB0A4Apf8KKACiiigAooooAKSlooASlpKKAFooooASoLyPzbSRMA5HH1qxSUAcfRV\ni+hMN264wM5FV6kYVe0qQR3yjnDjbVGnRsyOrDqpBpoDrqbIgkjZWGQwINKjCRNy8g9KWmI4+RDH\nIVPVTTKvarF5d87DOG559ao0AFFFFABXT6bKJbJOclRtNcxWzocx3SQlsD7wBoA2qKKKACiiigAo\noooAK5fUovKvZBjAJyK6isXW4eUkH0PtQBjUUUUAFFFFAG5ocoMTxZOQc1r1zeky+XfAb9qsMGuk\noAydbh3RJKq9DhjWHXV3sYmtJFOemRj1rlDwSMYpDCikopiNPRZQl2UJPzjAroa5G2kMVwjg4wa6\n0EMAR35oAKKKKACorr/UN9KlqG5/1DfSgCG2/wBQtS1Fbf6halpAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFLmkooAdRRRSAKKKKACiiigApHpaY5oQytJUJp8rVDmtTpgOpKSloLEpwXNFWraP+Kk2\nTKSSJo0CJgU+iiszlYUUUUCCjtRRQAyorr/j1l/3TUtV7w4s5v8AdNSM57Jz1oPrRRWxJL2paarZ\nAp2RUF3BGKkEHpWxZ3YmG0n5wPzrFoVih3AnIocQOloqnaXa3CejDqKs1DBjs0maSigQuaTNFFAB\nRTXkSMZdlX6nFVZNTgToS/0FFgLlHSsiTVpG+4ir7nmqslzNKfmlOPTOBVKDFc6GiszTJT80Z5PU\nVp1LVnYYUUUUAFFFFABRRRQAUUUnSgBaOlVpr2KHjOW9B2rMnvZJTjOB6ChJsZqTXcUWecn0FZ89\n/LJwvyD2qmeTSqCTgDJ9qvlsFxSxPWgZPAGSatw6a74MnyD071ow2sMH3V59TyaHJLYkzrfTpJcF\n/kH6mtGG1ig+6v4nrU1FQ22MKKKO1IAqNmzxSM2aStYrqaJdRKXNJSVRoPNVb5VMIJ4IOQKSS72/\ncG4+p6VTdmc7nJJpSkkYznFaDKSlorK5ziGlpQKMUwuJS4opKQhetJilooEAqQGo6cKQMkpGFKoZ\nugJ96eIXJ6AfjVJNgqcnsijItRVrR2cZP7wlj6DgVoRQxRj5IlX3xzV2N1FrcwI7O4lPywvj3GBV\nqPSJj/rHVPpzW1RSuBmto0WPlkkz6kA1Uk0y4Q/KoYD0NbtFAzlmUqcEEH3ptdUyJIMOoYe4qhea\nZCIWkhG0jnGeMU7isYdFFFABRRRQAUUUUAFFFFAD061Mp2EMOo5FQr1qXNJ7jOpgk82BG9QOlSVn\naRLvtynHynitGmIKKKKACiiigAooooASilpKAClopKAFooooAxNbh/eJKM8jBrJrpdUi82yb1X5q\n5s1IxtFFFMDotLmMlkoOMpkY9qv1h6LKRO8X95etblMDK1qHNusufunH51g11t3H5trIg6kcZ9a5\nMjaxFAhKKKKACrenymG9ibA5OPzqpRjAoA7SkqlDqVu8Sk/KcDjGak+323/PX9DSGWaKrfb7bj97\n/wCOmrPp3piCiiigAqpqSebZSDpgbqt0jDchHqCKAONoqW5jMVw6HqDUVABRRRQA+NzHKjj+Eg11\n0bb40b1UGuOrpNIm8yxUY+4dv1oAvnpXKXkXk3UqZzg9a6vpWFrcZE6yADBGCfekBk0UUUwCuo06\nczWUZbG4cVy9amlX0dqkqybvm5GKAN+isl9cX+CAn3ZsVUk1e6boUj/3V/xpXA6Gq93NCkZV5FXI\n7nmuckuZ5M75nbPUZqGgdjpbf/ULUtRW/wDqFqWgQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFOptFADqKTNLSAKKKKACo3qSo5OlNDW5TemYqV6jrQ6ovQSlpN1N3elMZLEu58VoAADAqK3h8t\nMn7x61LWTOabuwooopEBRRRQAUUhYCmlqLgBIFV7xs2co/2TUx5qveZ+yS5/umkmMwsUtFFbEjT9\n7608U1hkUopDQtFFJQMWNzE4ZeCK2ra5SdM5APcZrDyKRXZTlSQfapcbgdG0iJ95lX6nFVZNSt06\nbnPt0rG+Y9aAvrQodwuaEmqv0jjC+55qo95cSdZW/Dio9oFFUopCuM2mnBRS5qSG3lm+4nHqelAi\nLinxwyTOQik49BWnDpqJjzDvP6VeVVXhRgDsOAKly7DsUbTTzE4eRzu9Fq/RRWbdxhRRRQAUUUUA\nFHGM9qrXVybZAQu4k49qypbuaYnc+B2A6VSTYPQ0ptQijyB8x9qzpryWbgnA9B0qt1FOVSxwASfa\nq5EtwuGfxoALHAGTVyDT2fmT5B6d6vxRJAPkUA+vehvTQtJspQaY7cyHaP7vetGK3jhGEUD371LR\nWbdybhRRRSEFFFISBQgsxSQKhLE0McmkrVI1ihaWm0oqhjJpUiUbicnsOpqhJO8nB+Ueg/rVm9Td\nFuGMqc/hVGpm2Y1ZNaIdRRRWZzDaSlpKBhRS0lACGm07p1rWigiTBRFPoetVGNzWEbmWkTv91GPv\njip1spG+8VUe55rSIpp4q1BGqporJYxjlmZvbpT1ijj+6gHualpcVSSRailsNIytRYIqfFNZaZSY\nwHFWImqt0qWI8ipYppWLVFFFZmIUUUtMQYooqrdXiW/A+Z/T0pgYVzH5dy6ehqGppyXcsTknk1DQ\nAUUUUAFFFFABRRRQA4HBqTjbUNSocihgaGlS+XdqvHz8fSugrk0fY6tjO05rqkfzI1f1ANShjqKK\nKoQUUUUAFFFFABRRRQAlFFFABS0lFAA3II9RiuUnj8qZ067TiusrC1mHZcB+MOO1IaMukpaSgCaC\nUwzpKB9055rq+vPauPzXS6dKJbFOuV+U570CLZ5GK5W/h8i7dMYGcj6V0txOLePcRk9h71zl9KZ5\nt564xRfUCpRRRTAKKKKALq/cH0pajVsoKVmCjNRZ3KuRTOc7c8V01lL59lG5xkjn61yhOTk10elQ\nNBZjd1c7selWSX6KKKACiiigDn9Zh2XQkA4ccn3rMroNZjD2gbPKHP4Vz9ABRRRQAVq6RdJA0iyP\ntUjNZVGSDQB00mq2cf8Ay03kdlGc/wBKzNQ1CG7j2JEwx/E3FZlFABRRRQAUUUUASUUUVJQUUUUA\ndHb/AOoWpajtv9Qv0qSmSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOoptOpA\nFRSVLUExpopbleQ1AzUkz/NUPXrWh2RjoOZ6vWcOQJW5zyKrWcHnSbm+6K1ahsxqy6IWiiipOcKK\nKQtQAucU0tSdaSpAKKCQvU4qvJfW8RIaTJ9F5oAsVS1P/j0P+8Kgl1Zf+WUf4tVOa+mnG1yAvoKp\nJ3AiopAaWthBTVOBTqKVgG8ml20tFFguxNvrS4FFWrSyNyNzMUQenek3bcLFWjt05+tbKafbpj5S\nT6sanWJEGFVVHoBio50OxiraXEnKxtn34qzHpTn/AFkij6c1p0tLmCxVj0+3jxlS/wDvVaAA4HA9\nKKKXMMKKKKQBRRRQAUUUUgCiiimBU1CHzLfIHzLzWUsE0vKxOc98cV0FIzBRk1SlYLXMuHS2PMrB\nfYdatrHFANsa4/2u9K0hb6UyqV92bxjYdmjNNoqyyZHwcHpU1VBUqSdjWcl1Mpw6omooprOFqErm\naTFZsVCzZozmkrVKxqlYKKSimULS02loCwSKHQqehFZYOOvUcVqA0hRM52rn1xzRKNzOcOZGeI3Y\n4VCakW1c9SB+FXKKSghKjFEC2qDuScdzVNgVYqeoOK0qqXagT7v7wpSiraE1ILluitmgnijFJjis\nzn0E5rTsn3QBf7pxWfgU+KUQuWxkEYxVRdmdNPc1s0hqv9sg/v8A6GhbuAkAMc+mK0uWTUA0UlUM\nfRTaWkIRhmkiGJPzp1AoYPaxOG5xTqgBxUqvUGbRJRTDwMnisu6vi+UT5V9e5pCsT3l9t+SE89Cf\nSsskmkqN2zwKW4wkPao6SiqWhIUUUUAFFFFABRRRQAU5PvU2lFAEoNb+kS+ZabefkNc+v3a0dHl2\nXRQ87xipGb9FFFUIKKKKACiiigAooooAKKKKACkpaKACs/V4PMtNwHKHOfar9MlQSxsrDIYYoA5K\nigqVJB4I7GipGFa+jTgeZEzf7S1kU+OUxtnJH0oAvX10Zpjg/KOlZ8nSgy+1MLFjzTsISiiimAUU\nUUAKGI6GjJ70lFAFuwtvtV0qH7o5P+FdMWSJPmZVAGMs2K5JZJIuUdl9wcUjyNISWYsfUnNAHTSa\njaRdZ0/4Dz/KqsmuQD/Vxux9+K5+loA1H1u4b7iIg/Oqsmo3Un3pn/A4/lVWigANFFHegAooooAK\nKKKACijvRQAUUUUAFFJS0AOWnUwU+kygoooPSkB0UP8AqRU1RW/+rFSZqiRaKKKQBRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFGaSgBc1XnNT1DPTRUNzNk+9RHG0z7U6dzTnXdJj1rSt\n4BAmAKps6KlSy0JUQRoFXoKdRRWZyhSEgUjNTGIQZY7QPfFJsB2aQkdzWdNqiAYiUMfU9Kzprqac\n/O/HoOlNRYGxPqFvBkbt7f3VrPl1SaQ4jAQe1UqTg+gqlFAPkmll+/IzfU0zBNFPVHkPyKSfYZqr\nJAMxRiraadcydVC/7xq0mkLn95ISP9kYpcyAyqdWtJpMLcxuyfqKpyabOhymJB7cGjmQFaim/dOD\n+Ip1UAUUUmaYgNblnKJLZV7jjA7VgnrWhpcu2VoyfvDj61nNXQ0a1FFFZDCiiigAoopskiRDLMB9\naAHUySRYhlyFHvVCfUhyIxg/3jWfJK8hJY5JpqDYGnLqiJ9xS314qODUXedVYKFP4Vm06NWaQbFJ\nINaciSEdHRTUzsG7g45HpTqyGFFISFGTVaSfPA/OmlctRbZO0qgccmq5JY0wGlrVI2UUhaWm0VRV\nh1GKSnUCG0+mmlzQDJFcgYphoBpaSRKSEoBopQKY2FJTsUlAkAopDSUgG0tLSUwFooooAKiuV3QE\n45U5qVnCIWY4AqlPOZjgDC/qaTaS1JnJJakANJRR3rE40hCaSnYpMUzdTSQmKUUVJBCZpQg49T6U\n1qS25Ghbt5kKsfxqbFIqBQAOMClrU2EpaKKYBSUtJQA4UTSpCm5jj+dRzXKW689ey96yJp3nfLdO\nwrNsTJ57x7jp8qelV80zgUwnPNKxDYrtk0yiimSFSGJxGHKna3APrWhp+mtK4kmBCdQPWtHVLfzL\nDCKMR8jjGB3oA5qiiigAooooAKKKKACiiigCRDU0T+XIrZPBB4quvBqU8Ck9xnWowdFYdCM0tUtL\nm82zGTkrxV2mIKKKKACiiigAooooAKKKKACiiigApKX3NQtcwIx3TIMds80Ac/qkJhvn/wBr5uap\n1o6pdw3Pl+WSSvU4xWdSGFFFLQAyil20lUIKKKKQBRRRQAUUUUAJS0UUAFFJS0AFFFFABR3opKAF\nooooAKKKKADvRRRQAUUUUAFFFFABUlR09TxSY0OooopDOgt/9UtTYqC3/wBUtTigQoopKWmIKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigBKKKKACo5RkU+lpoaIootvNT0lFIQ6mu2KCeM1\nG3JqWxoOtZOpp+/V8cFcZ981rVHNAk6bXGR1oiBzuaekUkn3EZh7CtxLK3jx+7B9zzVkBR0AH0GK\nrmFYw49OuXPKBf8AeNWY9IH/AC0lP4DFalJS5mMrpYW8eP3QPu3NThQvQYpaKkQUUUUAFFFFAGTq\nsO2VZR0bis8Gt+8iE1s6d+o+tYHJORWkHdALTDTgaQ9a0QDakgkMUyuOxqOim1fQR0yMHQMOhGaW\nqWmS7oNufucfhU8l1FF95ufQda5Xo7FE1RyzxwjLMPp3rMn1FnyE+X+dUmdm6nrVKDYrl+fU2bIj\n4/CqLyM+SxyTTKckbyNhFLH2rVRUQGU9EeQ4VSx9q0INLPBmP/ARWjHDHEMIoUe1TKougGdBpfQz\nH/gIrRjhSIYRQBT6Kzbb3GFMeRUHP4AUx7gKMLyfX0qqxLHJpxh1NI076sc8rP7e1MpKWtjoSSVh\n1LmkooBjqKSgUCHUtJRQAtJRTqBCU8CmU8GgTAiilzTaLCHUhoqMmgBaUU0GloAkptGaKCRO9Opn\nen0DZSumJk2fwjnFQVduYGk2svJHWqTKy/eUj8Kzknc5qsW5XEpKdSVBiJSYpaKCriEVd09gS69/\nvVSzUlvJsuFY9DwauOjLpuzNem0uaQmtDoEpaQUtMAqtcXQiBVOX/lUdzeEkpEeO7VSxxUOVhSdh\nrMWOSck96Z0p1BqDNyI/rSUppKoQoUk4ArWsdOK/vZsZ7IefzqSx01YsPJ80nYdhWjQAtSgb0we9\nQ1Kh4oA5KaMxSshGNpxUVamsQ7LveOj/AM6y6ACiiigAooooAKKKKAFHWpM+vP8ASoqeKGBraNNt\nmaInhuQK3K5S2lMU6N0wa6lTuAPqAaAHUUUx5oovvyov1OKAH0VRk1ezTo5f/dFVZNeXkRwk+hZq\nANiiudk1q6f7uyP/AHRVSS7nl+/M7D03UAdRJc28Wd8yAjtnmqr6xaIeC7/7o/xrm80uaANmTXDz\nshHsWaq0mrXT5wwQeiis/cKN1AyV55ZPvSu31bNR59zTcmkzRYBxNIKSlFAC0UtJSAWm0tKoo2AZ\nRSnrSUxC0lFLQAlFFFABR3oo70AFFFFABRRRQAUUUUAHeijvRQAUUUUAFFFJQA4UpGKFFKw4pdR2\nGUUUUxC0q02lHFAElFFJU3KOgg/1K1JTIP8AUrT6Qh9FIKWmmAtFFFMQUUUUAFFFFABRRRQAUUUl\nAC0UlFABRRRQAUUUUAFFFFAC0UUUAFI3SjNMZuKAQhOTSUUVIxc0tNooAdRSClpAOFFNp1ABRRRQ\nAUUUUAFFFFAgrAvYvJu2GMA8it+s3VIQUEqjkHB+lVHQDKozRSGtQEopQtIKdxEiSNFnacE00uW6\nmmipI4pJWwik0tFqMjp8cbyHCKWPtWjBpXRpTn/ZFaEcaRjagCj2qHU7AUINKGcytn/ZWr8cSRDC\nKFHtT6Kzbb3GFFFQXFysQx1b0pJFKLexK7qgyTVCW4ZyccCo2d5DljTQa2jE6oUlFXJAadUYNPqy\nmgop2KTFBIopabRQA+ikBpaAFBpabS0hC0tIKWgQtAoooAWikpuaBDzTaUUUAAFGKUUtMlsZS0UU\nhhSilooEJS0EU2gCldRlJiezcioauXaZiBHVTVKspqzOSqrSFxSGnUhHFSZjM0maUijbTRqjWgk8\nyJX9R+tPqpYybQ0ffqKsSTLCuWOT6etaJnSndXHF1QbmOAKz57tpMqnC/qabPM8x+bhewFRbaly7\nGbn2GYpcU7bRipZk532GGmHrTyKRI2kfaqkk00JDUQuwCA5PYVt2VitugZhmT19KLS1W1T1Y9Wq3\nuqix9FN3UbqAHU+M5zUe6npw9AFXWIBLab+8fIxXNV2brvjZfUYrkZk8uVk9CRQBFRRRQAUUUUAF\nFFFABTl+9TaUdaAJBxV1tWuQgRdiY7gVSBpppIZLJe3Mmd07kHtnioSSe5ptFMQUUUUAFFFFABRR\nRQAUUoFBpgJRS0oFIBMUuKfRSGNooooAM0optKDQANwabTmptMTEpaSigBaKBS0AJRS0lABRRRQA\nUUUUAFFFFABRRSUALRRRQAUUUUAPWncbaYDRzSsO4yloopiCiiigBc0lFFAHSW/+oWpKjt/9QtSV\nAxRTqZThQAtLSUtUIKKKKACiikoAKKKKACiiigAooooAKKKKACiiigApaSloAKKKQmgBrGmUtGKk\nYlFFFABRRRQAUopKKAFFVp5yjbYz8/c+lOmm8oYH3qqKMfWhuyNqcLaskFzcA/MQwqUXxHWI/gaj\nIpuKSkzTlRcF3Af+Wn58VKCGGQc1Q8laQRbTkEg+oNLmRLpI0aKz/OuFGBITjpnmpo5rhusQJ9c4\noRjUioatlrpzVK7voBG0ZO8kYIWq9zb30p+Ygr6L0rNdGRsMD+NWl3M1OL2CiiitR3Gk5o6UpFNo\nQgrV0uTKsh6jkcVl9KntZfJuFbt0NKauhm/S0gORmlrAYUVFLOkSc9ew7mqMkzyn5ydvoOlUo6am\nsaTepNLclziM/jUGKUe1BNB0JWVkGKaRT6Q1SZSZHkinBqMU0itEyiYHNOqFGqUHNMhoDTafTSKB\nJhT6YKdmgLDhRSClpEsUUtJRQIdSGmU6mAUUtFArhT6ZRSE0PxRSUUCDFFLSGmAlFJRmkMdmmUbq\nYWouNJjmw6FT0INUAufrVzNQkDzT6HmokjCvH3bkYFOxTsUCpOFsjK80m2pSO9JQaKTsMUsrBl6i\nlYM7bmOafxS0A6srWIdooxTzSUib3EoIopwBc4UZP8qY4pt2RHsZyFAyT0FX7eFYFODlj1NJHEsa\n5HXuT3p25V5LKPxqkrHbCmorUn3UBqrm5hXq4P05qJr5P4UY/U4p3G3Fbl7PvRurMN5IegUZ/GmG\naQ9Xb8OKXMiHUgjYLhBkkD68Uz7fBE3MgP0GaxSMnnk0m2lzEc6NeTWYV+4jsfyrIuZFnnaRU2A9\ns0zbSgUxORHim4qbbSEUhJkWKMU/bRii47kdFPxSUxjaKKKAHjmlI4pq080mBHijFFFMBcUYoAp+\nKVxkeKKfikK0AMooopiCiiigBRTt1MooAeCTTqZmnBs0mihKKKKBBRRRQIRjSd6dTe9MBKKWkoAK\nWkooAWlptLQAd6KKcFoAbRinbRT8UrgR4owakxRii5Vhm2kIxUtMbkUJisMooopiCiiigApaSigA\noopKAFooooAKSlooA6S3/wBQtSVHb/6hakqBhRRRSAfRSA0VSELRRRTAKKKKACiiigAooooAKKKK\nACiiigApaSloAKKKCcUAITxUf8WaUnNJUjCiiikAUUUUAFFFFMAqGeRYl3H73pUjSKiZY4FUCGlf\ne/5U9FqXTg92KvPJ5Jp+KbinqKzbvqdG4tJS09YmbrxU3M51IwV5MZUixM3XgVMsYXoKfRY4KuOe\n0ENSJV6Dmn4xQKRpFQcnn0o2PObnUl3Y6mOyL98A1C9wTwvAqAknrRc7qOBk9Zuw6VYZZADGu32H\nNNfS4W6MwptXYm3oD3xVXaNMVB0UnDYzH0qUdGUj1qo1pMh5Q10NIavnOaOKktzmsYHSm5xXRPEj\nDBUEVA+nQNk4IJ9DVxn3NliYvdE1pL51uje2PxqOa6wCqDLevpURg8iPCudh6igBccCpuuh30OWc\neZEWO560tKRSUkzqQtFFFABRRRTAQim0+mkU0wGdDUimmGlQ1aH0JqKQGlqjMbRTqSgBRT6jzSik\nJjqSiimAtLSCloEFLTaWgQtLTabuouOxJSZpm6kJpXBIfupN1MzSUirIfuo3UyikKyFJpKKKBhTZ\nRwD6Gn0bQwIPQ8UCkrqxEaKauSPenCszyGraAaaafTKAuJS0lKKAEpKcRTaY0NOSDinpM0Y2oqge\n/NNNMNM1hNrYe0sjHlz+HFMwKSkyaB8ze7FpKKKBCGiijFA0LRSUUDsGKKKBUiCmmn02mA2lxSUo\noAQikxUoFIRQFyHbRtqTFLimO5DT6UrUZFMpMcaQUmaWixSFFLRSVIxaKQ0maLANNGKKkC1T0JIq\nKkK5NNKmgBtFFFABRRRQA7NLTKdQAtFFFIBKMUoqTGRRcZBS0HjiimIKSlooASiiigBalqKrUKhk\npSKiRikqwEUUYHpUXHYhwad5Z9KmpaLjsQ+U1I8Pymp6KE3cVjPopWGDikrQgKKKKACiilCkjI6U\nAJRRRQAUUUUAHeijvRQB0tuP3C0+kg/1C04iosMSiiikAU4dKbS5pgKKWkpaYgooopgFFFFABRRR\nQAUUUUAFFFLQAUUUUAFMY0rGmVLYBRRRSGFFFFABRRRQAUhIC5JA+tLVG4k81/LXoOp9apIuEbsR\n385844HSnY4oC+lSrET1rOUrs0qVow+JjAM9BUqwk9eKmVFUcU6p3PPq41vSGgxIwvbmn0U1pFTr\nT0Rx3nUl3Y+ms6p1NV2nY9OKj69aVzrp4BvWbsTPOx6cCoqKKR3wpwpq0UFFFFBoIRUsDclfyqOh\nW2uDTMq9P2lNxLtJmgHpimtmqPAsGaKTNFSaWsNddyEVTxg4q7VWZcPn1qk9T0cBUtJw7kdFFFWe\noJRRRQMKKKKYCUlLRTAQ00cGnmmkZq0UOBpwNQ9KcDVCsS0lIKdQZsSilooAWlplOFAhaWkozQIW\nkzTSaTNJsaQ4tTc03NJUjSHZozSUUh2FpaZux3/KgNz90/youS5RW7H0VHvYngAUm5j/ABn8KLmb\nrwXUlpu9B/EKjxk5PJ96Wlcylil0Q7zBn7pNIXYnsP1ozSZouZPE1HsCjkk9TTwKQU8CkjlnJt3Y\n2o2qU1GxpAhmaM0lFM1sLmikpaGKw00lFFMEJRRRQWJikpaKACm06kNMoSiiikSFLikoFACmikoq\nQExQBRS0wuKOlOpBQTTJEopKWpKCmkU6k7VVwTGEUzbU2KaRQaJjCaM4o20u2grmQzOaSnsKbimJ\nO4qinZpmTRmkMfupN1MpaAYpOabilooENop1JimAlPplOWgBaKBRSAKlWmohJqyseKTZVipIu1iD\nTKtXK/LmqlUiWLRR3ooAKSlooAKs2zcEZ/Cq1SQttkFJ7DRcpKdSVnYuwUUUtIBKKKDQBVuFw+fW\noatzrlM+lVTWqIYlFFFMQVNA3O2oacjbXBoYE85AXpVanu+9s1HQAUtFFABRRSUAdPb/AOoWpait\n/wDULUtADKKWisxiUUtJQA6lpop1MAoooqhBRRRQAUUUUAFFFFABS0UUAJQWpCaYTSYwNFFFSAUU\nUUAFFFFABRTJJkhGXbb/ADqhPqeciEY9zTAuXUixLksBVKPEjZ6CqEkzyNudiatW8mcU3ewTqyjG\n0TURQOlTCqyPTjMq9ayPNlCU5WWrJ6a0ip1P4VA07N04FRUrnVSwLes2SvMx4HAqKiig74U4wVoo\ndRRRSKCiiigBKKbRVBYeKa1ANKeaBliB8oBnpU2KqW5w+PWrYoPCxcOSq7DSKTHFSU0jimYpjKhn\nXK59KmpCNwxSNqU+Sal2KNFKww2DSVZ76d1dBRRRTGFFFFAxKSlNJVAFJilooQIbTehp9IRVpjTF\nBp4NQZqVTVCaJKSgGloIG0U0mm5LA7QalsbaWrJN1NJpNrnsPxo2H1qeZGUsRTXUAaCQOpFKEX0/\nOlxikZPGx6IZn0BP1ow3oB9akpKDJ4ub2GYJPLUbR6Z+tOpKDJ1Zy3YDFLSUUEWEooopAJRRRQMQ\n0lLRimCYoqUVGOtPFJkSFNRmn5FBxiglEJpuae/FQk0G8NUSUZpgNLnimDQUUUhqgCkpaSkUFFFL\nikA2iloqiRhpKfSYoKQlFFFSMU0YzRQKQgIIptSmozQJMUGg0UYoAYaBT8UbaB3FXmhhQDilyCKB\nEJNKOtKwpFoNNx+KSjNJSJSENNIp9JVDIsUlS4ppFBVxlFO203FMBaKSlpDCiiigAp2KQc1IFobG\nIF9KkWPnmnImKkFTcoAAOwp1JS1AxHG5CKoHg1oVTnGJT781pElkNFLSVRItFJRQAtJRS0AaKHcg\nPtS1DbNlCPSpqxejLEpKdRUgJSUGm1QxXG5CKomr9U5V2ua0iQyOiiiqEFFFFABR3opKAFopabQA\ntJS0lAHT2/8AqlqWorf/AFS1LSADTacaQ0gEooopDClpKWi4BS0UVQgooooAKKKKACiiigBaCaKY\nTSbAQmkooqRhRRRQAUfnUU1zFD95ufQdazZtSduE+UeooSbA0pLiKH77c+lZ8+ps2RENvvWezMx5\nPNJWih3Fcezu/U0lAqzBZyzngYHqaLpAVasQ2s0pyq8eprVg06KHG75z+lXOnTikMyhbPEMMxz7U\n0HDYNacibhVCWI5xirSRvScVpYFNOqAEqealDVjOFjVofRRRWZA6iiikA2ilpKAEoooqxhRRRQA4\nHBBq8p3AHtVCrNu2V2+lI4MfTvBTXQlpDS0Gg8lDKSlpDQaIrTrhs+tRVakXch9aq1UWezg6nNTt\n2EpKcelMrRHYOopKKAsLSUUUAJRmiimMKKKKYIYacppKTpVpj3Jc5pC4AOetNXLdBTgm33rNysc9\nWvGnpuwAycnp2FTLjFRUoOKk8urKVR3ZMRTCKk6000GadiOm08imUFoBRRRmqAKTFGaWgY2ilpKk\nBKKMUUDEopaSgYUtJS0AJRmig0xIXNGaZRUisDmoSKkNNqjSDsNpaWkxQXuOpKM0GmSFJRS0xiUt\nGaSpFuFJRmkqrjSHCiiikOw3BpOakpKCkhKM0lFSFh2aMUg6UtMy2ExRS0tADaKWkoASgGiipKFJ\n4ptLTTQNDsUmKBS0wDFFFFArjaMUUUDG4pCKfSEUxpkWKSnkUmKZaYlFNp4GaAHotThaRFqTFZtl\nCAU7FFLUlBRRRQAVBcpkBqnpsi74yPaqW4nsZ9FFLWpAlLRSUgFpKWigCa3bEmPWrdUFOGFXgcgG\nomhodSGiioKG0UtFAxKr3A6GrFMlH7pqqL1E0U6KWkrQgKKKKAEpaKKACg0Ud6AFooopDOlt/wDU\nLUtRW/8AqF+lS0CCiiigBtFOptSwCiiigYCnU2loAWiiiqEFLSUtABRRSN92gBGNMooqGMKKrzXs\nMP8AFk+grOn1CST7p2D0FNJsDTmuooQdzc+nes2fUpJPlT5V/WqROTk0lWoLqFxSxJ5NJRViGzmn\n+6uB6mrukSVqtwWUs/QbR6mtK306GIZI3t79KvYxwKgZTt9OiiwxG5vfpVzGKKKQBRRRQAUxkDU+\nihMa0KE0NViChrVcbhVWWGqTudEKl9yBWp9QMpU8CnB6zlT7GrV9ialpoNLWTRGw6iiikIbRRRTG\nJRRRTGLUkTbXHvUdFIicFOLi+peopsTbowe9OpnzsouLaYlJTjSUxpjMVTkXa5FXarXC9GoO7B1O\nWpbuQ0h60tJVo9hMSiloqhiUlLSUxhRRRTAKKKVVLHAFJuwm1FXYoFTJbluW4FTQwBeTyan21n8R\n5eIx32af3lbYAMAUxlqyVqJhVWOGM22QEVGalNMIoNkxwNO61GKeDQhSQhFNIqQ00inYSYzFFLSU\nixtLRikoK3CkpxplAh4opO1LQDExSUtJTBDaKKKBiUuaSimAgpppM0Uh2FpD0oopjQUUUUFCCjNF\nFIAJpKU0lA0haKSlosUJmikpaYxtFLRQFwooopjEooopAAp1Np3ehETFoooxSIEopKKADFGKKKAE\npDS0h6UikFFFFBQlLmm5paBWHUlFFA0FBFA60tAiOjFOpMUDRHinxCkNSJwKb0NI6k4pRTBT6yKF\nooooGFFFLQAUtJRTuIz3GHI96ZVm5XDA+tVq1RDCiiigBaKSloAKuwNujHtxVGrNscEilJaAiwaK\nSisjQWiiigApBS0UAUSMMaSpbhcPn1qGtjMWiiigBKWiigBKOtLQopgFFO2mjbUlWOjg/wBQtS1F\nb/6paloJCiiigAppFOooAbRRSVAxaWkopgOoooqhBS0lLQAnSmE5qpc6jFHwPmPtWbNfSzcAlV9B\nRZsZpz38MPQ7m9BWZNfyy5XO1fQVUoqlTSFcXvRRVmGylmPTaPU1TaQisKsw2Usx6bR6mtOCwhhw\nSNx9TVrpWbn2HYqQ6fDDgkb29T0FXQKAKdSGFFFFMQUUUUAFFFFABRRRQAUhGaWigCtLDnpVN4iO\ngrVqN4weoq0zaFRrcywSvWpUanyQ+1QbShqZRudCakWAaWq4epQ1Yyi0S42FoooqRCGilpKpAgoo\nopDJ7dsEr61PVNW2sCO1XByMig8fHU+WfN3FpM0UGg40MprrvUipKSmaRdndFCirDQgsSDSeR70c\nx7KxVNrVkFFTeR71E67WxVJ30NKdeFR2ixlFFFWbjaKdUqQ92/KhysZ1K0aavIbHGX57VcjQKuAK\nRR7VKoqN3c8XE4mVR67EgFLRRVHE3caRTCuakpMUxoqulQkVeZeKrslBvCfcrUlSlajIpGydx4NL\nUYNPFMlqw1ulMNPPSmGgoKSlpKZQtJSiigL2GUuaWjFILiUhpcUlMENzSZpcUlA0FFJRQVYZS0lK\nKYMWkpaKQhp6UUtJQi0LTDT6bQNCU4U2nCgYUUUUAJRRSUFIWiiigAoopKYwooooAKUGk7UgqSJD\nqWm0tBAEUlLSUAFFFBoASiiikMTvRQaMUyrkfelBpSKaaQ0Popop46UC2EooooBju9FAprGmVBXd\nhoB60+m0+pbOlIcDT80wGnA1Imh9FMBp9IkWlpKWgAooopCIp13RmqJrSIyKz3G1yPQ1rHYTG0UU\nVRIUUUUALUkbYcGo6DTAv0UiHKA0tYMtBRRRQMKWkooAjuFymfSqdWrhu1Vq1iQxaKSimIWikooA\nWnqOKjqVeg+lJjiLSnGKSg1JR0Ft/qlqWooP9SKlqiAooooAKKKKAGminU2kxhRRSEgck4pAKKUs\nq8k4rPn1SNOEG8+vas6a7lm6tx6U0BrXGpRxcL8zfpWVPeyzk7m49BVYmiqUe4gooq1BYzT842r6\nmrbSAq1ag0+abkjavqa1IbGGDGBuI7mrFZufYLFaCwih5xvb1NWaKKkYUoFIBUgoSEFFFFUAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAhXNV3gB7VZoNNMqMmjMkgqEgoa1WQGoJIPaq3N4VblMSU8NQ\n8OOlR8rScL7Gmj2LG6kqINTg1ZODQnFofiiiipEJVu3bKY9KrAZOBVuKPYDk8mkzix8oezs9xaKK\nDTPJQmaSijFI2SSEJoFFFOwuYSoJxyDU/uTVWR97ewoW51YOMnUuuhHSqpY8U5Iy3J4FTqoUYFW5\n9jtr4uMNI6sEiCe59alC0KKmValI8mpUcneTEC04ClApas52wooooJEooopjuBqJlzUxphFA0U2W\nozVhhUTCkdEGQ07NBFNoNhSabTqbimAlFFJTBBmlopKEMM0tNpM0AOpDTc0ZpjSHUhozRQOw2m06\nkPWgaG0CiikwFooooEJimmn02mikwp1NHWnUikNooooKCiiigYyiiikMKWkxRQIdRRRVDGjrTqaD\nTxSJbsJRS4oNBncbRRRSASloxRQAtJS0lACUUtJSGKaSlNJTGgIppFSU2gBmKcKXFLQO4mKTFLSE\n0gVxScCmUUtB1QhZBS0lLSZYU4GmUZpBYmFLUYNO3UiWiSlpgNOBpENC0tJS0hBVO5XbJn1q5UFy\nuYwfSrgJlOiiitCQooooAWiiigCzbngj0qeqkBxIKtms5blISiiipKCg8Ciopn2pjuacVcRXY7sm\nmU6nSLjFakEdFFFAC0tJRQAualqIdRUtJjQtBopDUoZ0Fv8A6halqK3/ANQtS1RIUUUUAFFFMklj\nhB3sB+poAfTZHREyxA+tZ8+qqMiIZ/2mrMknkmOWYmkBp3GpomRCNx/vGs2S4kmJ3tmoaKpRQXEo\nFKM5471bg0+abBYbV96psCpVqCwlm5I2r6mtWGxggxhQx/vGp6hyCxVgsIYe25vUirVFFSMKKKKQ\nBR1op4FNIApaKKoQUUUUAFFFFABRRRQAUUUUAFFFFABRQKKACiiigAooooAKMUUUANZAarvBmrVF\nNMuM2jNeDFQlCvStYoDULwg1VzaNUzgxFSIxY4FTmCoG/cuD2apklbQKlRqDcdy4gCDAqTdVITVI\nstYnhyjJu7LOaQVEJKdvoM7Ml4pCaZuNGTQNXEoBozRmgBkxbAVe9NSHHLVLmikdKrSjDkjoIBTw\nKQVIoq0YOVhwFPAoApaoxbuFFFFBIU3NKajNMpDs0uaizTgaBuJKOlBFIppxpksgZaiYVZYVGRSL\njKxUYVEetWnXFV2FB0RlcbS0zNANUaNEhFMNOzxTaQIbS0lLVDGU2nU2mMKKKWpGJQKWigLiUUUU\ngEooooGJmikpaAEoPWikNNAhR1p1NHWnUihtJS0lBSCiiigoYaKXFJikwTHCikFLQD0CiiloFewz\nFOzQaQ0EN3HCg0GkoEhBS02lpjYtGKSjNAhabS0hpMYZooopAFLRRQNbjaKdSUXLsAFFGaKA5RcV\nGeaUmm0XNYU7ai0tFFFzYKKKKQwFLSUUgCnA02nUASZpQajpd1IixIKk7VCKkzQQxaRhuQj1FFFJ\naMVjPptSzLtkIqKtkQwpaSigBaKKKAFHBq8DkA+1URVqA5Q+1TIqJJRRRUFB0qpI5Zs5qaVsKRVb\nvVxRDHKMmnt90/SkQYFLRfUdiKkpabVki0UlFIBalByKiqWPkUpDQ6kNLRipGb9v/qFqWorf/ULR\nLcRQ8s34DrVEktMklSIZcgVmz6oeRCMf7R61nSSvKSWYmgDSn1TtCPxNZsszzNl2LGm9qShAFFLj\nPSrlvpss2C3yL79TRcCljsKt2+nyzcsNi+prWhsooAMDJ9T1qfFF2BVgsYIcYUM2OpqzRRUjE7Ck\npewpKGAUUUUgCiilFPqIdS0UVQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFJS0AJUVxbieIrnB7VNSUJjuZL2NxGflAcD0NQmR0OHUr9RW7SNgjBGR0osiXCLMdZ\nqkE1UJ1ME7x/3TimiU0rGLoo1BNTvOrNE1PE1RymbpGh5tBkqiZ6DNRyk+yZe8ylElUxLT1kzRYH\nCxfQ1MtVoz0qcGtEjmmiXNGaZmjNUZ8o/IoyKi3UZosFiUmmHmkzRmgdhlKDig4opWKuOBqQGoM0\n4NimS1ce1MzSscioyaBpA3Iqu4qcmom5osaQ0KxFNqUimbaZ0JjKXNBpM0h7jqKQUtNCYlJS0lMa\nCmU89KbikUgHWn00dadUiGUUtJQO4tFFFJFISiijvRYbG0UUUzMDRS96SmXESm06kqTRBRRRVDFp\nDQKDQJIMUUlOApXGxtPxQKTNSZN3EoIozikzTSGkxaKXNJSKsMpaQ0opg46BSU7FGKZFxtFLikpD\nEpaKKAFooooENGc0/tSd6XtQXF3YhFMY04mmHNBvFagKdSA4pahmwlLilpM0DDFNp1JQACiiloAS\nloooAdS02nigkM08GoqcDSE0SZpaaKWkQQXS9GqrV+Vd0ZqhWsSGFFFFMQUtFFABU0DYfHrUNOQ4\ncGhgtC7R/jRTJG2pWSRoV5W3NTUGTTalQYFaPRGaHUUtJUFkT9c+tNqSQZGajrRbEMKKKKAEqWM1\nFT160mNE2aeOlMFSDpWbKJW1N/L2p8vv3qizs5ySST3JpoorWxAUUoGelXrfTJZeX+RevvQBRAz0\n61fg0yWXl/kX9a0oLSK3A2jJ/vGrFIZDDaxQfdUZ9T1qaiigQUlLRQA00UppKkYnakpe1JQwCiiq\ndxfRRHj5z6CgC5SjgZJxWPJqcjDCKF+tV2up2GDIapRYrnQs6p94hfqcVE99bJ1mU+ynJrnnleRs\nuxJ96jpgbjatAM4Un3qtJrEh/wBWgX3PNZlFAF19TuWP3gPYCr1hfed8krfP/OsSloA6uis+x1AS\njy5jh+x9a0KQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFAC0UUUAFJS0hIGSS\nAPegDK1eEApKO/BrKrSv75ZVMSDIz941nUwCiiigQUdO9FFMY9WJNXYRxVWFMmtCNOKVjGtJIsJ2\nqXoKjSpDVHDJ3DdRupMUmKZAtFFFAwzRRRQAUuaSikDFNGaQ0zPNAKNyUHNNNANL1oFsMpMU7FLV\nDuRFabipCKQrxUstMrstR4qdhUVI1TG4paKKEVcSloxSUx7hRRRQIMUYoopDuJTqbmgdKRSQmaSl\nxSUFBTadzSYpXC4tFAoxTIENFLSGmhiUlLSCpsWmLSYFLRQHMxMUcUlLVCuNp1NzS5qQYtNJpe9G\nKY1ZDadQVpvNSXdDs0UYoxTsHOiOlFKRQKLA56C0lLSUzMKKQmjNAxaSjNFIBKXOBSUhPFA0ri96\nWkApcUraHQtBKXtRilAoE3YZj5aUU/FR8qcUNBSle46kzRR1p8psJmilpBSsMUGnU3FLmk4jClpu\naUGlZiYEUA4pc0GgQoNFM6Uu6lYLEgp2ajBp2aCWh/UVRYYYiroNVpxh81UDORBS0UVZIUUUUAFJ\nS0lAF2NtyCoZmy+PSkjfCEVH15pWHcFGTUopqDmn0mNBRRS1IxpGRUFWG+4agPQVaJYUUUUxBRRR\nQBOpyKkzxUUZ4xTzWbRVyBFLHABJ9qvwaXK+DLhB6d60bOCOOEFVGT371ZqxEMFrHAo2qMjuepqa\niigQUUUUAFFFFABRRRQAUhpaZJIkYy7BfrQAdhVee6jt/vfl3qlc6ozfLF/30etZ2c9aFG4XLVxf\nSynCkoh7A1Vooq0rCCilxRimAyiiioAKKKKBhRRRQAVsafflsQSdexz1rIpKAOrorM0/UN22GXO7\noretadIAooooAKKKKACiiigAooooAKKKKACkpaSgBaKSloASilpKAFopOtZ95qYT5Ifmbu3pQBbn\nnS3Tc5+g71i3V9LcnH3U7AVBJK8z7nOTTKLAB5pKdSHrTASlpKWgBDTgMmmmpYxk0xbK5ZgTpV+N\naghHSraCg4asrscOKKKKo5xaSlooASiiloGJRS0UCuJRRRQMaabipKTFIadhop9NAp1UD1CjFFLQ\nSNoxS0VLKTI2FQMtWTUbLSLjIrUmakZajPWg2QtJRRmmOw/tSGndqYakBKQ0UtWAnFHFJRipGJii\nilpAJRRRigAFFFFAC0hozSmgBlIKKKRoLRQKKZAUUZpaAGEU2pSKbikNMQUtGKXFMApuKXIpM0Id\nmLRmkzRQPkYGm5oIoxSK5EkLkUhpwFLinuRcipMVJtpNtFhpjRTsUoWnhadhNjMU01LtppWk0XTk\nr6iYop1LVGjYzbTguKcBTqRlOXQbimNyae5wMd6jpmlFdRcUwinZpKLHQtBtFOxTcVJVwopeaSmC\nCkooxQMM07NNoo5RCk0vSm06iwXAGnZppFJio5QJAaZJyuaQGlJyMUmrO5DiQEUmKlA4pMVqc9yL\nFFS4ppWkO4yil20UgEpy9RTaenJoY0SAYpaKKzLEoopaAI3PFR1JIecUytEQxKKKKACiiigBy8NU\np6VEOtSGpY0dBb/6palqK3/1S1LTEFFFFABRRRQAUUUUAFFU7nUYrfp87egNZM95LcE5bA/ujpQB\npXWqLHlIfmPr2FZEs8krZkck1FS0wFFLQKdVoBtFOooEFFFFADDSUtJUDCiiigAooooAKKKKACtf\nT7/O2GTOc8N1zWRRQB1dFZNhqGP3U7f7rH+ta1IAooooAKKKKAClpKWgBKKKKACiiigBKWiigApr\nyLGhZmCiobm7jthzyx6KKxLi4kuHyx+i+lAye71Fp/lTKp+pqlRRQAUlLSGmAUtJRQIQUtJ0paAF\nqzAtVhyavwrjFIyqOyLkS1OBUMdWKs8+b1G0UuKSmQFLikFOoAbRS0lAC0UUUAJRRRQAhopSKMUD\nuFFFFMBKUUUtAAaMUGkqXsMQimkVKRTCKRSZC61A64NWzULLTLiytilAp2MUlI1vcdRTaWgQUUtJ\nQIaabTyKTFBSGZo3UGkoKQ4NSg1HS5pBYkxQRQKXFMkjxRmlIptIoQ0lLSUFId2pppe1FAPcjzzT\n1NJigcUgY/NJRSUxDqOlGaSguMRmKMU+ig1G0UuKKADFGKkC8ZpMU7GUpDQKcBRilqkjO4m2jbS0\nUWFcbinUUUDEooopAMIo/GlNAHNOxop9xw6UUtNfgcUrELV2GM2TTaSlFSj0IxUVZDc0Ciincqw/\nNFNzSg0CaY6jFLSUxDabmnGm0hoWiiimAUtJS0AJSGikoEmLRmkopFAB1oxSrT6a2OOppIjIpKeR\nTSKZKY0ikxTqKLFDMUqU7FIeKlq5UXqPopKKgsWikzQaQETctTaVutJVksKKKKACiiigBetSKdwq\nIU9aTQ0dHb/6palqK3/1S1LQIKKKKACiiigArP1V2S3G04y1aFZusf6iP/eoAxqKKKYBRRRQA8Ut\nIKWrAKKKKBBRRRQAyilIpKlgJRRRSGFFFFABRRRQAUUUtACVq2Gof8spm/3WP9ayqKAOrorHsdQ2\nYhlOF7N6VsUgCiiigAooooAKKKKAEopaiuJ47dNznHoO5oAlrOu9SVMpBy3duwqjc38txnnav90H\nr9aq0AKxLncSSaSiigYUlLSUxC0UlFABRRRQAUUGkFA2TQj560IRVS3XmtKFaDkrSJFFSCk20CqO\nN6jsUmKcKMUyRppRQaKYC0lFFABS0lOFADKKUilpAJRSUtAxKSnUlADaAaWkpgOppoooYDs0pFM3\n0u6pGNYVGwqUmoWJ9KRcRjLUZWpSTTGpmiGUUmaBUl2HUlGaKoQUUmaDSCw0imEVJmmGnYpCUlFG\nKkoUU4Go6cKQNDzTaWimSFNNPoPNA0Mpc0Gk7UihCaSikplqAuaTNFGKCuRBQKKXFBTFpwpoHNOF\nVYQ/FJt5p3anDvTRnN2RHSU/bRimY3GUUpFJQAUmaWkNSUhpNPFRU5TQNodS0UlMkCKbT6Q0DCgj\nIpKKQyKinMMHFNpHoJ3QEU3pUlIRQNMjop2KMUrDuKKKTFFUIKKKBQAlKKXFJikFwooopiFooooA\nZzRzTqKYXGjjmpO2aYaeoytIwrLqFNxTqSmYDdtGKdQadh3G0mOKU0maQxnSloPWikdK2DNJ2paA\nOaAloNIpMVJimkUWMUxlFLijFIY2iiikMco5qXaMUxBVgrxTRtBG1b/6palqK3/1S1LUmIUUUUAF\nFFFABWdq/wDx7J/vf0rRrH1n/Wx/7poAzKKKKYBRRRQA4GnVHT6pMBaKKKYgooooAKZ0p9NIpAJS\nUtJSAKKKKQwooooAKKKKACiiigArTsNQMZWGXGzoCe1ZlFAHV0Vjaff+ViGQZTPDZ6f/AFq2aQBR\nRRQAUUm4AbiQB1znisq81LPyQfi3+FAFm6v0t+B80npWLJI8r7nOTTaShAFFFFMBaKSlpDCkpaKA\nEooopiCloopDCkPWlpf4hQIuwDkVoxVRhWr8VUefWZPjikIp60VRz3IxTqXFFAriUyn0tMY2m1JT\naBDafTadQMDTSKfTTQJMZRTsUYpFCUlOxTaACkpaKBBSUppKRohtFLRTHcQUjLTwKWkSV2FMIqd1\nqLFBoiAim1YdaiIoLTGUUUUFC0tFFADaQin02kBHRT8UlFy1qJSClopBcUGim0tMQtLmm0UgCkzS\nZoplJB3oooqTVMSlApcU4CrSC43FKBT6SqFcUDikIxThQaBDAaeDzUY604UMb1JqCKQNS5FK5zcr\nIyKTFOooC5HSVJimkUFJjCKaODUlIVosNMAaU00cU8c0CY2l60hFApDFIpKXNJQBGy9DSYqX+E1H\nS6nZRd42FoopM0zSwtNpaKYIKCKWkpDGUU+kxSGJmlplKKAsJRTqMVQhtFFFACUU6ikIKVDzSUg+\n9SJmrxsPNIaeaYao5EAoNJRTGNNNzT2FMxUlIUmikooNovQWlUc03pTlPJpoU9hSKaakOKYaDFEb\ndKQCnNSDg0upothlLS4pKQEkYqx/BUKdambgU0dUErGzb/6palqK3/1S1LUHMFFFFABRRRQAVjaz\n/ro/92tmsbWf9dH/ALtMDNooooAKKKKAClpKKAJKKaDTqsQUUUUAFFFFADaSnEUlSxjaKU0lIAoo\nooAKKKKACkpaSgBaKKKACtCwv/I/dyZKdj6Vn0UAdXnNQz3MVuMu3P8AdHU1iw6hNBEUU5H8Of4a\nrMzO2WJJPc0AWbm9kuW54TstVqbTqAEpaSigBaKKSgAooFFABS0UlABRRRmgBaKTNLSGFKoy1NqW\nEZamhN6GjB2q9GtU4B0q8lUzzar1H0EUtIaDAKWmU6mAUUUUCEoopaYCUtJS0gCkoJophYKKM0Zp\nDEptPNMpjEpCaXFJikAlFLijFIq4lKBRTqbC40igGnUygBTURFT0wrSGmRVGwqXFMxQWmQEU2pmW\noyKDVMbThTadSGwopTSUCQ3FJin4oIoHewzFMqXFMIoHcbSgUuKcBQxtDcUYp+2kIpCIiKbin0Yp\npFpgOaUdKQDmnVViosWilpKCriZpaTFApDFpM0tJVEhRzThS4phewgp9MxTh0qRMbSilIpB1o0FL\nVC0EUUA0zAbRSmmmkUJRSUtAwopabQAUUhpKBjqjIwalFMcUmtDehK0rCUmKKWkdWwyilop2C4UZ\nopKYgp2OKaKd2pDG4op1LTE2JiinUlIExBSEUooPSgnYZTqMUoFFh7jcUGloNMExRyKQ9aVc4oxT\nOSW5HQKWkpDHU0ilBpaYhmKWnYpCKbRcJa2ExxRilpCam5U2xuaQmlpppEoD2ooHJoIqbmyWglFK\nBS4pmT0FUVKM00EU7IqG2jppSujbt/8AVLUtRW/+qWpaZgFFFFABRRRQAVjax/ro/wDdrZrG1j/X\nR/7p/nTAzaKKKACiiigAooooABT6ZThTQh1FFFUAUUUUAFNp1FADabTjTakYUUUUgCiiigAooooA\nWkpaSgAooooAKKKKAEpSKUUUALRTaWgAooopAFFLRTAKKKKACiiigApKWkoASp4PvioKsW/36CZb\nGpF2q4lU4quLTR51TckoxSZpQaZgNxS0YopgFFJT6AGkUlPpMUANpaKKAQlJS0lBQlFLijFAhDRT\niKbQMSjFLRQAykp9JQMbRmlxSUALSUUUAApaKWgdxhFRkVNTSM0ikyIiomFTlaawxmmWmV24pBTn\nFNqS0OoxTc0uaAHYoxS0hpkjaTFOopFoZQKWkoNR4Gaa1KKXFBk1ZkVGKk20FapILiYppGKkpMU0\nWpWI8UU/FIRTLTG0mDThS0FXsNFJT6KAuA604U2nCgl6gaKKKQgqMmlJpppGsUPzxmkpqniloRhJ\nWdh1IRRRTJGUUpFFIdwFLSUZoASjFLS0DEpHGVoNLQxx0dyI0lSMBmozSR3p3Q6kozRTCwlJS0lA\nxKWjFJSGLilpM0tMhhRRRSEFApKWqGOopKM0ibD6QDJozT1GBmjcio+VDcUlKaSmcowim4p5FNpG\niYgpc0mKKYC5pDyKWkoBEXejNBpuag13HUUlFBIpFGKBS4pWLvYcKXFAp2KoybExSH8aeDSGmJM3\nLf8A1S1LUEEieSPmFSebH/fX86zNh9FN82P++v50nmx/31/OgB9FNMif3l/OkMiL1ZR+NAD6wdTJ\n+3MM5xitvzI/7w/OsLUSDeuc5Hr+FMCpRRRQAUUUUAFFFFABRRRQA8c0tMBp9WnoIKKKKACiiigB\nrUlOOKbSGJRRRUgFFFFABRRRQAtFJRQAUUtJQAUUUUALRRRQAgooFJQAtFJRQAtFJRQAtBooNACU\ntJRTAKKKKAF9Kt2/3qqDtVu3IzSIn8JpxVaWqsTAGrIYeop3PNmncfSim70/vijen98VRFmPopvm\nJ/fFJvT+8KBWY6lqPev95aXzE/vLQFmSUmaZ5if3hS+Yn95aAsxabml3p/eX86Z5i+ooCzHUtN3p\n6r+dG9P7w/OgdmLRSb0/vD86Ten94fnSFZklJSF1x98Um9P74pgkx2KSk3r/AHx+dJvX+8v50DSY\npFJSb1/vCjev94UBZjqSk3p/eFG9P7wpD1G0opNy/wB4Ub0/vD86BtMXmjmk3r/eFLuj/vUBZicU\n7iozIv8AeFPEif3h+dA7McRULCpNyf3l/Omsyf3h+dIauV2QCo2GKnLKf4hUbbfUUGiv1IKKVtvr\nTc+9BpYlBpai3e9O3UkDiPpppN3vSE+9UOKY6kxRke1LxQkWOFPApm5aeHX1FUjGYuBQwpd6e1IW\nX2/OquZq5GRTakJFMOKSNUmBpMUhb3pNwoNEmJRRke1JmgvUWikyKMj1oCw+lxTc+9LketITTFpG\nNG6o2YetA4xbFpKaWpN1BsOHBp9QGSpQwIzmkjGrF7jqKbuHrRketBlYMUuKYWHrRv8AcUDsSU2n\nZHqKTcPWgSG4pRSZH94UmR6igdh1NIoyPWjI9f1oAQjkGg04jimE0jsou8RlGabzRmi5rYXmlGaT\ncKcG4oCwUgNJminYVxaKTJozQIKKAuR1pDkdaQlJXsLSg0hxmgUrlMfRRRxVXJEHJqTtTY+uc04k\netBzVJXdhCaKOPWgUzMQ0lOJFMoKQlITSEj1puaCkhSaTNJSZpFWFpKTNKDSAMUpo4o70AOApcUU\n4EZpJhJCYp1LxTSaZFmyXFIw4oBHrQxHrSuNRP/Z\n', u'text': [u'<IPython.core.display.Image object at 0xa6ceb90>']}], u'collapsed': False, u'prompt_number': 263, u'input': [u'\n', u"Image(filename='edit.jpg')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'pyout', u'prompt_number': 251, u'jpeg': u'/9j//gAOTGF2YzUyLjg3LjEA/9sAQwAIBgYHBgcICAgICAgJCQkKCgoJCQkJCgoKCgoKDAwMCgoK\nCgoKCgwMDAwNDg0NDQwNDg4PDw8SEhERFRUVGRkf/8QBogAAAQUBAQEBAQEAAAAAAAAAAAECAwQF\nBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+hEAAgECBAQDBAcFBAQA\nAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2\nNzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOk\npaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgC\n0AUAAwEiAAIRAAMRAP/aAAwDAQACEQMRAD8A87tok8pflX8ql8qP+4v5Cm23+qSpqgZF5Uf91fyo\n8qP+6Pyp9FADPKj/ALo/Kjyo/wC4v5U+igCPyo/7q/lR5Uf9xfyqSkpgM8pP7i/lSeUn9xfyFSUl\nAEflJ/dX8hR5Sf3V/KnmigBnlJ/dX8qPKT+6v5U+igQzyk/ur+VHlJ/dX8hTqKAGeVH/AHFo8qP+\n6v5U+igBnlR/3F/Kjyk/uL+Qp9FADPKj/uD8qPKj/uD8qfRQAzyo/wC4v5UeVH/dX8qfRQAzyk/u\nL+QpfKj/ALi/kKdRQA3yo/7o/IUeVH/dX8hT6KAGeVH/AHV/Kjyo/wC4v5U+igBnlR/3F/Kjyo/7\ni/lT6KAGeVH/AHF/KjyU/uL+Qp9FADPJT+6v5CjyU/ur+Qp9FADPKj/uL+VHlJ/dX8qfRQMj8qP+\n6v5UeVH/AHF/Kn0UDGeVH/dX8qPKT+4v5Cn0UCGeVH/dX8qPKj/uL+VPooAZ5Uf9xfyo8qP+4v5U\n+igBnlR/3V/Kjyo/7i/lT6KAGeVH/dX8qPKj/uL+VPooAZ5Uf91fyo8pP7q/98in0UAM8tP7i/8A\nfIo8tP7i/wDfIp9FADPKT+4v5UeUn9xfyp9FADPJj/ur+VHkx/3F/Kn0UAM8qP8AuD8qPKj/ALi/\nlT6KAGeVH/cX8qPKT+6v5U+igBvlJ/cX8qPKj/uL+VOpaAGeXH/cT8qPLj/uL+VPooEM8uP+4v5U\neXH/AHF/Kn0UAM8qP+4v5UeVH/cX8qfSUAM8qP8AuL+VHlR/3F/Kn0UAM8qP+6v5UeVH/dX8qfRQ\nAzyo/wC4v5UeVH/cX8qfRQAzy4/7q/lR5cf91fyp9FADPLj/ALi/lR5Mf9xfyp9FADPKT+4v6UeU\nn91fyp9FADDEn91fypvlJ/cWpDSUwGeUn9xfyo8qP+6v5U+igBnlx/3F/IUeXH/dX8qfRQAzy4/7\nq/kKPLj/ALq/kKfRQAzy4/7i/kKPKj/ur+Qp9FAEvlR4+4v5UeVF/cX8qVDxTqYDPKi/uL+VHlRf\n3F/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UAM8qL+4\nv5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL/3yKPKi/uL/wB8in0UAM8qL+4v/fIo8qL+\n4v8A3yKfRQAzyov7i/8AfIo8qL+4v/fIp9FADPKi/uL/AN8ijyov7i/98in0UAM8qL+4v/fIo8qL\n+4v/AHyKfRQAzyYv7i/kKPJi/uL+Qp9FADPJi/uL+Qo8mL+4v5Cn0UAM8mP+4v5UeTH/AHF/Kn0U\nAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPJj/uL+Qo8mP+4v5Cn0UAM8mP+4v5CjyY\n/wC4v5Cn0UAM8mP+4v5CjyY/7i/kKfRQAzyY/wC4v5CjyY/7i/kKfRQAzyY/7i/kKPJj/uL+Qp9F\nADPJj/uL+Qo8mP8AuL+Qp9FADPJj/uL+Qo8mP+4v5Cn0UAM8qP8AuL+Qo8uP+4v5Cn0UAM8qP+4v\n5UeTH/cX8qfRQAzyY/7i/lR5Mf8AcX8qfRQAzyY/7i/lR5Mf9xfyp9FADPJj/uL+VHkx/wBxfyp9\nFADPJj/uL+VHkx/3F/Kn0UAM8mP+4v5UeTH/AHF/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5\nUX9xfyp9FADPKi/uL+VQ3EUflN8q9PQVZqG5/wBU1ACW3+qWpahtv9WtTVHUYUUUUAFFFFABSUUV\nQCGkpaQ1IBRSUtMAooooEJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UlLQAUUUUAFFFFABRRRQA\nUUUUAFFFFABSUtFAxKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB\naKKKAYUUUUCCiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACkNLSGgBKKKKYBRRRQAUUU\nUAFFFFAEsfSn1HH1xUlMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqFzeuj\nFFAGO9KTsNF7IHU0KytnaQcehrFe4lk+85pLW5+yyc8o559j61KlcdjcoooqyQooooAKKKKACiim\ns6p94gfU0AOoqnLqMEeQCWPtVKXVpDwgCj/PrU3HY2CQvUio1uYnfyw4Lc8fSudkupZOrmptOR2u\n0YAsBnOeg4p6hY6GiiimIKhuf9U30qaorn/VPQAy3/1S1NUNt/qhU1SMKKKKLAJRRSUAFFFFABTa\nWigAooooEFJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRSUtABRRRQAUUUUAFFFFABR\nRRQAUUUUAFJS0UDEooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApaSloAKKKKBB\nRRRQAUUUUAFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiii\ngBydamquKsUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwpn3SN9T/Ot2sCU/\nO2P7xrOZcRKRlDAikozUIZe0y7z+4kPI+6Sf0rUrmHJUiReCpzW9a3sU0QYsAR1BPf8AnWsWQyzR\nWfLq0S/cG4/5+v8ASqUuqTv935R7cU7gbbyJH95gPqeaqSapAnT5v8/57VhtI8nVmNSxWFxN92Ns\nerHaMevOM/hU6jLUurStwnyiqUk8kh+Zifx/ya0YdF7zSD/dT/E/4VeisbeLG2ME+p+b+dHLfuBg\nxW00x+RGb3xx+dXItHkOPMcL7DJP49B/OtnFLVWQrlWLTbaLB27z6tz+nT86s7QvAGAOwpaKYgoo\nooAKhuf9U9TVDc/6p6AG23+qSpaht/8AVrU1SMKKKSgBaKSkoQCUUUtAMSloooEFJRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lFAC0UlLQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAlFLSUDCiiigAooooAKKKKACiiigAooooAKKKKACiiloAKKKKBBRRRQAUUUUAFFFFABSUtJQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaQ0AJRRRTAKKKKACiiigAooooAKnXpUFTR9KAHUUU\nUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigApaiuJfIhkkABKqTzXNTancz9ZCo9E4/Uc0AdDNeW8H35AD6d\nT+Qqquswu4RVO0kDex9/7v8AjXO5JpVOCPqKAOzHNKaztNvRIvlPgEdCT1FWJL6CLq2fYUrgTk4B\nNYEjZZie5q1Nq/ZFx7/5/wDr1ms5brUS1KRMWphcVCT70wyCjlHcmLk8Ug3Odoyx9ACf5VW3kmul\n0u18iEMfvuMk8cD078VXKIy4tNuZv4Ng9X4/Tk/pV6LRlHMrk+yjA/M5J/StSkJA6kUWQEEdnbw/\ncjUH1I3H9asVC08S85/z+OKpT6vEmcHP0+b/AAFF/IDSphkjXqwrBm1iR87Qcerf4DiqUl1NLnc5\nx6DgfpRdiOgn1OGEHGCccAnv9BU9ncG6gWQ4yeoFclz9a6PSIZIrfLDbvOR1zj8aYjRooopgFFFF\nABUNz/qnqaobn/VPQAy2/wBUtS1Dbf6palqRi5optFAC0UUUAFFFJQIWkoooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKKAFooooAKKKKACiiigAooooAKKKKACiiig\nAooooASilooASijFFAwooooAKKKKACiiigAoopaACiiigAooooEFFFFABRRRQAUUUUAFJS0lABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiiigAqSOo6evWgCWiiimAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUdPaqU2pwQ8A7yOwpASX/FrNn+4a5Ota81R542QAANWTTAKKKKAJ43x3\nqaOKSYnarPVRetX7O5NvIGycdx7fnUtDRZi0id+XZYx6dTST6RMozFIGx2IwfzyRW0jiVAyng0GR\nF6n2oWgHIzRSxNskUqfeo63NUSGdlbzghUEHOOn86z91nD0RpT/tcD/P4U7hYqpG7H5QT+FdLDdC\nK3j83htuPpWE19L0QLGP9kf1quzM5+Yk/U0ajN2XWYl+6cn2H9TiqE2rTSfd+X6/N/8AW/SqKQyS\nHEaM5/2QT/Kr8OiXUgy+2Me5yfyXP6kUWEyjJNJJ95if89u1M5JxyT9K6GHQ7dP9YzyH/vkfkOf1\nq9HBFDwkap9AB+Z6n8aegrnOw6VdzYwmwHu5K/py36Veh0FRzLIx9k4H5nJ/QVs0UAVoNPtYOViG\nfVvmP/j2f0qzjHFFFABRRRQAUUUUAFQ3P+qepqhuf9U9AEVv/qlqaorf/VLUtSAUUUlAC0lFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQA2iiimAUUUUAFFFFABRR\nRQAUo60lFAFiiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDcsUicg4\nIHBoAkkkjj+8yj8arNqUKnAy30FZMjMWJJJ57n3plZ85VjpAwcZHIorKsLsqfLY5B/StWqTuSwoo\noqgCiiopLmKH77gEdu/4gUXAlorOl1eMfcQt7nAH9c1Rm1OeT+LZ/u8VNxm/x9cUVmaT5uH3iTae\nQT0z/P0rSqgFooooEFFFFAGZrKv5alS3XBAJ/DpWbDp9xP0jIHq3FdIRn/8AVS0hHOXmnPbQeY7D\nqBtHv6ms2uk1z/jzP++tc3TQwooooAKkjYfxHAqOlAzQNGkNVMSCNAWxxljj+Wciq0l9NL3C/wC7\nRb2Nzc4MceB/eJ2j8z/StCHQTwZZBn0T/E/4UrDMdmLHJJP1pMHtXTxaXaRD/V7ie7c8/wAqw5U8\nqRlx0OKHoIrCImrVisQuYxIodWyORnntUdGSrK442kH9aSZR1SIqDCgKPQDFOpsTiREYdCKcaokK\nKKKBBRRRQAUUUUAFFFFABRRRQAVDc/6o1NUNx/qj9KAIrf8A1S1LUVv/AKpfpUtIAooopAFFFFAB\nRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFL\nSUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2iiimAUUUUAFFFFABRR\nRQAUUUUATJTqZH0p9MAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvenED+pG\nP1qxVHVP9Un+9/SplsNGVSUm6jdWZQtalheBh5ch5HQmsktTS5OOtUriZ0Ml5bxjmQfQcmqUurAf\n6tfxY/0qjFZTzfdQgercD/GrsWjgf62T8FH9T/hTuwKct9PLnLkD0Xgc/So0trif7qM3v0/U1uxW\ncEONqDP+1yfwzUzyRxLlyFHenZiMaPSJn++yoPzb8uBWhDpsEPOC59W/zioptYto/uHeR6cCs+bW\n53yEAT6dadgN8Y6fpS1zFvfzJOJSxbPXPPHpWq+rIB+7UsfU0XsBpUVlW95PJMC2dnIPHy1alv4Y\nhyw/lS5h2LdBKjqR+NY02trzsBP6f/XrPl1C4l/i2/T/ABPNGojo5LuGMcn+n86z5tajXIX5voP6\nmsJnZ+WYk+9Pit5psbI3b3xx+fSnZgWLvUWul2bcLnv1qn2rSh0S5fl2WMe/JH4D/Go7jSLmDJAE\ni+qdf++f8M0CKFFKVZSQylSOxpKYBRRRQBoJqLIYo4yRGhGfVh3zXSqcgHrkZzWBpWmediaT7nVV\n/vY9a3wMYHSmMWsDVYfLn3f3xnFb1Z2rx74A3Taf58VMgMSjGaVVY9KlELdyBUXGbGky+ZaqD/Ad\ntX656GY2KNhuGHTA/QVc0i6adZFdiWzkE/3ataks1KKKKYBRRRQAUUUUAFFFFABRRRQAVDcf6o/S\npqhuP9UfpQBFb/6palqK3/1S1LSAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUlABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUANooopgFFFFABRRRQAUUUUAFFFFAEkZ5qSoU61NTAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5LiGH77qPr1qlLrES58tSx9egpXA0aa8iRglmC/U4rDl1SeQcME/\n3eP161XVZ7g8B3z37fnTuM2JdTgTOMufb/GqF1qElwNuAq/TJp8WkTH75CA/if51bj0uBAN25z7n\nj8ql3YGJu96RpAO9aVzouAzRyHgH5W/x4NYuxskY6UcqC49pj2rS0eATMZWYNsPC+57ms3yjg1oa\nJNsnaPPDD/x4dKNAudBRRRVCK95KYbeSQdQvH1zXLzXEs5zI5b+Q+grodWmjS2dSw3MMbc81zNAB\nRRRQA4HFTRTmLkKp+vNV6f2pNXHcmkvJn/i2+y8VXJLHuT+Jq/p9tb3Mm2Ytn+Fc4De1b8Nnbwfc\njUe+AT+ZosguczFYXU33Ymx6t8v8+taMOhE4M0n4IP6n/CtvH5UUxFSHTLSHpGGPq/zH/D8qtgAd\nKKKACiimSSBKTdhpGTrkCgJKBzyCf5ZrDra1O4RoyrHLE8Adqx1id+imhSCw2irKWMrdePr1qdbO\nNOXbP5UcwWNPRpg1thiAU4/DrV1riJf4s/SsAXEEIwn5Convm/hAo1HY3H1D+6v/AH1VG4vg42u4\nx6AZrJaaR/vEmoz71Nmxl5rxR91c/pUD3Mj98fSoBS4quVE3FLE9a0tF3m4OPu7ef6VnbOM102mR\nxrbRlABuGSfU0AXKKKKYgooooAKKKKACiiigAooooAKhuP8AVH6VNUNx/qj9KAIrb/VD6VLUNt/q\nxU1IAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooo\npgFFFFABRRRQAUUUUAFFFFABViq4qcdBQAtFFFMAopKqzalbw5y24jsOeaALdFZf9ptKMoAPrzVy\n2uPOXBxupcw7FiiiimAUUUUCCiiigCG4m+zxs+N2KxZtTnm4U7B6DrW7JGsqFG6EYqOKzgh+6gz6\n9f1pMDn0trm4OQrNnuf/AK9XodGc48xwB6L/AI1sEqn3mVadmlYZTi062i/h3H/a5/SrQUL0AH0p\naKoQUUUUABG4EHuK5q4jMcrL7n8q6WsfVocSBx/EPSplsNGdTImNvcRyL2apljJp4RB15NQpFWN+\nWeOIct+FZ8+oswIT5feqYWSVu7Veg03oZT/wEU7tisjIuem4jOe+O9VK6DWIkjtFCKB+8Hb2Nc/V\nokSiiimAUopKKAJEcqQwOCPSunsrtbqMf3gMNXKirNpctayhx+I9RSQHV0UyOZJEDhhgjPNMa6hU\n/ezTuhk1FUJNQP8ACAPc1Sm1Ec7nz7LUuQWNaS4ROjAn25qlJOXz1+tZT6gf4Vx7nmq73Ej9WNLk\nkyi8UgQkuQT/ALRyfyFMe8ROEXPv2qhk0lNQsTcsveyt0wPpUDOzdST+NJSVVhC0lFdFpdvbPAr+\nWGfuTzzQBhR2003+rjdvcA4/PpV+DRLh/wDWERj0+8fy6V0OAOgxRQFzm73TlswpDl88HIFVeK6L\nU4fNtnwORyPoOtc7UtjA9K2tFm3RvESSUPHstYtXdKkMd1jOFcc+5HSmhnQ0UUUyQooooAKKKKAC\niiigAooooAKhuP8AVH6VNUNx/qj9KAIbf/VrU1Q2/wDq1qakAUUUUgCiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACl\npKKAFopKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgBtFFFMAooooAKKKKACiiigAooooAKlTpUV\nSRmgCSiiimBnazIUtwoP3ziufrd1z/Ux/wC//SsKkxli1bBx61dR2jO4dqylbBFaCtuUGspaFI24\nJhMoPfuKmrFhnaFsjn2rXSVXUMGGK0i7iaH0VFJdQx9XH6VQm1mJPujJqiTVpjyJHyzAVz02sTyc\nKdoqi80sh5Yt7f8A6qQHQzavBH0+Y1TfVZZPunaKz4bC5n+7G2PVuP51q2ujMP8AXOPov+NDQFa3\nnlNwjElzmugqOK3ihHygfXvUlCAKKKKYBRUMtzHH3yfSqEt878KcCpc0VY0JbiKIcnn0FZ1xeecC\noUYqBEkmbABJq5Fp3eTH0FS7sexnF8UwvikmUpIynnBxUeamwGrpEnzSJzk85rWrnLGXyrhDnAJw\nfpXRVrHYTMvXXHkIvcvn8ga56trXzzCPZjWLTJCiiigAooooAM1NGgbljgCoaUfWgC99qjhXanzf\noM1C99I3Tj+f51Wox+XrSsMc0rt1J/Om0H2q1Z2Ul0wABC927Y9qYirU8drcTY2Rsc+1dHBpttBg\niME+rcmrYAHQYoA56LQ7huZCsY/M1Ld6TFbWzOrMzqQc+3etyo5oxLFIn95SPzFAHHUUp449KSgA\nrd0KYlZIz2+Yfj1rCq5pcoiuk/2vl/PpQB1NFFFADXAdGU9wa5WQbXZemCePxrrK57VIfKuSePm+\nb86mQyjTlby3R/7rA/kaSkpAdcjB1DDoQD+dLVPS5vNtVydxX5T+HT9KuVQgooopgFFFFABRRRQA\nUUUUAFQ3H+qP0qaobj/VH6UARQf6sVLUNv8A6tampAFFFFIAooooAKKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKAClpKKAFopKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAoNFBoAbRRRTAKKKKACiiigAooooAKKKKACnp97FMpR1H1o\nAnopTTJJY4xlmA/GmBla6flhHuf5ViVf1W7S5kXyzlVHWs7NIB1WYJgq4Y1UzSUOKY7l5rpB05pj\nX0uNqnA+tVOfzrdsNJjMayTKSSMhc9vehKwN3MbfJKcfMx9BzVmHSrqYj5Ng9W4/SukjgiiGERV+\ngqSmIyYdBiX/AFjs/qBwP8avxWVvBjZGowMZPJ/Wp6KACiiihggpelVZb1I+nJ/SqEt3JIf6VDmV\nY0prtI/cis+W8eTpxUKRvKeBmr0OngcyH8Kj3pMeiKCJJKeAT71di07oZD+Aq+iLGMKABTuB6Voo\noVxixrGNqilp3AHP61A91EnVh9BzRoIydUj2TbuzDP41QrVv547lQBnj+Ks7MSdTUsew0A1tx3yp\nEgbczAdO/wCdYjXKj7ozUT3Mjd9v0pxTBlrVbn7Q6YzgA1nUuSepzSVRAUUUUxhRRRQAUo9KSnRs\nEOevpQBbEUMCAvy392qrvvP90dsUjuztk1oadpbXB3vkJ/OkMjsdOe7O4/Kg7+tdLHEkChE4AoSN\nY1CqMAelOoEFFFFMAooooA5fVofKum9G+YCqVbmuw5EcoHThj7dqxKAEpVYqwYdQQR+FJRQB2ULi\nWNHGDlRT6z9Hl8y2C/3Dj8OtaFABWXrMW6NZAOQcE+3b9a1KhvI/Nt5F/wBkkfUcj9aTGctS4pOn\nFSLGW7VN0M0dDkw0kZPX5gP51t1y6QujB1fa3qKsC6uU6zsfwqlJCaN+iqGmXjXKybmyVb0xxV+m\nIKKKKACiiigAooooAKhuf9S30qaobn/UtQBFb/6talqG3P7pampAFFFFIAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKAFopKKAFopKKAFopKKAFopKKAFpKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAG0UUUwCiiigAooooAKKKjmuYrdcu2\nPYcmgCSjge1ZM+sD/lkp+pqjNezTdWP4UAb8lxFH1cVTl1aNOFBJrGVZZTgKzfnVuLS7iT7wCfXr\nTAdLq1xJwDge1VGkmlPVmP4mtuDRIB/rCz+2cD9K0IraCH7kaj8OaAOWSyuJRuWJ8euMVG8TofmD\nL9RXZAAdqZLDHKpDqGyO4oA42ipbiMwzOhHRj+VRUAKpwc11tpL50Eb+q/yrka6DQ590TRk5KnIH\nsfSgDVooprusYySF+tADqCQBzxWXPrcSHEQL+/aqgv5bnJb5QO1JvQo1pr1I+F5NUJbuSTvgVHHE\n8p+UE1fi08dX59qj3mBQSOSU/KCfer0OngY8w5PpVotFbrzhR/Oq02pxr9wFvc0+WwFtUVOAP0pW\nYL1KiseXVXx94L9OtUZL7d3LfWn6Ab8l7CnGd30qpJqR/hAHuaw2uXPt9KjLFupJotcDSmvi33nJ\n57VUa7Paq9CqWOACT7UcoXHtM7dTTKtRaddS9IyB6niknsntm2OecZ45qhXK1Kil2CgZJOBQwwcU\nkbbGDDtQK5oRaNcy9cIP9r/61Rz6XcwDO0OPVf8ACulibzI1fswB/Sn0WA4tgV4Ix9aSururOKdG\nyi5wcHHeuVZSrFT1BIoASiiigAooooA2NN0ovtllGF6qDnn3rdAC8DH4VT0ybzrWP/Z46+lXDQAU\nUUUAFFFFABRRRQBXv4vOtZV9sj6iuSrtSMgg9+K5G7iMM8iejH8jQBBRRRQBq6HPsmaM/wAQ4/Dm\nuhrkLOUwzo2cfMM/TPNdcDkAjvzQAdKz7u96xr+Jq5OWWJyvUKa5d5nJOT3qHcZY+RPSkNwi9Oap\nljSZpcg7lg3DHpio2djnkmos0sbDeu7pkZ+lVawrm5otrsUzNxv4H0rWqOHb5Ue0cbV/lUlUIKKK\nKACiiigAooooAKhuf9S1TVDdf6pqAIbc/ul+lTVDb/6pamqQCiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAoNFITQAlFFFMAooooAKKKKAGyDcjL6g9K5z7JcSMRt\nY89W/wDr10tFAGLDo0h5kYL7Cr0WmW8f8O/61cooARVVOFAH0paKKAJY+lPqOOpKYBRRRQBzmtQe\nXcb+cOP1rNrpNYg8y3390IPviueCM54GfpRcdhlX9IlMVyP7pGDTY7RV5kOT6DpVjhRhQF+lTKfY\nfKaVxfbeI8Zz1rEvpJWI3SM/sTxV2KCSb7oPPerq6XEcGXLMO3alFtgzn7e1luD8ik+/YVt2ekLD\n80p3tjoOlaUaKgwoCj0FOqiRAqoOgAFZ91q8UWQnzH1q+671K+oIrj5U8uR1PZiKYy1PqDzHP5VW\nMrN3NMAzwAT7CrUOm3U3SMgep4FFgKtFbMOhMf8AWyAey/48Vfh0u1h52bz6tQK5zSQySY2IzfQG\nr0Oi3UnLYjHuefyrolRU4UBfoMUtAzLi0OBP9Yxk/QVeitYIRhI1Hvjn86mooEL6VlaxENiSAdDj\n8/8A9ValQXsXnW8i+xP5UAcm3WkAJ6UGpIhxSuB0GjyFrfYT9z+R6Vo9a5/TZxbyHd90jH61qSX0\nYGUO4nj6UuYosSTLCMsa5a+H792xjcd351oTz7iWY1lzSea2fyoUm2DRFRRRVEhRRRQBt6FNy8RP\nuo/nW2a5TTpfJuoz2Jwfoa6qgAooooAKKKKACiiigArn9ch2yrIBwwxn1Yf/AFsV0FZ2sReZalsc\nocj8eDQBzdFFFACjg11dhL51tEx4OMH8K5Ot7QpQY5I+4O78OlAGsRWHd6PMGZ4iHB5x0IrdzxRQ\nBxro8ZKuCD70ytbXYsSpJgAEYJ9//wBVZNABRRRQB1eny+bbRnvjB9sVarG0KXiSM+zZ/StmgAoo\nooAKKKKACiiigAqG5/1TVNUNz/qjQBFbf6sfSpaht/8AVrU1SAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUjHAJ9q5+fUbiUsN20cjihIDce4jj+8wqtJqCr91c+56VhBzuBJJ5q4CD+VKW\ng1qbcEyzLkVJWJDKYWBHTv8AStlHEigihO4WHUUUUwCkNL2ptMQUUUUAFFFIzqn3iB+NAC0VVk1C\nCPjO4+1WQdwBHcUALRRRQAUUUUAFFFFADk61NVcdakeaOMZJoukBJTXkRMkkVRm1DslZ8kzN1OaX\nN2KL9zfKylFAIIwaz84HHHtUZlUd6ryTk9DUpMRaaRV6mq0tyxBC8fzqDdmkqlEGzodEn8yAqeqt\n/PmtOub0ebyrkKejjH410lVoK9wooooAKpz6ZBcTGRySTjI+lXKKAIYrWCH7kaj3xzU1FFABRRRQ\nAUUUUAFFFFABSO6orFjgY60tc1qN9LO7JyiLxt9frQBTl2mR9mduflNTwoFWqyZY8Vejixy3WpkU\niREpJJFjFMlnCcA81RdixyamMQYskjSHJpYoXnbbGMnr+FOt7Z7qRY179/QV09nZR2i4Xk45PrWh\nJydJU11H5U0iYwAeB7VDQAUUUUAKDggjtXW2kvnQRv6r/LiuRroNDm3QtGTyrZ/A0wNWiiikAUUU\nUAFFFFABTZY/MjdD0ZSPzGKdRQBxjDaSPQkU2ruqwmK6f0b5h+NUqACruly+Xdx84DfKfx6frVKn\nIxRlYcYIP5UAdnS1HE4lQN64PFPoAzdbi32wcfwNn8DxXOGuxuI/NikT1Uj8a5BlKkqexxQA2inb\nKXbQBY0yYw3SZJCk4P4j/GuqrjgdhDDsQfyNddA/mRo/dlBP5UAPooooAKKKKACiiigAqG5/1TVN\nUNz/AKpqAILf/VLU9QW/+rWpaQDqKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANf7rfQ/yr\nkz3rrJDhGPop/lXJHrVIAq3C+RiqlSxNhqUlcaLWasW05gb27iq9HWs0ykb6sHG4HINLWTaXXkna\n33f5Vckv4U77vpVolosk0YrLk1Uc7QBVKXUJXPU49uKYG49xFH1YfnVWTUo1+6M/WsQzO1M5PXJo\nEaUmpyN0IH0qu0zOeWPWooreaX7qMffFakGld5Wzx0FIZmhGkOFBY+1b1ojRwqr8EfrUkUMcP3FA\np9MAooooEFFLUbzJH1NK47D6ZJKkfU1SlvWbIXiqhcseSTUuQ7F6W+OML+dUpbk/xHNVppHU4Ax7\n1WJpqN9wLL3BPSoTIT3qOiq5UhXFyaKSimIWikpaAHxSeXIjehBrr0YOoYdCK42uk0ifzbZQeWTg\n0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALWDfaS+55kddpOcHtWtdXkVom5yM9h61zl3qE10xO\nSq9lFAEkUSxDLdaZLcYBC9aql2bqaSpsMCSTSqCxpVT1qUAUxHS2KRJAhjGAR17k981YrN0ebfCY\nyeVP6GtLj2p3AwNch2TLJ/eGPxWsmul1iLzbYkdU5/DvXN8t0BpXGJRUiwu3apVtD3IobSFYritD\nR5vKucE4VwQf6UxbRB15qdUVegAqPaIrlNhryFf4s/Sq02qCMHCj8aoFgoJNZ00pkb2qotsGdVaT\nefCjnGSOcdqnrI0KUNE8f905/OteqJCiiigAooooAx9dhyscmPYn27VhV1moRCW1lX23flXJ0gCi\niimB0ujTebahT1T5efzrQrmdOvzaMVPKt+hrXGoEj7g/Ok5WDcv4rmdRh8m5fAwDyK24b9ZJRERh\nj0/CqOtRcxyDvlT+FK47GPRRRQAV0GjTeZbbecoSOfzrn60tEl2zNGTwy5A98/4UwN+iiimIKKKK\nACiiigAqG5/1Rqaobn/VNQBBb/6palqK3/1S1LSAKdTaKAHUUUUgCiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiigkDk4AoAhu3McErDgha5augvryEwSIGySMcVz9NAFFFFMC6HXGc0wzKPeq2aSp5ENMlMxPtTD\nIzdTUlvAbiQIO/f2rbi0u2TqC596pKwmznwrMeAT9AatRadcy/w7R78V0CxRp91QPoKdSAyo9GUc\nySE+y1cjsbaPpGM+p5qzRTuAgAHQAfSloopALSUtQyXCR980XGtSbFQyXMceec1RlvGfOOBVYsWP\nrUN9irFuW9Y525FVSzN1JNSxW0kvQYHqauxWUact8x/SlZhcpxW0svQYHqauxWaR9fmNWOlFUkTc\n5zUf+Pyb/eqrUty/mTSN/tGoqsQUUUUAFFFFAC0UlLQAVp6LOI5zGejjj61mVJBIYZFcHGDmgDsK\nKRWDgMDkHvS0AFFFFABRRRQAUUUUAFFFFABVK91KK1GPvPjhR/Wi7v0iykZy+Oo7VjOyglmwSf51\nPMMrzSy3TF3P/wBaoTT5JCx44FM5xVAJTlFXrKzjP7y5IC9h6/8A1qgZBuOzgE8D2pNgMApRmnha\ncBiochk+nzfZ5ssMKRg+1aMmpp/CrH6nH8qyhS0XYWLk1+8wK7QAfWqmxfSgkCmmVF70tWPQkpar\nNdKOgqNrhj0wKfIwui7nHpTTMi9W/Ks9nc9WptHs/MXMTTTtJ9KhopVUkgDnnitNhN3NDRpdlyF7\nPweO/aukrO0uwFunmSAeY3T/AGRWjQIKKKKACiiigBsjKi5bp/OuQnTy5HXtuOPpXSSP5jFj07Dt\nWLqiqJQykHI5xUqV+hTRRoooqiRatW91s+VunaqlFK1wLMM7m6Rh1L4H410WoQ+dauO4Ab8qy9Ft\nCz+ew4X7vua3SNwYHuCKdkM480VJMhjkdTxgmo6kBafaytBcRsP7wH4Hg1HSGmI7Kiq9jKJraJhn\n7oH4jr+tWKYBRRRQAUUUUAFQ3X+qapqhuf8AVNQBBb/6palqK3/1S1LSAKKKKAClFJRQA6iiikAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRTZJFjTcxAHqaAHUmcdazptWiThBvPv0rOm1GeXIJIHoKYG+88cYyzAVVk1SJOi5/SsJ5nc8k\n00ZY9CaLDNGXVpG6EL/u1TkuZH6kn6kmpI9PuJekZ/HirkWinjzHx7Lz+tAjKLs3WkxXRx6bbR/w\n7vduf/rU97K3kGDGv4DFFwOYNFad7pggQyIxI7g9h9azKYBRRRQBraMwBdT36evFbBrn7KTypEb3\n5rf6ipAKKKKACikJA5PAqvLepH05NDYyzwOtV5btI/eqE108nfFQZ9am9wsWZLx5OBwKr5J681ND\nayS84wPU1oRWccXUbj6mhJsexQitZJe2B6mr0VnHF1+Y+9WKKpKwmwooopiCiiigDlJPvt/vH+dN\np7/fb6n+dMpgFFFFABRRRQAUtJS0AFFFFAGtpWoGMiGT7h+6fQ1vVxfTmug0rUPNXyX++Oh9RQBq\nUUUUAFFFFABRTXkROWYL9TVSTVbaPOG3n/ZGf1oAu8DknFZd5fbiUjPHc+tUrnUpZ+Pur6f41T3E\nnrUyZViV229Mk1AQznJp1FJegDRHTwgH4UfnRkDvSHoL04FKKjMg7UwyGq5WwuuxYFDMFGc1ULE9\n6SjkFzFgzqOlMMzH2qKinyoVxSSepNJRRTEFFFFABRRRQAorZ0jTzxPKP90H+dYorrbGXzraNsg8\nYOOxFAFiiiigAooooAKo6q8sdsWibGDzj0NXqiuIfPhkj6blIzQBybTyyfedj9Sf5Uw1dm0q5h52\n7x6rzVIgjg8Uh3EooopiCiiigDq9OcPaxkemPxHFWxWNoUuUki6kHcPpWzQBz+sRCO43D+MZP16V\nm1v6zDvgD8fIefXn0+lc/UgLSGloNO4zb0KbMckWeVOQP9n/APXWtXOaPKY7oL2cY/LpXR0xBRRR\nQAUUUUAFQ3P+qP0qaobn/VH6UAQQf6sVLUcH+rFSUgCiiigAooooAWlptLQAtFFFIAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr30kkMJeMjI69\n65yWaWYkyMT/ACrqXQSKVPRhiq0WnW0fO3cfVuaLgc/HDJIcIjNx2FXItIuH+9hPr1reVQowAB9O\nKWncRmxaNCn32Z/0H9aux20MX3EUfhk/malopDCiiigAooooAbIu9WU9wRXKzRmN2U9iRXWVg6vF\nsmDAYDD9RTQGdRRRTAsR5AHNb9pJ5sKn8D9awBwBmpor9rdGVRknoew/CkgZvFlXqQKqy6hCvCtu\nPt0rClupZjl2J/l+nFEIy3vR0BF+S6eb1A9Kh5PqaswWUkoyflHqavxWkcXbcfU1HKMz4bWSXtge\npq/FZRxcn5j79KsdKKpKwNhRRRTEFFFFABRRRQAUhIUEnsKWo7jHkyZ6bG/lQBzD/eb6n+dNoNFM\nAooooAKKKKACiiigBaKSloAKcjtGwZTgjpTaXFAHT2F8tzF8xAZfvZ4/Gny39tDwXBPovP8AKuYB\nI70UrgbMutj/AJZxn6sf8M1Tk1S6f+IL/uj/ABzVLNG4VIxzO78sxb6kmm0m6m7qqwEvFJkCoiSa\nSiwiUvTTIaZRRYBdxNJRRTAKKKKACilCn3pdtA7DaKkC0uMUrhYWO2mlPyRsfwNXItFuX5bag9zz\n+lbVhKJbeNvbHPqO9WaYjkry2NpL5ZO7gHPsar1ta9DzHKAORtJ/lWLQAUUUUAFb2hS5SSP+6QR+\nNYNXtJl8q6T/AG/l/OgDp6KKKACiiigAooooAWsTXYB8kwGCeD/MVtVU1KMy2soHYbv++c/0oA5W\niiigAooooAvaVKIrqPJwGyv59K6iuLRtjq390g/ka7CKTzI0f+8oPHuKAG3EfmwyLjOVP51yhGMg\n9Qa7CuWvovJuZFHPOfz5qR3K9FJRQA6N9jq/90g/lXXo4dFYdwD+dcdiuk0mYS2qjJJXg5/z6UxF\n6iiimAUUUUAFQ3P+qapqhuf9U1AEFt/qlqWorf8A1S1LSYBRRRQAUUUUAFFFFADqKbS0ALRRRSAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiikoAWqWqwebblscqc57+9WmkWMZYgVRuL9CCijORyTRew0jECFjwDUnkEdWH0q\nbPoAM0mRS5hlaTrgZ/Om9adt3k08LjpTEya306ebBxtX1ata2sIbfn7zf3j/AEFPs5PMhU9xwfwq\nxTFsFFFFABRRRQAUUUUAFFFFABRRRQAUyf8A1Uv+438jT6in/wBTJ/uN/I0AcvRRRTAKKKKACiii\ngAooooAKWkooAcBThxTMmkoYDy1IWNNopDFyaSiimIKKKKACipo7S4m+5Gzc4zg4/OrseiXLfeKR\n/wC8c/8AoOaAM2jFb0OhRLgyuzewwB/U1ejsraL7sSfiN3880AcvHbTS8JGzfQGrsWi3L/e2x/U/\n4V0QAHQYpaAMqLQoV/1js/0wP8auR2FrF92Jfqef51ZooAzdZh3RK4GSp/nWFXVXMYlhkU91P6Vy\ntSxhRRRQBr6LNw0Wf9oD+dbFc1p8vk3CHIAJwc+hrpatAU9Ti862kGMkDI+tcsa7RlDKQe4xXIXE\nXkzSJ/dYgUhEVFFFABQODmiigDsopBLGjg5DDOafWfo0vm220kZjO3j860KACiiigAooooAKQjcC\nD3GPzpaKAOPuYzDM6HjDGoq0tah8qfcAcOOvv3rNoAKKKKACul0eXzLULzmM7f61zVauhzbZmQk/\nMvA9x/8AWoA6CsTW4/mjk9QV989a3Ko6pD5tqxAyV5/x/SiwHNUUUVIwrX0KX55I+Om78ayamsZf\nIuo2OcZx+dMR1dFFFMAooooAKiuf9U30qWorn/VNQBXg/wBWKlqK3/1S1LSAKKKKACiiigAooooA\nKKKKAFpabRQA6iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRRYAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5Z44vvN+ArPm1FjwgwP1oCxoyTJEMscVQn1HsnHv3rPaRn5JNNGe\nnepuytB7zPIckk00ZNWoNPlkwWG1ffrWlDZww4wuT/ePWmlcVzEnSSBVLKRu6VUZya6DU4fMtmx1\nX5s1z1UkguPRsGpqrA81OpzSkCNHTJMOY+55Falc/A/lyq/+0PyroOtCBhRRRTEFFFFABRRSEgcn\nGKAFoqrJqFtH/Fu9lGf/AK1VJNXP8Ef4sf6D/GgdjVpryIgyzKv1OKwpL64kz8+M9l4/Xr+tVyxO\nSSTn1JoA231O3XoS/wDuj/HFUrnVHdSqLtz3PJqhmmkii4hlFFFMAooooAKKKKACiiigAooooAKK\nKUDJoASlx704gL3zTKAFJzSUVpadpv2r53yIx/499PagCLT9Pe8bJDBB1b+ldBDZW8AAWNeO5GTU\n0caxKFUAAdqdQAUUUUAFFFFABRRRQAUUUUAHWub1OLyrl/8Aa+b866SsrWocoko/hOD689KTQzFo\npKWpAAcHPoc11VvL5sKPx8ygn61ylb2jS7oWj/uH+dUmDNKuf1uDZMsg6OMfiK6Cs7WIfMtiwHKc\n/h3piObooooAKKKKANXQ5ds7R/3x/wCg10FchbSeVNG/91h09K64HIz60ALRRRQAUUUUAFFFFAGZ\nrcW63D5+4fzzXO12NxH5sLrxypHNcg42nHpwaAG0UUUAFT2shinjYHHzDP0J5qCigDtsggH1pkib\n0dPVSPzqKxl8+3ic9SOfwqegDjnXY7L6Ej9aSr2rwmO6LcfP8wA/LmqNIYUA4OfSiihCOut5BLCj\n5zlRyPXHP61JWboshe3KH+A4/PmtKmAUUUUAFRXX+qb6VLUN1/qm+lAEFt/qlqWorb/VLUtIAooo\noAKKKKACiiigAooooAKKKKACnU2loAWiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRTJJUiGXYLWbPq6qdsK7jnqRxTsBq01pEHBYA+mawpLyebq5HsvFRZpMd\njpKKp2V2JlCt98frVygVgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigApKhmuo4upyfQVnT6hI/C/KP896VxmnLcRxDk/gKzp9RdsheB+tUSxY0KCTgc57ClqMV\nmZiST1oAz61bg06R8FzsU8+pP4dq0oLaKAfKOf7x60WAzINPkkwW+VffrWlDZww9FyfVuTU+aSqs\nK4UtFFAhGAYEEdRiuWnjMUroexrqqw9Yi2yK4/i4P4dKaAzKlQ1FT04pPUaJa3bGTfCvqOKwd1WL\nW9+zbvlznoM0LQLm9SEhepA+vFYkmqXL9CE/3R/jmqryvIcs5b6nNMRuyX1vF1kDH0Xk/pVR9XH8\nEZ/4EcfyrKzQTQMtyajcv0fA/wBkD+uT+tV2ld87mY/U1Hmmk0CH0ZphOaSiw7km6mbqSiiwhcmk\noopgFFFFABRRRQAUUUUAFFFFABRRRQAU4HFNooAKUUlXNPCi4jLgH5uhoAt6bpXm4knUheoX+97n\n2/Kt1VCAKoAA6AcAUv8AhRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5H5tvImAcqcfXtU9FAHH0VY\nvoTDcOuMDOR9DVepGFXtKkEd0o5w42/ielUadGzIysOqkH8qaA66myIJEZWGQwINKjCRdy8g9KWm\nI4yWMxuyHscU2r+rxeXdMQDh+cn171QoAKKKKACup02US2yc5KjafqK5atrQpjmSIsAPvAe/egDb\nooooAKKKKACiiigArltTi8m6cbcAnI+ldTWJrkP3JB9D7AUAYtFFFABRRRQBvaHKDG8eTkHd+Fa9\nc1pEvl3QG7arAg+/pXS0AZOtw7o0lC/dOGb0HasOurvYxNbyKc9MjHqK5Q8EjGKQwopKKBGnosoS\n4KEn5xgenFdDXIW0hhmjYHGGH5d664EMAR35pgFFFFABUV1/qm+lS1Dc/wCqb6UAQW3+qWpaitv9\nUtS0gCiiigAooooAKKKKACiiigAooooAKKKKAClzSUUAOooopAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFRXX+ol/3G/lUtV7w4tpv9xqAOZPPXn680KcGkoqgLXaikU5ApayZd\nxUYqQQelbNndiYbSfnA/OsWlRih3AnIppiOkoqtaXa3C+jDqP8Ks1QmFFFFAgooooAKKa8iRjLsq\n/UgfzqpJqlunQl/90f44oAu0dKx5NXkb7iKvucsf6VTlu55PvSMfYcD8hxQB0lFZOkXBbfGckjBB\nPp6VrUAFFFFABRRRQAUUUUAFFFJ0oAWjpVaa9ih4zlvQdvrWZPfSSnGcD0FIZqTXcUWecn0FZ0+o\nSycL8g9uv41SPJpVBJwBk+3WgYpZj1oAJ4AyTVyDTHfBk+QenVq0obWGD7q8+p5NFhGbb6bJLgv8\ng/8AHj+H+NaUNrFB91fxPWpqKYgooooAKKKKACiiigANUtTRWt2yQpHIzTbrU44DtX53/QfWsaa5\nkuGy7Z9B2H4VVgIgKWk6UmaVgHik4puaTNFgHE0maSimAUUUUAFFFFABRU8VpPNjZGxB6HGF/wC+\njgVbj0edsb2VPUfeP6cfrQBm0VvRaTbp9/dIfc4H5Dn9atxwRRfcjVffHP59aAOejsriX7sT/UjA\n/M4FWo9HlP33VPplj/QfrW3RSAzW0aLHyySZ9SFP6DH86py6VcJnaN49iK3qKYHJlWU4ZSD6EUld\nYyJIMOoYe4rPvdLhETPENpHOMnGP1xQBh0UUUAFFFFABRRRQAUUUUAPTrUynYQw6jkfWoV61Lmp6\njOpgk82JG9QOn61JWdpEu+Epx8p4/GtGqEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYutw/Okgzy\nMH046fzrJrpNUi822b1X5vyrmzUjEooooA6LS5jJbKDjKZGPbtmr9YeiykSvH/eXr9K3KoDK1uHd\nCsmfunH/AH1XP1193H5sEiDqV4z61yLDBI9DQISiiigAq1ps3k3UZ45YLz/tcVVoB5oA7akqlDqV\nu8ak/KcDjBP8hUn2+2/56f8Ajrf4UroZZoqt9vtuP3n/AI63+FWfTvTEFFFFABVTUk822kHTA3fl\nVukYblI9QRQBxdFTXMZimkQ9jUNABRRRQA+J/LkR+6sD+RzXYRtvRG9VBrjK6bSJvMtVGPuHb9e9\nAF89K5S8i8meVM5wev15rq+lYOuRkSpIAMEYJ46/zpAZVFFFABXUabOZrWMtjcOPy4rl609Jvo7V\nJVk3c4Ixz0HpTA6Cisl9cX+CEn3ZgP0Ab+dVJNXum6FI/wDdX/4rdSuB0NV7uaGNCHkRcjuwz+Vc\n5JczyZ3yu2eoycfl0qGi47HSW/8AqlqWorf/AFS1LQIKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACnU2igB1FJmlpAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBe/wDHtN/uN/Kp\n6r3v/HtNn+41NAcxRRRTAliPaparKcGrNRNDQUUUlQMfHIYmDLwRW3bXKTrnIB7jNYORSCQochiv\n0OKtXEzpWkRPvMq/UgfzqpLqdtH03SH/AGen5nH6VhGTPU5/P+dNL+lOwGrLq79I41X3Y5/QYx+Z\nqpJfXD9ZWH+78v8ALFU9xNFFgH7xTSxpMVZhs5rg/Kpx/ePA/wDr/hTEV+alht5Z+I0Lep7D6mte\nDSYo8GT9435L+Xf8a0FVV4UYA7DgCgDPstM8hg7ud3ovT8fWtGiikAUUUUAFFFFABRxjPaqt5d/Z\nEDbd2Tj2rGmv55jycD+6Ogpjsa82oRR5A+Y+3TNZs17LNwTgeg6flVXJI5pyqWOACT7CpYBn8aAC\nxwBk1et9MeTmT5B6d604reOAfIoB9e/5nNFhmdBpjtzIdo/u/wAVaMVvHCMIoHv3qWimK4UUUUCC\niiigAooooAKKKKAIp7iK3TdI2PbuaxLrVJZ8qnyJ7feP41p6nF5tuxGMrz+Fc7VAFFFFABRRRQAU\nUUUAFLSx7d67hlcjI9vwrpIbaCLBjjToMHGT+ZyaAMCO0uJcbI2IPfGB+ZwKtx6PM2C7onqOpH8h\n+tbdFAFCPSLdeWLv7E4H6YP61ajt4YfuRovvjn8+v61LRSAKKKKACiiigAooooAKKKKYBRRVW6vE\nt+B8z+np9aAMG5j8qaRfRjUVTTkuxYnJPJqGgAooooAKKKKACiiigBVOKl4xUNSocikBoaVL5dwq\n8fPx9K6CuTR9jK2M7TmuqR/MRX9QDSQx1FFFUIKKKKACiiigAooooAKKKKACiiigBG5BHqMfnXKT\nx+VI6ddrEV1lYWsw7Jg/GHHb1HUmkNGXRRRSAmglMMqSAfdOea6vrz2rj810unSiW1TrlflOe+O9\nMRbPIxXKahD5Fw64wM5X6GumuJxbpuIyew965u/lM8m89cYpX1Ap0UUVQBRRRQBfX7o+lLUatlRS\nswUZrOzuVcinc/dBrprKXz7aNzjJXn6iuSYkkmum0qBoLYburndj09BWhJeooooAKKKKAOe1uHZM\nJAPvjk/7VZddFrUYe3DZ5Rs/gf8A69c7QAUUUUAFa2jXSQGRJH2gjPPr9ayaUHHSgDp5NVs4/wDl\npvI7IpOfx4X9ay9R1KG6QKkT9fvNgEfgM/zrNooAKKKKQBRRRQA+iiipKCilpKAOjt/9UtS1Hbf6\npfpUlUSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOoptOpAFFFFABRRRQAUUU\nUAFFFFABRRRQAUUUUAFFBIXqcVWlv7aHO6TJ9F+b+VAFmqWq/wDHq31FQS6uv/LNPxb/AAH+NUbm\n/nnXaSAPQD+vX9aYFKiiimAVYQ8VXooeoExkFM8w0yilZDuOLk03JorRsdN+0je7FU+nJ+hNGiFc\nzqUAk4HP0FdEml2iY+TcfVyT+Y+7+lWViRBhVVR6AAfyouM52LT7qTpEQP8Aawv6Ng/pVyPRHP8A\nrJVX2QZ/U4/ka2KWi4inFplrEQdm8+r8/pwP0q4ABwOB6UUUXAKKKKQBRRRQAUUUUAFFFFAFPUoP\nOgOB8y8isOK0uJMbInI9dpA/M8V1FFO4XMiDSWPMrBf9lev/ANb9a0oreKAYRce/epaKQ7hRRRQI\nKKKKACiiigAooooAKKKKACiiigBkih1KnoRXLyRGN2THQ11NN2JnO1c+uBmmBzsVhcy9I2H+98v8\n8Z/CrkejOf8AWSBfZQT+pAH862KKYFFNKth1Bc4/ibj64XFYtxF5MrpjGD+nauorG1mLEiyDPzDB\n9OKAMulAyaSlU80AS7RW7p774FH93isMVcsZvIZsqSCPWp5irG1RUH2y3/v/AKN/hQt5bsQA/J6D\nB/wp3JJ6KKKACiiigAooooAKKKKAFopp4GTxWVdXxfKJ8q+vc0DsT3l9t+SI89CfT/69ZZJNJUTv\nngVO4xZD2qKiiqsSFFFFMAooooAKKKKACnJ1ptKKAJQa39Il8y328/If51z69K0dHl2TlDzvGKkZ\nv0UUVQgooooAKKKKACiiigAooooAKKKKACqGrweZb7gOUOc/7Per9MlQSoysMhhigDkaKUqVJB4I\n7GkqRhWxo04HmRs3+0v9eax6kjlMZzkj6UAXr66M0hwflHSs+XpQZvao2ctQlqA2iiiqEFFFFADg\n7DvSFie9JRSsBb061+1Tqp+6OW98dvxrqCyRL8zKoAxlmA/WuQjmeL7jMh77TtP6HP50O7SHLMzH\n1JJz9aYHTyajaRdZk/4Dlv8A0HNVJddgX/VxyOffCj8+T+lYHNLQBpya5cH7iIg/76I/l/Kqr6jd\nyfemf/gPyf8AoOKrUUgA02nUhoASiiimAUUUUAOopBS0gCiiigAooooActOqMdakpMoKSlpD0pAd\nHB/qxUtR2/3BUlWSFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBc0ZpKW\nkAtFFFABRRRQAUUUjEIMsdoHvigBaCR3NZlxq8aDEa7z69h7+v8AKs2a9mnPzMcf3RwPyppAbc+o\nW8GRu3t/dX+p6VmzatK/3MRj25P+fpWZS8+5p2AnkuJJfvyM3sSaiL02nRwyScKjN9BQA0sTRmrs\nelXT/wAKp/vH+gzVyLRVH+skLf7ox/PNAGNSVvS6PA/3GZP1H68/rVGXSZ0+5iQe3B/I/wCNAGfR\nTiCCQRgim0AFFFLigAFdLYzLNbpj0xgdq5wdK1NImw7Rk/eGR9aTHY2KKKKQgooooAKKKbJIkQyz\nAfWgB1MkkWIZchR71nz6mORGMH+8f6Cs6SZ5CSxyTSHY1JdVjT7ilvrxUdvqTySqrBQrfh/Wsunx\nK7ONiliDQgsdLRTUztG7g45HpTqYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkoNJ\nQAUUUUwCiiigAqtfxedbOuORyPwqwzhFLMcAVjX2p+blI+F/vdzTAzSMUoFNqQEAdqGBYRBUnA9q\nrLLigyE1DVyrkrS9hULEk+9JuFT2UBu5cfwjkmmoibNy2fzYkY+nNS0iqFAA4wKWmIKKKKACiiig\nApk0qQruY4/nTbi5S3HPXsvesWe4e4bLdOy9qlsZLc3j3HT5U9P8fWquaQkCoCxJosFxzvk0yiir\nEFPMThVcqdrZAbsSK0dP01pWDyghOoHdv/rVo6rb+ZaYRR+75XjGB3oA5qiiigAooooAKKKKACii\nigCRDU0T+W6tk8EHiq68GpTwKnqM61GDqrDoRmlqlpc3m2wycleP8Ku1QgooooAKKKKACiiigAoo\nooAKKKKACij3NRNcwITulQY7ZGfy60Ac/qkJhun/ANr5uffriqdaOq3cNz5flkkr1OMDHpzzWdUs\nYUlLRQBHRTttNpgFFFFMQUUUUAFFFFAC0tNp1ABRRRSAKKKKACkNLSUAJRRRTAKKKKAFFLTadSAK\nKKKYBRRRSAKkqOnqeKTGhaKKKkZ0Vv8A6talqK3/ANWtS1oSFFFFIAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKWkooAdRSZpaQBWJrMbCRHGdpXBI9QTW3Uc0CTrtcZHWm\ngOVxUiQSy/cRm9wDj866KOxtosYjX6kZ/WrAVR0AH0GKdwOej0m5k6gJ/vEf0zVyPRV/5aSE/wC6\nAv685rWpKLgVo9PtosYiU+7c/wA6sBQvQYpaKkAooooAKKKKAMbWYMMso6Hg/h3rJrqL2ETwOnfG\nR9RXLkbeDTTAKeKZTh0oYDqlt5TDKj+h5+neoqKQzqkYOoYdCM0tUdLm3w7c/c4/CrEl1FF95ufQ\ndaVwJqjlnjhGWYfTvWXcamz5CfL/AD/OqLSM3U9aBGhcaoxyI+Pw5qg8rPksck1HT44nlOEUsfag\nZHUiI8hwqlj7VowaUeDMf+Aj/GtKOGOIYRQo9qYGbBpXQzH/AICP8a0o4UiGEUAU+igVwooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACg0U2gAooopgFFFFABRRRQBkavNIpEY4QjP4//WrJ\nrodQs2uUGzG4evTmsV7SeP70bfXqP0pgQUUUUALTs0yikMM1taM4MbJ3U5/CsbFXdOk8mdQc4bii\n4jfooooAKKKKACqt1eLACq8v/wCg+5qG91DblIj9W/p/9eskkk9aQ7EjuzksxyajLYpGeoaFELis\nSaSij2HWqEABJwASfStiw00r+9lxnsh5/wC+u1SWOmrFh5Pmk7Dsv+JrRoAWpQN64PfNQ1Kh4oA5\nGaMxSOhGNrEVHWnrMGy4LjOJB+GR6VmUAFFFFABRRRQAUUUUAKOtSZ9ef6VFTxSA1tGm2yNGTw3I\nHvW5XKW0pilRumCK6pTuAPqAfzpgLRRTHmii+/Ii/VgP/r0APoqjJq9mnRy/+6p/rgVVk15eRHCT\n6Fmx+Y/+vQBsUVzsmtXT/d2R/wC6P6nJqpJdzy/fldh6bjj8qAOokubeLO+VAR2yM/l1/Sqr6xaI\neC7/AO6v/wAVtrm80uaANmTXDzsiHsWb+gx/Oq0mrXT5wwQeigf1yf1rP3CjdSuMleeWT70jt9WJ\n/rUefc0zcaM0AOJoFNpwoAWiiikAUzrT6FFAEdFKw5pKoAooooEFFFFABSikpRQAtFFFIAooooAK\nKKKAENJSmkpgFFFFABTqbS0AOFBGKVRSsOKkdhlFFFMQU5abSjiiwD6KWkqLFHRQf6talqOD/VrU\nlaEhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAXNL\nTaKAHUUgpaQBRRRQAUUUUAFFFFABRRRQAVzeow+TcOAMBvmH410lZesQBoxIByp5x6VSQGJSikpR\nQA+lAzTN9SCk0MkjlaHO04JprOW6mmipIoZJThFJpWAjp8cTynCKWPtWlBpPRpTn/ZH9TWjHGkY2\noAo9qAM+DSRnMrZ/2V/qa0I4kiGEUKPan0UCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiim5oAU0lFFMAooooAKKKKACiiigAooooAw9Wh8uYPjiT+YrOrf1SLfbkjqhz+HesCm\nAUCilHWgCQAUtIKWpYHRwSebGr+o/WpKz9Km3IydxyPpV2WdLddzn8PWgY5nVBuY4ArIu9QMmVj4\nX17mo7q9e5OAdqDt/jVXigBT6k1EX9KQuabTsgCiipIoJJ2CoMmmIakbyNsUbjW9ZWK26hmGZPX0\n+lPtLNbVfVj1b+n0q1QAUUUUAFPjOc0ynJw1AFXWIBLb7+8fIx6HrXNV2brvRl9QRXITR+VI6+jE\nflQBHRRRQAUUUUAFFFFABTl602lHWgCQcVdbV7kKEXy029wOenvxVIGmmpGSyXtzJndNIQe244/L\npUG4nqaSiqEFFFFABRRRQAUUUUAFFKBQaLAJRRTgKAEAp2KdRSGNpaSikAuaUU2lBoARxTKkao6p\nAFFFFAgooooAKKKKAHUUUUgCiiigAooooAKbTqSgBKKKKYBRRRQBKtO4xUYajJqR3G0tFFMQUUUU\nALmkoooA6a3/ANUtS1Fb/wCqWpaYBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig\nAooooAKKKKACiiigAooooAKKKKAClFJRQAopabSikAtFFFABRRRQAUUE4FU7jUoYc4O9h2HT86AL\nnTmqN5f26oyE7yQQQv8AjWRPfzXH3mIH90cCq1UgEooooAcopxpgNOpMB1a2kyZVkPUcjjtWRViz\nl8mZG7Hg/jQM6KlpAcjNLSEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaSi\nmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1lDqVPQg1zE0ZidkPY11NYmrxbZQ4/iH6imBm0UUUA\nSr0paYnpTjUtDJ7af7NJv68Uy5vHuDlvwHYVXJNJTWgh240maSimAUUVYtbSS5fABC/xNigBtvbP\ncPtQfU1v2tqlsmF5Pc0+C3jt0wgA9T60/cq8llH4igB1FQPeW8f3pF/A5/lVd9WgH3Vdv0oAv0Vj\nvq8hzsRR7nJNVX1C5f8A5aEf7uB/KgZ0RIQZJA+vFRG+t4T80i/hz/KubZ2flmJ+ppM0BY6CTWrd\nfuK7n8APz5rDu5lnmZ1Tywe2c8+tR5pppIQlFFFMAooooAKKKKACiiigB45pSOKatPNSBHijFLRT\nAMUYpQKdik2MjxSVJikK07gMooopiCiiigBRTt1MooAeCTTqjBxTw2akoSiiigQUUUUCBjTTS0hp\noBKKKKYBRRRQAUUUUAKKWmj+lSBaQDaMGnbRT8UrjIsGlwakxRii5Vhm2msuKmpj8ihMViKiiiqJ\nCiiigBRS02nUrAFFJmimAtFFFIApKSimB1Fv/qlqWorf/VLUtABRRRSAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkLBRknA96pz6jF\nHwnzH9KALp4GSQBVKfUY48hfnb9BWXNdyTfebNVyaQya4vZZj8zceg4FVc5oNSwWk1wfkU4/vdBV\nCIamhtprg4jUn37D8a1bbSETmY7j6DpWkiKgwoAA9KVwMV9JaOBnZsuOcDpWZXXkZ61y95CYJnXt\nuOPpQBBTxTKUUAPooopDOltJfOhRvbH4jipqyNImwzRHvyK16dhBRRRUgFFFFMAooooAKKKKACii\nigAooooAKKKKACikzSUALSUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqMXm27eq/M\nPw/+tVqkKhgQeh4oA5OipJ08qR1PYkVHTAUHFHekpaAEooooAKKKWgBybARvzj2rQGqeUu2GIAf7\nXPPrWdRSAtSajcyfx7f90YqBpXbqxP40yigAoopaACiiloGJRS02kAZpKKKoQlFFFABRRRQAUUUU\nAFFFFACjrUlRU8dKTAU0gpaMUrjQClpaSluMKKQ0madgGmjFHWpAtO4iKipCuTTSppiG0UUUAFFF\nFADs0tMp1KwC0UlLSASjFOFPxkU7jIKKUjBpKYgooooAKKKKAFFTVBVyFQy1L2KjqRiirARRRgel\nRcdiDBp3ln0qeii47EPlNSPD8pqeihN3FYzaKcwwTTa1IegUUUUAFFFOCEjNADaKKKAHUUUUgENJ\nSmkpgdRb/wCqWpait/8AVLUtIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACimvIkYy5xVCfUwvEYz7n/CgDQZlQZZsCqE+pomRH83HXtWZLcSS\nnLGoaQyxPdyTHljj0qDNJU8NrLP90HHqelICCpYraWc4RT9e1asGlxpzId59O1XgqoMKMD2pgULf\nSY05k+c/pV9VC8AAfSlopiClpKKAFzWRrEA+WUfRv6VrVDcwieF09uPrQBzFFKwwSD24pKYDxS0g\npaQySCUwyq47H9K6ZX3qGHQgGuVrd0uXzIdvdOPwoAvUUUUCCiiikAUUUUAFFFFABRRSU7AFFJRQ\nAtJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU1pY4/vOo/EZ/Kq76jbIfvFv90UAWqKzJNXU\nZ2IfbP8AhVdtUuG6YX6CgDbpjTRJ951H1P8ASufe5mk+9Ix/GoiSe9AG62pWyn7xb6Cq0mr/ANyP\n8zWVRSGPuZmuH3NjPtUFPplMQUopKBTAfto206ipGMxRSkUlNCCiiimAUtFGKQBRRS0DCiikpAIT\nSUUVQgoopaQCUlOptMAooooAKKKKACiiigAp4PamUo60rAPpaSikMcaTpQTTCc07BcCaTrSCnUAO\nUYp2aZk0maAH7qTdTaKAYpOabilooENop1JimAlOptKKTAWloFFIAqVaaiEmrKx4pNlWKcqFWplW\n7lflzVSqTuJhRRRTEFFFFABVq1bgjP4VVqWFtrik1oOJdooorKxdgoopaQCUUtIaAKlyuGz61BVy\n4XKZ9Kp1utUS0FFFFBIVYt2/hqvT4m2tmkBYnIC9KrUsr7zTaAClptOpgFJilpKAOnt/9UtS1Fb/\nAOqWpaACiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTJJ\nkhGXbb/Os641TqIhj3NFwNJ5Ei5ZgKz7jU8cRj8TWZJNJIcsxNR1IErzvKcsSetRUVYgtJp/ujj1\nPSmMr1PBaSz/AHV4/vdq1INMii5f52x+FXgAAAOKAKMGlxx4Mnzt+lXQAowMAD0paKYgooooAKKK\nKACiiigAooooA57UYPKuG44bkVTrc1eHfEJB/B1PtWHTAUU+o6eDSYxav6VN5U23s/8AMVQpVcxs\nGBwQRQB1NGajilEsauO4p9AgooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUVBJeQR5Bfn0F\nAE9FZ8mrRD7qlvrVZ9WlI+VVX9aANmms6J95lH1Irn5L24kzmRsHsOB+lQliepJ+ppDN97+2T+Pd\n7Dmq76tGPuIze5/wrHooAvyarO33Qq/Tn+dVnu53zmVsH0OP5VDRQApJPU5pKKKACiiigAooooAK\nKKKAEplPpppoQlFFFMB60/FRLUmaloYhptOPNJTQCUUtApAFFLRQAUUUmaAAmm0UUwCloooEFFFF\nABSUtFADaKKKYBRRRQAUUUUAFFFFAElB6U0UppAMpcUYpaYBiiiikAUUUUAFFFFABRRRQAUUUUAF\nOxSDmpAtJsYgX0qRY+eaciYqQVPMygAA7CnUlLUDEcblIrPIwa0apTjEh98GtIMmS0IqKKKskKKK\nKACiiigDSQ7lB9qWobZsqR6VNWEtGWFFFFIApKDSUxg43KRWeRg1o1SmXaxrSLJZFRRRVkhRRRQA\nUppKWgBKdTaWgBaSlpKAOnt/9WtS1Fb/AOrWpaQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUfnUU1zFD95ufQdazJ9TduE+UeopAaclxFD99ufSs6fVGbIiG3371nF2fkn\nOaaaBkjSPJ1NR0oqxBZSzngYHqaAK1WILOac/KOD/Ef6VqwadFDjd85/SrnTpxTAo2+mRx4Mnzt+\nlXQMcClooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkTzEZOzAiuWkQxsynqDiurrD1eDZKJB0c\nfqKYGdTgabSigB9FFFSM2NJm3I0Z6ryPoa0a56ym8mdTnAPB/GuhpiCiiigAooooAKKKKACiiigA\nooooAKKKKACmvIsakscVDc3cdsOeW7CsW4uZLg/MfoOwoAsXmotNlI/lT9TVCiikMKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACkpaSgApD0paKBDKKKKoYop9R08UmAtFFFIBKWiigAoopKAAmm\n0uKXFMBtLTsUUgG0uKWloHYbil20tLRcLDcUu2ilouBDRTm602qEFFFFAgooooAKKKKAFXrTqZTx\nQAlFKaSkAUUUUAFFFFABRRRQAUUUUAFFFKBmgB8a1OFpEWpMVm2UIBTsUUtSUFFFFABUFymQGqem\nyLvQj2q47ilsZ9FFFakBRRRSAKKKKAJ7ZsPj1q5WchwRWgDkA1nURSFpDS0lQMSiiigYVXuR0NWK\nZMMxtVQeomijRRRWpAUUUUALSUUUAFAopRQA6iiikM6W3/1S1LUVv/ql+lS0CCiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKrzXsMP8WT6Cs2fUZJPunYPQUgNSa6ihB3Nz6d6zLjU5JPl\nT5R+v51RJycmkoGKXZuSaZThViCymnOQuB6mgCtVmCyln6DaPU1qQadDEMkb29+n5VcxjgUxFO30\n6KLDEbm9+lXMYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnqMPnQH1Xkf1FXK\nMZGPXigDkqKnvIvJndegzxUFMBwNOpgp9IYZx9a6Gzm86FD3xg/UVztaekS4Z4yevIpCNeiiimAU\nUUUAFFFFABRRRQAUUVHNPHAu52/DufwoAk6VnXepBMpFgt69h/8AXqrd6i82VT5U/U1RoYxzOXJL\nGm0UUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigApKWkoAKKKKBBRRRQMaaSnmmVQgpV60lK\nOtAD6KKWpGRmloNJTAXFKBSilpNgJRS0UXGFFFFIAooooAWiiikAUUUUAI3SoqnPQ1CapCYlFFFU\nIKKKKACiiigApy02lXrQA/FNp9NpDEooooEFLSUUALSUUUALSUUUAFTRrUaKSatKuBUyY0OFKKAK\nWsygooooGFFFLQAUtJRTuIzpBtZh702rF0uCD61XrVbEsKKKKYgooooAKvwNuQe3FUKs2rdRUy1Q\n0WTSUUVkWFFFFABQKKKAKDjDEe9Nqe5XDZ9agrchhRRRQIKKKKAClApKeopAFFO2mk2UFWOkg/1S\n1LUVv/q1qWgkKKKKACiiigAooooAKKKKACiiigAooooAKWqdxqEUPH3j7VmT6hLLwCVHoKANWe/h\nh6Hc3oP61lz6hLLkZ2r6CqdFSMCSeaKAM9KtQWEs2ONo9TTAq4zVqCwlmxxtHqa1YLCGHBI3H1NW\nulAipDp8MOCRvb1PQVboopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQBlavBkLIByODWPXUXEQmidD3BrmGBUkEYIpgJT6ZThQA6pbaQwSq/vz9DUNLj+VSFjqFO4A\njvS1jw6k8UaoUBwOpzUg1Y941/OmOxqUVk/2w3/PNfzNaFrP9ojD4x7UCJqKKKACikJCjJ4FZV5q\nW7KQ/wDff+H+NAy1d36W+VX5n9Ow+tYssrzPuc5ph+uaKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABSUUUCCiiigAooooGFMp9NNNCEooopgPWnUwU6kxhRRRQAUtFFSNBRRRQA\nUUUtABRRRQAUUUUgCiiigA7VEwqQmmNVoTG0UUUxBRRRQAUUUUAFFFFADx0opFpTUgJRRRTAKKKK\nACiiigApQM0lTwp3NJ6DRIibRUlJS1m2UkFLRRSGFFFFABS0lLQAUUUUhEU67kNUa0iMis9xtYj0\nNbQ2FIbRRRVEhRRRQAU+Ftjj34plApNAaNFNQ5UGnViy0FFFFAwooooAiuFyufSqlWbhu1Va1RDC\niiiqEFFFFABU6jioKsL0H0pMqItBxiig1Azftv8AVrUtRQf6sVLVkBRRRQAUUUUAFFFFABRRSEgc\nk4oAWkLKvJOKoz6pGnCDefXtWZNdyzdW49O1IZrXGpRxcL8zfpWVPeyzE7m49B0qtS0CFyaSirdv\nYTT9ti+pH8qBlXrx1q3Bp003JGxfU1qw2MMGMDcR3NWKYirBp8MHON7epq1RRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALXP6pAYp93Z+f8a3ZJEi\nUs5wBXPX14bpxgfKvT1osBVpRSU5abAeFp4AFIOlBbFSMWmsaaTSUBcD1rU0iX76duorL5OABkmt\n6wtRbx5b7zcn2pgXKinnjgXLn6D1qvdaikIKp8z/AKCsaWV5m3McmgCe5vZLnj7q/wB3/GqtFFIA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApKKKBBRRRQAUUUUDCiiigApDRRTQ\nhtFFFMBc08VHTwaTAWiiikUhaKKKQC0UUUAFFFFABRRRQAUUUUgCiimsaYhCabRmkqgCiiimIKKK\nKACiiigAooooAVafTBT85pANopaKAEooooAKKKcq5NAx0SbjVoDHFNVcU+s2ykgpaSlqRhRRRQAU\nUUUAFLSUtABRRRSEFU7ldr59auVBdLlAfStKe4Mp0UUVoQFFFFABRRRQBatmyCPT+tWKp25w/wBa\nuGspKzLQlFFFSMKDwKKimfauO5pxVxFR33NSUoGTT5FxitiWR0UUUCCiiigBQORVioFPIqepZSCh\nqKQ1AzoLf/VLUtRW/wDqlqWtCAooooAKKKZJLHCDvYD9TQA+kd0QZYgfWs6fVVGRGM/7TVmSTyTH\nLMTSA1bjVETIiG4/3j0rMkuZJydzZ/lUFFABRSjOeO9W7fTppsFhsX36/lTAp4PvVy306abk/Ivq\na1oLGCDGFDH+8asUAVYLCGHtub1I/pVqiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigAooooAKKKKACop7mO2Ulz9B61LWXrERZUcdsg/pigDMuLh7hyzfgO\nwqGiimAUtJRQA7caXrTKXNKw7imkNJRTEXtOWHe0kpxs6DsalutSaT5Y/lX9TWf2paQwooopAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJS0lABRRRQIKKKKBhRRSUALSUUUxBR\nRRQAhFJT6ZTAKVaSlFJgPooopFIKWkp1IAopaSgAooooAKKKKACiikJxQkAhao6KBV2JClFApaAE\nNJTqbQAUUUUAFFFFABRRRQAU5abTloY0OpKWlA5pDsNoqTZ7Um2lcLEY5q1EmBmkRKlqeYLBS0Ut\nQUFFFFABRRRQAUUUUAFFFFABS0lFAC0jDcpHqKKKFoxWM08UVJMu1zUdbEsKKKKYgooooAVTgg1o\nA5APtWdVy3OU+lTNaXLiS0UUVmMOlU5ZNzdanmbapqn1q4rQlkiLzUjfdP0pEGBS0X1HYr0Up4NJ\nVEsKKKKYhR1qcHIqvU8fIqWUh1IaWlxUDN63/wBUtS1Fb/6paJbiKHlm/Ada0IJaZJKkQy5ArNn1\nQ8iIY/2j1/Ks6SV5SSzE0AaU+qdoh+J/pWbLM8xyzFjTe1NpAFFLjPSrtvpss2C3yL79T9BQBRxn\ngVdt9NlmwW+RfU9TWrDZRQAYGT6nrVimBWgsYIcYUM2OpqzRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzwieNkPepKKAMO\nbSZ1J2bXH4Zqm9vLH95GH4GuooOCMEZHSmByVFTXUXkzOno1Q0AFFFFAwpRQBThQIKWkpaQwooop\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE0ABNG6m0lMQ+iiikAUUUUAFFFFAxKSlop\niCiiigApwFIKdQygqM9akprUJgxlFFFMkctOpgp9SxoKfTKcKGMKKdSVICUUuKMUAJRS5FNLCmlc\nAJxUROaCc0uKtKwhKUU4Lml20NgNop2KUClcdhtNIqbbTHFFxWI6KKKYgooooAKKKKACiiigB+RT\nl5qMVInFSxofmnqKTFSLgVBQop1ICKWkxhS0tJSAKKKKEAUUUUAFFFFABRRRQAUUUUAFFFFAFe6X\no1VavyruQ1QraL0IYUUUUxBRRRQAVPbthsetQU+M4YGk9hpl6j/GimSNtWskiytO240yMZNNPNTo\nMCtHoiEOoooqCiGQc59aZU0gyM1DWiJYUUUUxBUsZqKnJ1pPVDRPmpB0qMVKOlYvQslbU32bU+X3\n71RZ2c5JJJ7k00UlakC0UoGelXbfS5ZeX+Revv8Al2oApAZ6davwaZLLy/yL+taUFpFbgbRk/wB4\n1YpgQw2sUH3VGfU9amoooEFFFFABRRRQAUUUUAFFFU7m/ih6fOfQf1oAuUdBknFY0urOeEUD361V\ne+uH6ucUAdCzqn3iF+px/OonvrZOsqn2Uhj+hrnZJZJDlmLH3plMDcbVoBnAJ96rSaxIfuIF9zzW\nZRQBdfU7lv4gvsB0q9YX/nfJI3z/AJZrEpKAOtorOsNREw2SnD9j/e+natGkAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBIGSSAPegDJ1iEDZIO/yn/GsitTUL5ZVMaD\nIz94/wBKy6YBRRRQMfRRRUgFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGmGn\n009aaASiiimIcKWkpaTAKKKKQwpKKKYgooopgFKBShadSbGhMUdKM0ZqRhRSZFGaqwmR0UppKYhR\nTs0ynikwFpQcUlBoHcXdRuplFFkFxd5oyaSkzSsFxSabRRVCFAqRVpAQBRvpDH0UzzBR5gpWHsPx\nRUe+k3miwXJs01+lRbqM00hXEooopiCiiigAooooAKUDJpKkjXmhgS4AFLS+tJWbepaCiimO2KEg\nED/vBz3q4Kzh1rQjbKg0TQkOooorMYUUUUwEpaKKBiUUtFACUUtFFwEooooAKKKKADqKz5BhiPet\nCqlyvOaumyWQUUUVoSFFFFABS0lFAF6NtyioJ3y2PSiJ8IRUJOTSSSKvcVRk1MKbGuKfSlYEFFFL\nUDGkZFQVYb7pqt3NaIlhRRRTEFFFFAFhTkVJnioozxinGspF3IkUscAEn2q/Bpcr4MuEHp3rRs4I\n44wVUZPfvVmtCSGC1jgA2qMjuep/GpqKKBBRRRQAUUUUAFFFFABRRTHkSMZdgv1oAfUE91Hb/e/L\nvWfcaqWysX/fZ6/hWaSWPJoAt3GoyzEhCY06Y9fqapUUUwCikzRmgBabRRQAUUUUAFFFFABWzp2o\nb8Qv17HPX6571jUUAdbRWXp2o79sMud3RW659j71qUgCiiigAooooAKKKKACiiigAooooAKKKKAC\niiigAooooAKKOtZ15qYT5Ivmbu3Yf4mgC5POluu5z9B3rFur6W5OPup2A/rUEkrzNuc5NMpDA80w\nin01qaAbRRRTEKKdTRTqljCiiigApaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKSigAphp9\nNNNCEooopgFPplOHSkwQtFFLikMbRS0tMY2gGiiggNxoyaKM0FXDNFFFAgooozTAQ0lLSUAFKOtJ\nQKAJKDRRSGNopDSUxC0lFFABRRRQAUUUUAFFOCE07y6GFiOjFTBBS49qVx2IcUbDU4prNii9waIt\nppKcTTaYgooooAKKKKACrEfSq9TRv2NJ7DRJRRRWZQVXc5NSu2Kgq4oTFFXohtQVVgTcwPYVcpTG\ngpc0lFZjFzRmkooAdRTaXNAC0UUmaBC0UUUgCiiigAopKSmMKjmXchqSg8jFVDRiZnUUrDBpK1IC\niiigAooooAKcnJptSRCk9holAxS0UVmUJRRRQAyQ4FQ1LKe1RVrFEsKKKKBBRRRQA+M81KelQpwa\nmNTJFHQW/wDq1qWorf8A1a1LTJCiiigAooooAKKKKACiqdzqMVv0+dvQH+ZrJnvZbgnLYH90dKAN\nK61RY8pF8x9ew/xrIlnklOXYsaiozTAWikpKAHUU2igAooooAKKKKACiiigAooooAKKKKAF9K19O\n1DO2GQkt2brn2NY9FAHW0VkafqP/ACzmb02sf5Mf61r0gCiiigAooooAKKKKACiiigAooooAKKKK\nACmvIsalmYKKhubuO2HPLHoo/wA8ViXFxJcNlj9F7CgZYu9Raf5Uyqfqao0UUgCiiigAooooAYeK\nSnEU2qEFOFNpRQMdRRRSAKKKKQC0UUUAFFFFABRRRQAUUUUAFFFFACUUUUAFFFFAgppp1FNbgMoo\nopgFKDSUUAO3UbqbiigB26kzSUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAPWlpgNPpANIptSGo\nzQAUUUUwCiiigApyrmgLmpQMVLkUkLRRRUjCiiigBDwKjY5oZ+1NzVpCYlFFFMkKKKKACiiigAoo\nooAmWT1p+arU/fxU2Q7iMcmkpKkhG5hmquBZhj2L7nmpaKSspO7LCiiipAKKKKACiiigAooooAKK\nKKACiiigAooooFcKKKKAKlwMNUNWrgZGfSqtbIlhRRRTEFFFFABU0fSoafGcZpS2GiaiikrIoWlp\nKDTQEMh5plOfrTa1RLCiiigQUUUUAA4qdTuFQVItJ6lLU6S3/wBWtS1Fb/6taloJCiiigAooooAK\nz9VdkhG04y1aFZusf6qP/f8A6UAYlFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigArW0/Uf+WUzf7rn+THP61k0UAdbRWNp+olcRSkBf4W9PQGtmkAUUUUAFFFFABRRRQAUUVHc\nTx267nOPQdz9KAJKzrvUlTKQ8t3bsPp6/wAqo3N/LcZ52r/dU9f971qrSAViXO4kk0lFFAwooooA\nKKKKACiiigBDTKeaaaaBiUUUUxDgaWminUgCiiigYClpBS0gCiiigAooopAFFFNpgLRRRQIKKKKA\nCiiigAooooQDaSnbaMVQDaKdtpdo9aAGUU7AoxQA2lpcUUANop2KTFIBKKdiimA2lxS4opXAbS0t\nFMBKKWigBtFFFABTxTKUUAPpNuaKUdaQxPLNGypaKVwsR+XSiOn0Umx2DGKKKKQwooooAKY54p9R\nydqa3BkdFFFWQFFFFABRRRQAUUUUAFFFFABRRRQAU5G2sDTaKANGimRNuQGpKxe5oJRRRSAKKKKA\nCiiigAooooAKKKKACiiigQUUUUAFFFFAhrjcMVQIwcVoVTmGHP8AntWkGJkdFFFWIKKKKAClHWko\noAsDpRQvSlrNosKQ8DNLTXPy0JAyCiiitCAooooAKKKKAHAVNtGKYgqwV4po3prQ27f/AFa1LUVv\n/q1qWpMAooooAKKKKACs3Wf9Qn+//StKsbWv9ZF/un+dAGXRRRTAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACtTT9QMe2KXG3oGPG369BisuigDraKxdOv/ACsQycrnhs/d\n9jk421tUgCiiigAopNwA3EgDrnPFZd5qWfkh/F//AIn/ABoAsXV+lvwPmk9P8f8ACsWSR5m3Pyab\nRSGFFFFABRRRQAUUUUAFFFFABRRRQAUjUtBpgR0UUUxCilptOpALRSUUALS0lJSC4tFJS0DCiiig\nQUUUUAFFFFABRRRQAUUUUDCnYpBTqBhSYooJpagKaZRmkqiQooooAKKKKACiiigAooooAKKKKACi\niloASg0U3NABRRRTAKKKKAH0UlLUsaJB0paYtPpMoKKKKkQUUUUxhRRRQAUhGRS0UICvRUnl/Wm7\nSK0FYbRRRQSFFFFABRRRQAUUUUAFFFFABRRRQBYtn5K1ZqjGcOp96vdRms5lR2CiiioKCiiigAoo\nooAKKKKACiiigAooooJCiiigAopM0ZphYKguFyAampsgyhqo6MGUqKKK0JCiiigAooooAljp9Qr1\nqcVMi0xKZIeKkqKQ9KSEyOiiirJFXrSuMUsfWnSClcLEVAooFMETxirH8NQR1O3AqkddOKSNm3/1\na1LUVv8A6talqDkCiiigAooooAKxda/1sX+4f51tVi61/rYv9w/zpgZlFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFaOn3/kfu5MlOx67f64rOooA63OahnuYr\ncZduf7o+8foKxINRmhjKA5/u5/g+lV2ZnJLEknuaQFm5vZLk88J2X/Gq1NzS0MApaSikMWikooEL\nRSCigYtFFJQAtFFJmgBaKTNLTAKKSikA0jFJTjTaaEFKDSUopgLRRRSAKKKKAFooopAFFFFMAooo\npAFFJRTAWikpaQBSgUmaXNAx1JSbqTNFgHE00mjNJTQmFFFFABRRRQAUUUUAFFFFABSGlptMBRS0\ngpaQADQaKbmgAzRRS4pgJRTwKGHFJO47DKKKKYhwpabTqTBAODUtRU9allIdRRRSGFFFFABRRRSE\nFFFFMYUUUUABwe1ROMVLTHGRTTYmiKiiirJCiiigAooooAKKKKACiiigBRV6Ntyg1Qq1bNnIzUTK\niT0UUVmUFFFFABRRRQAUUUUAFJS02gBaKSimAUUUUCCiiigAooo/woApONrEU2pJsF+KjrVEBRRR\nTAKKKKAFBwanFV6mjNS9hpj6gc81MTUB60RQ2JRRRVEkkY5qQ8g02MU8ipe5ZWopzCm1RBNGasE5\nFVEOKshsinc6aTVtzct/9WtS1Fb/AOrWpak5gooooAKKKKACsXWv9bF/un+dbVYutf6yL/dP86YG\nZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAO\npAaSigB9FJS0rAFFFFABRRRSAKKKKACiiigAooooAKKKKACmU+kpgNopcUYpgLRRRSAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbQAUUUUwClzSUUAFFF\nKKAClpaAKQIcBS0UVJRCeKKe4plWJhThTacKBC04Gm0VLRRIDS00UoqQFooooAKKKKACiiigYUlL\nSUALUgXFIq06k2BTYYJFJUs64aoq1IYUUUUAFFFFABRRRQAUUUUAFSwNteoqUdaBo0OtFNjO5RTq\nxluWFFFFIAooooAKKKKAEzSUUUxBRRRQAUUUUAFFFFABTZG2qadVaZ8nFVFAyGigUVoQFFFFABRR\nRQAU5G2mm0UATM3FRGlNNoAKKKKAJFbFLvptJSGITmkoopgFL+VJSikB09v/AKtalqCCRPLHzCpP\nNj/vr+dAh9FN82P++v50nmx/31/OgB9FNMif3l/OkMiL1ZR+IoAfXP6qT9qYZPAAHt9K3fMj/vD8\n6wNSObqQg5+7/KmgKlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAOFLSCikAtFJRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRRYAooooAKKK\nKACiiigAooooAKKKKACiiigAooopgFFFFIAooooAKKKKACiiigAooooAKKKKACiikoASiiimAUUU\nUAFFFFAC4paKKGAU8UgFPFQxiUUfnRQMRhkVFU1REYqkJiUopKBTsIfRQKKTGOFOpq06pGFLSUtI\nAooooAKKKKBhSgZpBzUoGKBXFpKM0nFSMbKu5aq1f25GKosMMR71pHYliUUUVQgooooAKKKKACii\nigAooooAtWz5BX05qeqcDYce9XKzmtS47BRRxRxUBcKKTI9aMigaFpDSE+9Ju96Yri0UmR6ij8aN\nQFoqNpgrYxTlcN0p2YrjqKQHikzRYY6ijNFFgGu21Sapk5NTXDdqgFaxRNxQKCMUgpxoENooooAK\nKKKACiiigAooooAKBRSigB1BpaQjikVYbSUtOC0xWGgUuKdS0yuU/9k=\n', u'text': [u'<IPython.core.display.Image at 0x8703d50>']}], u'collapsed': False, u'prompt_number': 251, u'input': [u"Image(filename='street1715.jpg')"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'hello from Ruby\n']}], u'collapsed': False, u'prompt_number': 254, u'input': [u'%%ruby\n', u"puts 'hello from Ruby'"], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'SyntaxError', u'evalue': u'invalid syntax (<ipython-input-253-3d0fcd71fcd2>, line 1)', u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-253-3d0fcd71fcd2>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m puts \'hello from Ruby\'\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m invalid syntax\n'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 253, u'input': [], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stdout', u'text': [u'\n', u'Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n', u"For more information, type 'help(pylab)'.\n"]}], u'collapsed': False, u'prompt_number': 255, u'input': [u'%pylab inline'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'prompt_number': 256, u'input': [u'x = linspace(0, 2*pi)'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'display_data', u'png': u'iVBORw0KGgoAAAANSUhEUgAAAXoAAAD9CAYAAACyYrxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18zfX/+PHHYVIustFcZOszbWLTaMXX51thLqfGEBUJ\nuUpK4vPpQiSUQtdYJMovJdKFaGMhhpRWSMp1yMasXExYjHn//njha7Zx3ufq9X6f87zfbufGtvc5\n7+fOeZ/n3uf1fr6eL4dhGAZCCCH8VindAQghhPAuSfRCCOHnJNELIYSfk0QvhBB+ThK9EEL4OUn0\nQgjh59xO9H369KFatWrExsaWuM3gwYOpXbs2DRo0YMOGDe7uUgghhAluJ/revXuTlpZW4s8XLVrE\nzp072bFjB++++y4DBw50d5dCCCFMcDvRN2nShJCQkBJ/vnDhQnr16gVA48aNyc3NJScnx93dCiGE\ncJLXx+j37dtHeHj4ha/DwsLIysry9m6FEEKcE+SLnVzaZcHhcBTZprjvCSGEuLIrdbLx+hl9zZo1\nyczMvPB1VlYWNWvWLHZb49ytZ0jIhf9ffHu4Xj2GR0YW+t7wyEhWpqRgGIbW26hRo9y6/+bNBl26\nGFSvbvDCCwbp6QbHjzt//0OHDN5+26BRI4MaNQyeesrgt998E7vum8Qv8btyW5mSwvDISEZdkk+G\nxMYWm3/uLyEvPZeQoPX3cIbXE31SUhKzZs0CYO3atQQHB1OtWrUStx8eGUmFiIhif5Z74AAv/f57\noe+99PvvLJ082WPx+tquXdCrFzRrBg0bws6dMHKk+rp8eecfp3JlePRRyMiAb76BUqWgZUt45BH4\n+2/vxS+EXS2ZNKnYfLJ///5it69YqxYjIiMLfW94ZCStH3/cazF6ittDN926dWPlypUcPHiQ8PBw\nxowZw+nTpwEYMGAAd999N4sWLSIqKory5cszc+bMEh9rZEICbc89aSOeeKLQizA8MpLry5WDQ4eK\n3K/0yZPu/ho+l5MDo0fDp5/CoEGwYwdUquSZx46OhvHjYdgw+O9/ITYWZsyA1q098/hC+IOgU6eK\n/X5w9eqMCA4ukn96vPACACMnT6b0yZMUXH01bR9/nKaJiT6J1x1uJ/o5c+ZccZvk5GSnHuvFS8o0\nL31Cl0yaBJs2FblfwdVXOxesF8XHxzu97dq10KUL3HcfbN0K113nnZiCg+G99yAtDfr2hbZt4bXX\n4NprC29nJnYrkvj1smv8Z8qWBSD+ku9XDQuj9eOPl5jQ7ZDYL+UwnB3k8TKHw3HF8aZVqal8XcyZ\nftuJEwH1USzo1CnOlC1Lm8GDLfmCvP++OtN+7z1o3953+/37b3jqKZX0330XEhJ8t28hdFuVmlok\nPwAl5hMr5o6SOJM7bZXoQb1gSy/6S3t+fOzSF2xEZCQJFnrBTp+GoUNh6VJYsADq1tUTx9Kl0K8f\nPPwwDB8OUuwkdKhcuTJHjhzRHYathISEcPjw4SLf98tEX5znEhIYu2RJke+PTEgoMhykw59/wr33\nQsWKMHu258biXZWdrcbrExPVWL4ke+Fr7rzfA1VJz5kzz6VfNDUr6aKKFS7SbtgAjRpBkyawcKH+\nJA9QowasXAnLl6tKnbNndUckhPAmv0j05y+qXEr3RdrffoO77oJXX4WxY1XJo1VUqaLKMDdvhp49\n1dCSEMI/WSj1uK7N4MGWq2/dvVtVubzxhqqusaJrr4XFi1XF6r33ggU+AAkhvMAvxuih+Iu0TRMT\ni73a7u0LtAcOwJ13qouvjz3m1V15RH4+dO8OR46oC8VmJmoJ4QoZozfPnTF6v0n0xSmuHNPb1Ti5\nuWpWa5cuaoarXZw5A717w7Fj8MUX1hpmEv5HEr15AX8xtiQlTXH2VsuEvDxo1w6aN4fnnvPKLrwm\nKEjV9h8+bK8/UEJY3e7duy/78+zsbPLy8rwag18nel9W4+Tnq7P4yEg1Lm/HksWrroLPP4c5c+Dj\nj3VHI4T97dq1i7Vr1152m9DQUF555RWvxuHXid5X1TiGAf37Q5ky6qzYzsMeoaFqnP6JJ1SDNCGE\n66ZNm0a3bt0uu01QUBCJiYkXmj96g41T0pX5qhpn+nRVLz93rhoCsbvYWPUH6557YN8+3dGIQLMq\nNZXnEhIYHR/PcwkJrEpN9en9PWXjxo2EhYU5tW2jRo1YtmyZ12Lxg7RUsvMXXL3ZbW7jRhgxAr79\nFq65xmMPq11Skqqx79hRTa4qV053RCIQFFtAce7/zrxv3b2/J6WkpNCxY0entw8NDWXnzp1ERUV5\nPBa/rrrxtmPH4LbbYNQoVZ7obwwDevRQFTlz5tjzuoOwppLe7+62M/FkO5QpU6Zw4sQJypUrR9my\nZenXrx8ff/wxhw8fpmzZspQqVYq+ffuyceNGMjIyqFKlCh988AELFiwAoGPHjsyfP9/p1fNmzZpF\n2bJluf/++4v9uTtVN359Rn857tbXGwYMGADx8f6Z5EEl9hkz1O/42muq+6UQ3uRuAYWnCjBWr15N\nSkoKixYtYsOGDUyZMoW4uDhWrFjB9OnTARg6dCirVq3i008/5emnnyY8PJxDF62XkZeXVyjJL1y4\nkNKlS7N69WpiY2NJS0tjxIgR1D3X4TAkJITt27ebitNZAZnoPfHxbvp0+PVX+OEHr4RoGVdfDfPm\nqdWvEhKgfn3dEQl/5m4BhacKML744guaNGkCQFxcHNOnT+eZZ56hXr16F7aJiYlhzpw53HvvvTRs\n2JAmTZowdOjQ/9tnQcGF/+/du5eYmBiioqJ4/vnnGTZsGJUqVeKGG264sM0111xDfn6+qTid5dcX\nY0vibn39+XH5Tz/1r3H5ktxwg+rX06MHlHDCJIRHuFtA4akCDMMwOHtJt79Tp05x6qI3QH5+PqdP\nnyYiIoLNmzfToUMH+vfvT05ODqCqac674YYbiIqKIicnh4oVKxIcHEy7du0od9HFr6NHj1K5cmVT\ncTorIM/o3fl4d+yY6l3z1ltQp46nI7Ounj3hyy/V8ofjxumORvgrdwsoPFWA0aFDB8aOHcuIESMA\n+Oqrr+jcuXOh1fI2btxI586dmTp1KmPHjqVHjx7k5eVx4MABqlWrRvXq1Tl+/DgVKlRg69atnDp1\nivXr19O0aVNAXaxt167dhcfLzs4mOjraVJzOCshE787Hu4EDoWlT/x2XL4nDAdOmQYMGavbvHXfo\njkj4q6aJiW5VyLh7f4DmzZuzadMmnn/+eSIjI6lbty6NGzdmx44dJCcnc/bsWRo0aMBdd93FmjVr\nmDFjBsHBwRw/fpwGDRoA0KxZMzIyMmjRogVLlizh2LFj1KhRg5MnTzJ//nxq1qxZaJ8///wz/fr1\ncyvuEhkW4ctQVqakGMMjIw1DXVM1DDCejYw0VqakXPZ+CxYYRlSUYZw44aNALejLLw0jMtIwjh3T\nHYmwMwulHq85cuSIMWLECKe2/eeff4yhQ4dedpuSnjNnnsuAPKN35ePd33+rTpSzZgV2TXmHDmoI\n56mnYOpU3dEIYV3BwcFcd911HDx4kOuuu+6y286dO5cBAwZ4LRapo3fSoEGqX/uMGboj0e/oUTWE\nM3WqWlhFCLOs/n73FMMwmDFjBv379y9xm8zMTNavX0+HDh0u+1jSptjLvv8eOndWK0aFhOiOxhpW\nrIAHH4RfflGrVQlhhpXf71Ylid7DLp5MdapMeeZun8uEVytadqUoXYYOhYMH4cMPdUci7MZK73e7\nkJmxHnTpZKoXGEmZcj9QrdwpwLe9Mqxu7FiIjoZVq1QlkhDCmgJywtTlXDyZagt1mczjfJPXm2XJ\n3lmsxM7Kl1etEQYNUv1whBDWJIn+EucnU53FwcO8yyjGEE6WVxYr8Qf33qt62E+ZojsSIURJJNFf\n4vxkqun0p4DSDETVEHp6sRJ/4XBAcjK8+CKcm/kthLAYSfSXaDN4MEP+1YjnGMt0+lOas15ZrMSf\nREfDQw/BM8/ojkQIURypuilGx7v/IHvzOu6KmETB1VfT2sOLlfijY8dUwp83D26/XXc0wuqs9H63\nCymv9KDffoPmzWHbNqmZN2vOHHjlFfjpJyhdWnc0wsqs8n63E3cSvQzdXOLJJ+G55yTJu6JrV6hU\nSTU/E0JYhyT6i6Slwa5dqkOlMO/8hdnRo+Gvv3RHI4Reu3fvvuI22dnZ5OXleT0WSfTnnDkD//2v\nWmCjTBnd0djXzTerFs7Dh+uORAh9du3axdq1a6+4XWhoKK+88orX45FEf86MGVCtGrRvX/I2q1JT\neS4hgdHx8TyXkMCq1FTfBWgjo0fDggWwebPuSITwjLNnzxIVFeXUWTrAtGnT6Nat2xW3CwoKIjEx\nkVmzZrkb4uX349VHt4mjR1VySktTww/F8cQ6s4GiUiVVajl8uGppLITdlSpVildffZWwsLArbrtx\n40antjuvUaNGTJ48mZ49e7oT4mXJGT1qabzERLjllpK3cXed2UDz2GOwfj18953uSITwjE6dOlHG\niXHdlJQUWrRoYeqxQ0ND2blzp6uhXVHAJ/rdu9WwzYsvXn47d9aZDURXXw1jxsCwYWoJLyHsZOPG\njUyfPp0vvviCDh06sHz5curXr8+aNWsAmDVrFqGhoXzzzTfMnTuXhx56iD/++AOAH3/8kZiYGFP7\na9CgAevWrfP473FewCf6YcPgiSfg+usvv50768wGqp494dAhWLRIdyTCjhwO92+umjFjBm3btuWe\ne+6hffv2tGjRgri4OM6c697Xs2dPoqOjyc/Pp2vXrtx666189tlnAOTl5eG4ZOcLFy4kNTWVYcOG\nMXv2bHr06MHWrVsv/DwkJISsrCzXA76CgE70GRmwZo2qtrmSNoMHMyIystD3pDXC5ZUuDS+/DM8+\nCwUFuqMRdlNoUWcXb67q1KkTDRs2pEuXLkRHRwNqnP5ipUuXpm7dugBUqlSJ48ePA1BwycG+d+9e\nYmJiSExMZOnSpSQmJnL//fdzww03XNjmmmuuIT8/3/WAryCgL8Y+/7yaHOXMGrCurDMrIClJzZb9\n+GPo0UN3NEI4JyIigs2bN7No0SL69+/P8uXLAYqcqZe+aAr4+Z8FBRVOq+cTek5ODhUrViQ4OJh2\n7doV2ubo0aNUrlzZ47/HeQGb6NesUW0O+vRx/j5NExMlsZvkcMD48WoY5777oIQRMCEsZerUqYwd\nO5YePXqQl5fHgQMHAIq0Gjj/tWEYF/5fvXp1jh8/ToUKFQDYunUrp06dYv369TQ9t0JPSkpKoWSf\nnZ194ZODNwTs0M3Ikep21VW6I/F/TZpAvXrwzju6IxHCOWXLlmXGjBnMnj2b48ePc+DAAb777jve\nfvtt8vLymDt3Llu2bGH8+PH8/PPPzJkzh8WLF/Pjjz/SrFkzMjIyLjzWkiVLSElJwTAMTp48yfz5\n86latWqh/f3888/ccccdXvt9ArKp2YoV8PDDsGULBAXsZxrf2rQJWrWCHTvg2mt1RyN08+emZrm5\nubz22muMHTvWqe1PnjzJ8OHDeeONNy67nTQ1M8Ew1Jn8qFGS5H0pNhYSEuD113VHIoR3BQcHc911\n13Hw4EGntp87dy4DBgzwakwBl+iXLIHDh8GJ2clOk9YIznnhBdX07NAh3ZEIHS5+n/i7J554gvnz\n519xu8zMTEJCQqhTp45X4wmooRvDgMaNVSvi++7zzGMW2xohMpKEiRPlwm0xHn5Y9RS60gQ14V8u\nfZ84KHphU1ye1qGbtLQ06tatS+3atZkwYUKRn6enp1OpUiXi4uKIi4tzetzKG1JS4NQp6NLFc48p\nrRHMefZZmDoVjhzRHYnwpeLeJ8J33BqlLigoYNCgQSxbtoyaNWvSqFEjkpKSipQJNWvWjIULF7oV\nqLvOnlV18y+8AKU8OGAlrRHMqVVL1dZPmqSuk4jAUNL7RPiGWykvIyODqKgoIiIiKFOmDF27dmXB\nggVFtrPCR7T589XF16Qkzz6utEYwb/hwNVZ/9KjuSISvlPQ+Eb7h1hn9vn37CA8Pv/B1WFgYP/zw\nQ6FtHA4H3333HQ0aNKBmzZq89tprJTb8GT169IX/x8fHE++hizYFBers8dVX3et/UZw2gwcz4vff\nC30sHR4ZSVtpjVCiqCi46y6V7EeM0B2N8IXi3ifCNenp6aSnp5u6j1uJ/tLpwMW59dZbyczMpFy5\ncixevJiOHTuyffv2Yre9ONF70uefQ8WK0Lat5x9bWiO4ZsQINZFq8GD12gj/dun7hJUrNUdkX5ee\nBI8ZM+aK93Gr6mbt2rWMHj2atLQ0AMaNG0epUqV45plnSrxPrVq1WLduXZG+Dt6qujEMiIuDl15S\nPeeFdTzwADRooBYpEYGlcuXKHJEr8qaEhIRw+PDhIt93Jne6dUbfsGFDduzYwZ49e7j++uv55JNP\nmDNnTqFtcnJyqFq1Kg6Hg4yMDAzD8GrznkstXqyS/d13+2yXwkkjRkCLFjBoEJQvrzsa4UvFJSzh\nPW4l+qCgIJKTk0lISKCgoIC+ffsSHR3NtGnTABgwYACfffYZU6dOJSgoiHLlyjF37lyPBO4Mw1Bn\n8sOHe35sXrivXj1o1kyVWz75pO5ohPBffj1hatUq6NsXtm5VvdGF9fzyC7RpA7t2OdcuWghRWMD3\nunn5ZbWClCR566pfH26/Hd59V3ckQvgvvz2jX7cOOnaE33+XVsRWt2EDtGunXiuZfiCEOc7kTr9N\n9F26wJ13wpAhHntI01alprJk0iSCTp3iTNmytBk8WMouS3D33dCpE/TvrzsS4S457n3L61U3VrVl\nixqf/+ADfTEU2+zs3P/loC/qmWdUw7M+fWSozc7kuLcmvxyjnzBBTcTRWbInzc7MadoUgoOhmA4a\nwkbkuLcmv0v0f/wBX30Fjz2mNw5pdmaOw6HO6idMUGWxwp7kuLcmv0v0r72mxnlDQvTGIc3OzOvQ\nQbUvXr1adyTCVXLcW5NfJfqcHJg9G4YO1R3JuSZOkZGFvjc8MpLW0uysRKVLw1NPqbN6YU9y3FuT\nX1XdjBihzginTPFQUG5alZrK0ouanbWWZmdXdPKk6lm/ZIlaZ1bYjxz3vhVQ5ZUnTkBEBHz/vWqD\nK+xr3DhVOTVrlu5IhLC+gEr0ycmwYoVqSSzsLTcXbrwRfv4ZbrhBdzRCWFvAJPqCAqhdW43P/+//\nejgwocWTT6rX9c03dUcihLUFTK+b+fOhenVJ8v5kyBA14U262QrhPtsnesNQJZXS5ta/hIWpcsup\nU3VHIoT92X7oZs0a6NULtm2TqfP+ZvNmtTDJ7t1wzTW6oxHCmgJijL5TJ2jdGh591AtBeYk0fXJe\n+/aQlCTNzqxIjmNr8PumZjt2qDP62bN1R+I8afpkztChaqnBfv1klTArkePYXmw9Rv/mmzBggL1W\nJpKmT+Y0b67WE/j6a92RiIvJcWwvtk30f/0Fc+aosz07kaZP5jgc6qxeyiytRY5je7Ftop86FTp3\nhmrVdEdijjR9Mq9rV7W27K+/6o5EnCfHsb3YMtGfPKn62fznP7ojMU+aPplXtqxqO/3WW7ojEefJ\ncWwvtqy6mT5dLVCRkuLloLxEmj6Zd/Cgmv28bRtUrao7GgFyHFuFX5ZXGgbcfDNMmgQtW/ogMGEZ\nAwbA9dfDqFG6IxHCOvyyBcKyZWpiVIsWuiMRvjZkiLo2I9f7hDDHdon+rbfgiSekpjoQRUfDrbfC\nxx/rjkQIe7HV0M22bdCkiVoXVqbEB6alS9VF+F9+kT/2QoAfDt1MmqTGaSXJB65WrdS/y5bpjUMI\nO7HNGf2RIxAZqWqpr7/eh4EJy3n/ffjsM1i0SHckQujnV2f0770HiYmS5AU88ACsX6+WGxRCXJkt\nzujPnFFn859/Dg0b+jgwH5JugM4bPRpycqRfvS/IcWltftO98ssvITzc/5O8dAN03iOPQEwMvPwy\nhITojsZ/yXHpH2wxdPPWW6qG2p9JN0BzqleHdu1gxgzdkfg3OS79g+UT/U8/QWYmdOyoOxLvkm6A\n5g0eDG+/rYb2hHfIcekfLJ/oJ06Exx+HIFsMMrlOugGa17Ah1KwJCxfqjsR/yXHpHyyd6PfvV43L\n+vbVHYn3STdA1zzxhDoZEN4hx6V/sHTVzciRcPiw+ngeCKQboHmnT8ONN8JXX8Ett+iOxj/JcWlt\ntu5eefIk/OtfsHIl1K2rMTBheePGqfWD339fdyRC+J6tE/0HH6ilAtPSNAYlbOHQIYiKgu3bITRU\ndzRC+JZtZ8Yahhp3HTxYdyTCDqpUgS5dYNo03ZEIYU2WPKNfswYeekh1qyxlyT9Fwmo2bYK2bWH3\nbrjqKt3RCOE7tj2jnzRJlVRKkhfOio2FOnVUmwwhRGGWO6PPyoL69WHPHrj2Wt1RCTtZsEBdmF27\nVnckQviOLc/op06FHj0kyQvz2rWDP/+EH37QHYkQ1mKpM/q8PIN//UuN0deurTsiYUdvvAHr1sHs\n2bojEcI3bFde+f77Bp99BqmpuqOxFmkT67zcXKhVCzZvhho1dEdjL3Kc2ZPt2hRPmgTjx+uOwlqk\nTaw5wcHQrZsqtRw9Wnc09iHHmX+z1Bj9P/9A69a6o7AWaRNr3qBBKtGX0HhRFEOOM//mdqJPS0uj\nbt261K5dmwkTJhS7zeDBg6lduzYNGjRgw4YNJT6WlFQWJW1izYuJgZtvhk8/1R2Jfchx5t/cSqsF\nBQUMGjSItLQ0Nm/ezJw5c9hyyUKeixYtYufOnezYsYN3332XgQMHlvh4PXu6E41/kjaxrhk8WM2u\ntsYVKOuT48y/uZXoMzIyiIqKIiIigjJlytC1a1cWLFhQaJuFCxfSq1cvABo3bkxubi45OTnFPl7F\niu5E45+kTaxr7r5bdT6VUkvnyHHmvNxc+O473VGY49bF2H379hEeHn7h67CwMH645J1V3DZZWVlU\nq1atyOONvujqWXx8PPHx8e6E5xfOXwgbeVGb2LbSJvaKSpdWY/WTJ8O//607GuuT48x577+vSnhv\nv13P/tPT00lPTzd1H7cSvcPhcGq7S0t/SrrfaCmTKFbTxER5w7mgd2948UW1gM311+uOxvrkOLuy\nggJITladdXW59CR4zJgxV7yPW0M3NWvWJDMz88LXmZmZhIWFXXabrKwsatas6c5uhXBKcDB07Spd\nLYXnpKaqVtiNG+uOxBy3En3Dhg3ZsWMHe/bsIT8/n08++YSkpKRC2yQlJTFr1iwA1q5dS3BwcLHD\nNkJ4g5RaCk+aNMme7dPdGroJCgoiOTmZhIQECgoK6Nu3L9HR0Uw7dwo1YMAA7r77bhYtWkRUVBTl\ny5dn5syZHglcCGfExKgmeZ9+Cg8+qDsaYWe//aZu996rOxLzLNUCwSKhCD+TkgJjxkBGBjh5WUmI\nIh55RLXVGDVKdySF2a7XjUVCEX6moABuukk1OpMKHOGKI0fUIvRbtkD16rqjKcyWbYqF8LTzpZYT\nJ+qORNjVe++pNthWS/LOkjN6G5Nug847elR1tdy0CQK96EuOG3MKCiAyUl3nadRIdzRF2a57pXCe\ndBs0p1IleOABtbDN2LG6o9FHjhvzvvpKjc1bMck7S4ZubEq6DZr3+OMwfToEcp8uOW7Ms2tJ5cUk\n0duUdBs0r04duO02vbMadZPjxpxff4WtW6FzZ92RuEcSvU1Jt0HXBHpXSzluzJk8GQYOhKuu0h2J\neyTR25R0G3RNmzZq6GbVKt2R6CHHjfMOH4Z58+Dhh3VH4j6purGxVampLL2o22Br6TbolClT4Jtv\n4PPPdUeihxw3znnlFTV0c66Di2XJhCkhinH8OPzrX6rVbESE7miEFZ0+rUoqv/wSbr1VdzSXJxOm\nhChGhQrw0EPw9tu6IxFWNX++OgmwepJ3lpzRi4C0e7eqi/7jDyhfXnc0wmpuvx2efBLuuUd3JFcm\nZ/RClKBWLbjzTvjwQ92RCKvJyIDsbOjQQXckniOJXgSsJ55Qk2Hkg6S42MSJanJd6dK6I/EcSfQi\nYMXHQ1AQLF2qOxJhFfv2weLF0Lev7kg8SxK9CFgOx/9NoBICVOntgw+q3kj+RC7G+inpUOicf/5R\n1RUrV0Ldurqj8Rx5/c3Ly1PHwpo1ULu27micJ90rA5R0KHTeNdeolYPeegveeUd3NJ4hr79rZs9W\ni37bKck7S4Zu/JB0KDTn0Ufhk0/g4EHdkXiGvP7mGYb6Yz9kiO5IvEMSvR+SDoXmVKsGnTrBuTXt\nbU9ef/OWLYNSpaBFC92ReIckej8kHQrNGzpUzZQtIUfairz+5p0/m/fXxeMl0fsh6VBoXmws1Kun\nhnDsTl5/c7Ztgx9/VCuQ+SupuvFT0qHQvEWLYMQIWL/e/md28vo777HHICTEvktMSvdKIUw4e1ad\n1U+ZAs2b645G+MLBg6rKZssWqF5ddzSukV43QphQqpQap33zTd2RCF+ZOlU1LrNrkneWnNELcZHz\nk2a+/RZuukl3NMKbTp5Ur/U336hPcnYlZ/RCmFSunFo6Ttoi+L+PPlKLxds5yTtLzuiFuER2tnrz\n79wJlSvrjkZ4w/nrMW+/bf/aeTmjF8IFNWpA+/bw7ru6IxHesnixan8RKBfd5YxeiGJs3Ah33w27\ndkEJ84+EjTVvDv37+0ftvJRXiiKkq6HzEhKga1fo3Vt3JCWT19O8detUy4vff4cyZXRH4z7pXikK\nka6G5jz9NAwaBL16qdJLq5HX0zWvv65WF/OHJO8sCx6+wlukq6E5LVqohcNTUnRHUjx5Pc3buxe+\n/loN2wQSSfQBRLoamuNwqLP6CRN0R1I8eT3NmzgR+vSBa6/VHYlvSaIPINLV0LzOneHAAbXqkNXI\n62lObi7MnKmWjww0kugDiHQ1NK90aXjySWue1cvrac706aqSKjxcdyS+J1U3AUa6Gpr3zz9QqxYs\nXw4xMbqjKUxeT+ecOgU33gipqXDLLbqj8SwprxTCQ8aOVeV4M2fqjkS44t13YcEClej9jSR6ITzk\n8GGIioJffoGwMN3RCDPOnIE6dWDWLLjjDt3ReJ60QBDCQypXVvX00uzMfubNU3+c/THJO0vO6IVw\n0t69EBdwx5laAAAQ90lEQVSnhnCCg3VHI5xx9iw0aACvvgpt2+qOxjvkjF4ID7rhBkhMhHfe0R2J\ncFZKipoBm5CgOxK95IxeCBM2bYI2bVSzs2uu0R2NuBzDgH//G556Crp00R2N90ivG+E0aY7lnNhY\naNwYZswAX5ary+tj3ooVcPSoamAW6CTRC2mOZdLIkdChg+qX4otJqPL6uGbcOBg2TE16C3QyRi+k\nOZZJt92mJt34qqZeXh/zMjJg+3bo3l13JNYgiV5IcywXjBypzhjz872/L3l9zBs3TrWuCKRWxJfj\ncqI/fPgwrVu35qabbqJNmzbk5uYWu11ERAT169cnLi6O//mf/3E5UOE90hzLvMaNVTuEDz7w/r7k\n9THnt9/g+++hb1/dkViHy4l+/PjxtG7dmu3bt9OyZUvGjx9f7HYOh4P09HQ2bNhARkaGy4EK75Hm\nWK55/nl4+WU4fdq7+5HXx5zx49XCIuXK6Y7EOlwur6xbty4rV66kWrVqHDhwgPj4eLZu3Vpku1q1\navHTTz9RpUqVywci5ZVaSXMs17RqpcaBvb3coLw+ztm6FZo0gZ07oVIl3dH4hld73YSEhHDkyBEA\nDMOgcuXKF76+2I033kilSpUoXbo0AwYMoH8JS7s4HA5GjRp14ev4+Hji4+NdCU0In1m1Si1ksXUr\nBEkNm3bduqkS2OHDdUfiPenp6aSnp1/4esyYMe4l+tatW3PgwIEi33/ppZfo1atXocReuXJlDh8+\nXGTb7OxsatSowV9//UXr1q2ZPHkyTZo0KRqInNELm4qPV+PBPXrojiSw/fortGypWlRUqKA7Gt9x\ne8LU0qVLS/zZ+SGb6tWrk52dTdWqVYvdrkaNGgCEhobSqVMnMjIyik30QtjV88/DwIHwwANSs63T\nqFFqFmwgJXlnuXwxNikpiQ/OlRx88MEHdOzYscg2eXl5HDt2DIATJ06wZMkSYmNjXd2lEJbUvDlU\nraq6JAo9NmxQlTaPPqo7EmtyeYz+8OHD3Hfffezdu5eIiAjmzZtHcHAw+/fvp3///qSmprJr1y7u\nueceAM6cOUP37t159tlniw9Ehm6EjS1dqio9Nm2Ss3od2reH1q0Dcz1YWXhEuE16rDjHMODOO+GR\nR9wbq5fn27wfflBNy3bs8E1LCquRpmbCLdJjxXkOh6rf7tkT7rsPSpjjdFnyfLvm+edhxIjATPLO\nkhYIokTSY8WcJk2gXj3X+9XL823et9+qnjZ9+uiOxNok0YsSSY8V88aNU7Nl//7b/H3l+TZv5Eh1\nu+oq3ZFYmyR6USLpsWJebKxazej1183fV55vc5Yvh6wsNVwmLk8SvSiR9FhxzQsvQHIy5OSYu588\n384zDHUmP2qUzEh2hlTdiMuSHiuuGTIECgrA7PC6PN/O+eILGD1a1c8HejmrlFcKoclff0F0tFoA\n48YbdUfjX06d+r+L3q1a6Y5GP2dypwzdCOEFoaFq8s7Ikboj8T/JyVC3riR5M+SMXggvOX4cateG\nxYvV0oPCfQcPqiS/erX6xCRk6EYI7ZKTITVVJXvhvscfVxdik5N1R2IdkuiF18hUfefk56szz2nT\nCg81yPNn3vlFRbZsgeuu0x2NdUgLBOEVMlXfeVddBW+8oc5EN25UX8vz55qnnoJhwyTJu0IuxgrT\nZKq+OUlJUKsWTJyovpbnz7xly2DzZhg0SHck9iSJXpgmU/XNcThUkp8wAfbtk+fPrIIC+O9/4ZVX\nXGsWJyTRCxfIVH3zateGAQPU8IM8f+bMnKkW+j63tIVwgSR6YZpM1XfN8OGwZg2ENh8tz5+Tjh5V\nbYjfeEN9MhKukaob4RKZqu+azz9X/VkmvbSIFVMnyfN3BY8+CqdPw/TpuiOxLimvFMJiDEN1t7zr\nLhg6VHc01rZmjVrE5ddfISREdzTWJYleCAvatk0tO/jLL1Cjhu5orOnUKYiLU51Au3TRHY21Sa8b\nISyoTh3o2xeeflp3JNY1bpy6gN25s+5I/IOc0QuPkhmfhZX0fBw/rmbMfvQRNGumO0pr2bxZPScb\nNkBYmO5orE9mxgqfkhmfhV3p+ZgyBXr3VjNmK1bUFaW1nD0L/fvDmDGS5D1Jhm6Ex8iMz8Ku9Hy0\nbw/Nm6vJQEKZNk39+8gjeuPwN5LohcfIjM/CnHk+3nwTli5VHS4DXVaWqpmfPh1KSWbyKHk6hcfI\njM/CnHk+rr0W/t//g4cfVr3WA5VhqD42jz0GMTG6o/E/kuiFx8iM2cKcfT6aNYNu3WDgQJXwAtFH\nH8H27fDss7oj8U9SdSM8SmbMFubs83HyJNx2m2qT0L27hkA12rIFmjaF5cshNlZ3NPYjE6aEsJH1\n66FtW/VvoFSc5OVB48YwZIiaWyDMk0QvhM2MHQsrV8LXXwfGBcl+/dQs2FmzpGmZqyTRC8vw94lU\nnvr9zpyBO+6Arl39vxfOhx/CSy/BTz9BhQq6o7EvmTAlLMHfJ1J58vcLCoK5c+H226FePWjTxqOh\nWsaWLfCf/8A330iS94UA+HAodPP3iVSe/v1q1YJPPoEHH1QN0PxNXp7qSjluHNSvrzuawCCJXnid\nv0+k8sbv17QpvPyyWm/2yBGXH8aSBg+GBg3k4qsvydCN8Dp/n0jlrd+vXz/Vi/3++2HRIjWsY3fv\nvAPffqvG5eXiq+/IGb3wOn+fSOXN3++111RCfPJJtx9Ku3nzVH/5lBQZl/c1qboRPuHvE6m8+fvl\n5qpa8yefVJ0d7ejrr6FnT1iyRA3bCM+R8kphC3YpvdQZ5/btalWqefMgPt4nu/SY779X1xq+/FKV\njgrPkvJKYXl2Kb3UHedNN8GcOapaZc4caNnS67v0iE2boGNHNSFKkrw+MkYvtLJL6aUV4mzZEj79\nVDVA++orn+3WZbt2qZYOb72lFkMX+kiiF1rZpfTSKnE2a6Z61/fvDx9/7NNdm5KdDa1bw3PPqT9M\nQi8ZuhFa2aX00kpxNmoEy5aps+Xjx1UveytZtw7uuQcefVS1Xhb6ycVYoVVxY9/DIyNpO3EigJaL\nn8VddAVKjFPXtYSdO9VZ82OPWaf8cvZs1YnynXegc2fd0QQGqboRtlBcaSIUTawjIiNJ8HJiLfai\n67n9ApYrEc3KglatVFXL2LFw1VV64jhzBp55BhYsUNU1N9+sJ45AJIle2NZzCQmMXbKkyPdHJiTw\nYlqa3+3XHX/+Cb17w759alnCW27x7f4PHVLdNh0O1ZCtcmXf7j/QOZM75WKssCRdFz+tctHVjKpV\n1WzToUNVt8tRoyA/3zf7XrdOXTOIi1NtGiTJW5NcjBWWdLmLn56auFTc41jpoqsZDgf06qWGcR55\nRCXfmTPh1lu9s79t22D0aFixAt58UyprLM9w0bx584yYmBijVKlSxrp160rcbvHixUadOnWMqKgo\nY/z48SVu50YolrBixQrdIbjMirGvTEkxhkdGGoZaL9swwHg2MtJ4e9SoIt/vfv31xsqUFLcff3gJ\nj/9sZKTpxzfD08//2bOG8eGHhhEaahhPP20Ye/Z47rH37DGM3r0N47rrDOOllwzj2DFrHj9m2D1+\nZ3Kny2f0sbGxzJ8/nwEDBpS4TUFBAYMGDWLZsmXUrFmTRo0akZSURHR0tKu7taz09HTi7TY3/Rwr\nxn7+DH3kRRc/2z7+eLETl6L2778wcam4M/3iztxLmgA1cu1aEiZOLLJfb1509fTz73CoXvYtW6oV\nnG67TfV979VLVcK40lAsMxMmTFCzcgcOhB07IDjYO/H7mt3jd4bLib5u3bpX3CYjI4OoqCgiIiIA\n6Nq1KwsWLPDLRC88r2liYpEEu/zVV4vd9s+srGJbFPz644/s++ijIt/PK1eu2McpffJksfu1oxo1\nIDkZXn9dzaT94ANV+tihgxpqqVULqlSBkJDC69OeOaNaF3z/PXz3nfr38GF1wXfLFnVNQNiLV8fo\n9+3bR3h4+IWvw8LC+OGHH7y5S+HnShpDzz1wgGmHDhX63ku//879ycl8Utz3q1Qp9nGsPhbvirJl\noUsXdcvJUbXuY8eq2auHDsGxY+rsvEoVqFhRjb+Hh8P//i80bw7Dh0PduoGxWLnfuty4TqtWrYyb\nb765yG3hwoUXtomPjy9xjP6zzz4z+vXrd+HrDz/80Bg0aFCJ40xyk5vc5CY38ze3xuiXLl16uR9f\nUc2aNcnMzLzwdWZmJmFhYcVua0gNvRBCeIVHPoyVlKQbNmzIjh072LNnD/n5+XzyySckJSV5YpdC\nCCGc5HKinz9/PuHh4axdu5bExETuOteHdP/+/SSeu5AVFBREcnIyCQkJxMTEcP/998uFWCGE8DHt\nLRDS0tIYMmQIBQUF9OvXj2eeeUZnOKb06dOH1NRUqlatyqZNm3SHY1pmZiY9e/bkzz//xOFw8PDD\nDzP4XAMvOzh58iTNmjXj1KlT5Ofn06FDB8aNG6c7LFMKCgpo2LAhYWFhfGWHJvOXiIiI4Nprr6V0\n6dKUKVOGjIwM3SE5LTc3l379+vHbb7/hcDh4//33+fe//607LKds27aNrl27Xvh6165dvPjiiyW/\nf684iu9FZ86cMSIjI43du3cb+fn5RoMGDYzNmzfrDMmUVatWGevXrzduvvlm3aG4JDs729iwYYNh\nGIZx7Ngx46abbrLV828YhnHixAnDMAzj9OnTRuPGjY3Vq1drjsic119/3XjggQeM9u3b6w7FJRER\nEcahQ4d0h+GSnj17Gu+9955hGOr4yc3N1RyRawoKCozq1asbe/fuLXEbrQVTF9fZlylT5kKdvV00\nadKEkJAQ3WG4rHr16txyrgNWhQoViI6OZv/+/ZqjMqfcuXr4/Px8CgoKqGyjZitZWVksWrSIfv36\n2boYwY6xHz16lNWrV9OnTx9ADTNXqlRJc1SuWbZsGZGRkYVK2S+lNdEXV2e/b98+jREFrj179rBh\nwwYaN26sOxRTzp49yy233EK1atVo3rw5MTExukNy2tChQ3n11VcpZeMCdYfDQatWrWjYsCHTp0/X\nHY7Tdu/eTWhoKL179+bWW2+lf//+5OXl6Q7LJXPnzuWBBx647DZajzCHw6Fz9+Kc48eP06VLFyZO\nnEgFV+bHa1SqVCl+/vlnsrKyWLVqFenp6bpDckpKSgpVq1YlLi7OlmfE561Zs4YNGzawePFi3n77\nbVavXq07JKecOXOG9evX8+ijj7J+/XrKly/P+PHjdYdlWn5+Pl999RX33nvvZbfTmujN1NkL7zh9\n+jSdO3fmwQcfpGPHjrrDcVmlSpVITEzkp59+0h2KU7777jsWLlxIrVq16NatG8uXL6dnz566wzKt\nRo0aAISGhtKpUyfbXIwNCwsjLCyMRo0aAdClSxfWr1+vOSrzFi9ezG233UZoaOhlt9Oa6KXOXi/D\nMOjbty8xMTEMGTJEdzimHTx4kNzcXAD++ecfli5dSlxcnOaonPPyyy+TmZnJ7t27mTt3Li1atGDW\nrFm6wzIlLy+PY8eOAXDixAmWLFlCbGys5qicU716dcLDw9m+fTugxrnr1aunOSrz5syZQzcnekRr\n7Ud/cZ19QUEBffv2tVWdfbdu3Vi5ciWHDh0iPDycF154gd69e+sOy2lr1qzho48+on79+hcS5Lhx\n42jbtq3myJyTnZ1Nr169OHv2LGfPnqVHjx60bNlSd1guseMwZk5ODp06dQLUUEj37t1p06aN5qic\nN3nyZLp3705+fj6RkZHMnDlTd0imnDhxgmXLljl1bUR7Hb0QQgjvsu/lfiGEEE6RRC+EEH5OEr0Q\nQvg5SfRCCOHnJNELIYSfk0QvhBB+7v8DdGpNt9cTOxoAAAAASUVORK5CYII=\n'}], u'collapsed': False, u'prompt_number': 260, u'input': [u"plot(x, cos(x), 'ro', label=r'$\\cos(x)$')\n", u"plot(x, sin(x), label=r'$\\sin(x)$')\n", u'legend();'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'output_type': u'stream', u'stream': u'stderr', u'text': [u'/usr/lib/python2.7/dist-packages/IPython/extensions/sympyprinting.py:119: UserWarning: The sympyprinting extension in IPython is deprecated, use sympy.interactive.ipythonprinting\n', u' warnings.warn("The sympyprinting extension in IPython is deprecated, "\n']}], u'collapsed': False, u'prompt_number': 261, u'input': [u'\n', u'\n', u'%load_ext sympyprinting\n', u'import sympy as sym\n', u'from sympy import *\n', u'x, y, z = sym.symbols("x y z")\n', u'\n'], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [{u'ename': u'ImportError', u'evalue': u'No module named rpy2.rinterface', u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mImportError\x1b[0m Traceback (most recent call last)', u"\x1b[0;32m<ipython-input-262-67efefd52de2>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mget_ipython\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmagic\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34mu'load_ext rmagic'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m", u"\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/interactiveshell.pyc\x1b[0m in \x1b[0;36mmagic\x1b[0;34m(self, arg_s)\x1b[0m\n\x1b[1;32m 2134\x1b[0m \x1b[0mmagic_name\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0m_\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mmagic_arg_s\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0marg_s\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mpartition\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m' '\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2135\x1b[0m \x1b[0mmagic_name\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mmagic_name\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mlstrip\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mprefilter\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mESC_MAGIC\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 2136\x1b[0;31m \x1b[0;32mreturn\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrun_line_magic\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mmagic_name\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mmagic_arg_s\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2137\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2138\x1b[0m \x1b[0;31m#-------------------------------------------------------------------------\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n", u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/interactiveshell.pyc\x1b[0m in \x1b[0;36mrun_line_magic\x1b[0;34m(self, magic_name, line)\x1b[0m\n\x1b[1;32m 2060\x1b[0m \x1b[0margs\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mappend\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0msys\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0m_getframe\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mstack_depth\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mf_locals\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2061\x1b[0m \x1b[0;32mwith\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mbuiltin_trap\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 2062\x1b[0;31m \x1b[0mresult\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfn\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m*\x1b[0m\x1b[0margs\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2063\x1b[0m \x1b[0;32mreturn\x1b[0m \x1b[0mresult\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2064\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/magics/extension.pyc\x1b[0m in \x1b[0;36mload_ext\x1b[0;34m(self, module_str)\x1b[0m\n', u"\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/magic.pyc\x1b[0m in \x1b[0;36m<lambda>\x1b[0;34m(f, *a, **k)\x1b[0m\n\x1b[1;32m 189\x1b[0m \x1b[0;31m# but it's overkill for just that one bit of state.\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 190\x1b[0m \x1b[0;32mdef\x1b[0m \x1b[0mmagic_deco\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0marg\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m--> 191\x1b[0;31m \x1b[0mcall\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;32mlambda\x1b[0m \x1b[0mf\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m*\x1b[0m\x1b[0ma\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m**\x1b[0m\x1b[0mk\x1b[0m\x1b[0;34m:\x1b[0m \x1b[0mf\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m*\x1b[0m\x1b[0ma\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m**\x1b[0m\x1b[0mk\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 192\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 193\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0mcallable\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0marg\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n", u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/magics/extension.pyc\x1b[0m in \x1b[0;36mload_ext\x1b[0;34m(self, module_str)\x1b[0m\n\x1b[1;32m 57\x1b[0m \x1b[0;32mdef\x1b[0m \x1b[0mload_ext\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mmodule_str\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 58\x1b[0m \x1b[0;34m"""Load an IPython extension by its module name."""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m---> 59\x1b[0;31m \x1b[0;32mreturn\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshell\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mextension_manager\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mload_extension\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mmodule_str\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 60\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 61\x1b[0m \x1b[0;34m@\x1b[0m\x1b[0mline_magic\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/extensions.pyc\x1b[0m in \x1b[0;36mload_extension\x1b[0;34m(self, module_str)\x1b[0m\n\x1b[1;32m 88\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0mmodule_str\x1b[0m \x1b[0;32mnot\x1b[0m \x1b[0;32min\x1b[0m \x1b[0msys\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmodules\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 89\x1b[0m \x1b[0;32mwith\x1b[0m \x1b[0mprepended_to_syspath\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mipython_extension_dir\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m---> 90\x1b[0;31m \x1b[0m__import__\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mmodule_str\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 91\x1b[0m \x1b[0mmod\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0msys\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmodules\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0mmodule_str\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 92\x1b[0m \x1b[0;32mreturn\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0m_call_load_ipython_extension\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mmod\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/extensions/rmagic.py\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 45\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mnumpy\x1b[0m \x1b[0;32mas\x1b[0m \x1b[0mnp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 46\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m---> 47\x1b[0;31m \x1b[0;32mimport\x1b[0m \x1b[0mrpy2\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrinterface\x1b[0m \x1b[0;32mas\x1b[0m \x1b[0mri\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 48\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mrpy2\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrobjects\x1b[0m \x1b[0;32mas\x1b[0m \x1b[0mro\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 49\x1b[0m \x1b[0;32mfrom\x1b[0m \x1b[0mrpy2\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrobjects\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mnumpy2ri\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mnumpy2ri\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n', u'\x1b[0;31mImportError\x1b[0m: No module named rpy2.rinterface'], u'output_type': u'pyerr'}], u'collapsed': False, u'prompt_number': 262, u'input': [u'%load_ext rmagic '], u'metadata': {}}, {u'cell_type': u'code', u'language': u'python', u'outputs': [], u'collapsed': False, u'input': [], u'metadata': {}}], u'metadata': {}}], u'metadata': {u'name': u'wirePIL'}}
Out[136]:
{u'metadata': {u'name': u'wirePIL'},
u'nbformat': 3,
u'nbformat_minor': 0,
u'worksheets': [{u'cells': [{u'cell_type': u'heading',
u'level': 1,
u'metadata': {},
u'source': [u'WMCKEE PIL EDITZ']},
{u'cell_type': u'raw',
u'metadata': {},
u'source': [u'Opens up images and edits them']},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'from PIL import Image\n',
u'import random\n',
u'import os\n',
u'from IPython.display import Image as disImg\n'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 277},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'from wand.image import Image\n',
u'from wand.display import display'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 285},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"with Image(filename='street1016.jpg') as newzImg:\n",
u' print(newzImg)\n',
u' for r in 1,2,3:\n',
u' with newzImg.clone() as i:\n',
u' i.resize(int(i.width * r * 0.25), int(i.height * r * 0.25))\n',
u' i.rotate(90 * r)\n',
u' i.flip()\n',
u' i.sequence(\n',
u' display(i)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'TypeError',
u'evalue': u"'str' object is not callable",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mTypeError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-300-469ad720021a>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 6\x1b[0m \x1b[0mi\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrotate\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m90\x1b[0m \x1b[0;34m*\x1b[0m \x1b[0mr\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 7\x1b[0m \x1b[0mi\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mflip\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 8\x1b[0;31m \x1b[0mi\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mcolorspace\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 9\x1b[0m \x1b[0mdisplay\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mi\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;31mTypeError\x1b[0m: 'str' object is not callable"]},
{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u"<wand.image.Image: 88a02e1 'JPEG' (1280x720)>\n"]}],
u'prompt_number': 300},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"img = Image.open('street1016.jpg')"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'AttributeError',
u'evalue': u"type object 'Image' has no attribute 'open'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)',
u"\x1b[0;32m<ipython-input-295-ec0059fd8676>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m'street1016.jpg'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m",
u"\x1b[0;31mAttributeError\x1b[0m: type object 'Image' has no attribute 'open'"]}],
u'prompt_number': 295},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"imagRandz = random.choice(os.listdir('/home/will/Desktop/video/street'))"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 268},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'jpeg': u'/9j//gAOTGF2YzUyLjg3LjEA/9sAQwAIBgYHBgcICAgICAgJCQkKCgoJCQkJCgoKCgoKDAwMCgoK\nCgoKCgwMDAwNDg0NDQwNDg4PDw8SEhERFRUVGRkf/8QBogAAAQUBAQEBAQEAAAAAAAAAAAECAwQF\nBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+hEAAgECBAQDBAcFBAQA\nAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2\nNzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOk\npaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgC\n0AUAAwEiAAIRAAMRAP/aAAwDAQACEQMRAD8A87tok8pflX8ql8qP+4v5Cm23+qSpqgZF5Uf91fyo\n8qP+6Pyp9FADPKj/ALo/Kjyo/wC4v5U+igCPyo/7q/lR5Uf9xfyqSkpgM8pP7i/lSeUn9xfyFSUl\nAEflJ/dX8hR5Sf3V/KnmigBnlJ/dX8qPKT+6v5U+igQzyk/ur+VHlJ/dX8hTqKAGeVH/AHFo8qP+\n6v5U+igBnlR/3F/Kjyk/uL+Qp9FADPKj/uD8qPKj/uD8qfRQAzyo/wC4v5UeVH/dX8qfRQAzyk/u\nL+QpfKj/ALi/kKdRQA3yo/7o/IUeVH/dX8hT6KAGeVH/AHV/Kjyo/wC4v5U+igBnlR/3F/Kjyo/7\ni/lT6KAGeVH/AHF/KjyU/uL+Qp9FADPJT+6v5CjyU/ur+Qp9FADPKj/uL+VHlJ/dX8qfRQMj8qP+\n6v5UeVH/AHF/Kn0UDGeVH/dX8qPKT+4v5Cn0UCGeVH/dX8qPKj/uL+VPooAZ5Uf9xfyo8qP+4v5U\n+igBnlR/3V/Kjyo/7i/lT6KAGeVH/dX8qPKj/uL+VPooAZ5Uf91fyo8pP7q/98in0UAM8tP7i/8A\nfIo8tP7i/wDfIp9FADPKT+4v5UeUn9xfyp9FADPJj/ur+VHkx/3F/Kn0UAM8qP8AuD8qPKj/ALi/\nlT6KAGeVH/cX8qPKT+6v5U+igBvlJ/cX8qPKj/uL+VOpaAGeXH/cT8qPLj/uL+VPooEM8uP+4v5U\neXH/AHF/Kn0UAM8qP+4v5UeVH/cX8qfSUAM8qP8AuL+VHlR/3F/Kn0UAM8qP+6v5UeVH/dX8qfRQ\nAzyo/wC4v5UeVH/cX8qfRQAzy4/7q/lR5cf91fyp9FADPLj/ALi/lR5Mf9xfyp9FADPKT+4v6UeU\nn91fyp9FADDEn91fypvlJ/cWpDSUwGeUn9xfyo8qP+6v5U+igBnlx/3F/IUeXH/dX8qfRQAzy4/7\nq/kKPLj/ALq/kKfRQAzy4/7i/kKPKj/ur+Qp9FAEvlR4+4v5UeVF/cX8qVDxTqYDPKi/uL+VHlRf\n3F/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UAM8qL+4\nv5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL/3yKPKi/uL/wB8in0UAM8qL+4v/fIo8qL+\n4v8A3yKfRQAzyov7i/8AfIo8qL+4v/fIp9FADPKi/uL/AN8ijyov7i/98in0UAM8qL+4v/fIo8qL\n+4v/AHyKfRQAzyYv7i/kKPJi/uL+Qp9FADPJi/uL+Qo8mL+4v5Cn0UAM8mP+4v5UeTH/AHF/Kn0U\nAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPJj/uL+Qo8mP+4v5Cn0UAM8mP+4v5CjyY\n/wC4v5Cn0UAM8mP+4v5CjyY/7i/kKfRQAzyY/wC4v5CjyY/7i/kKfRQAzyY/7i/kKPJj/uL+Qp9F\nADPJj/uL+Qo8mP8AuL+Qp9FADPJj/uL+Qo8mP+4v5Cn0UAM8qP8AuL+Qo8uP+4v5Cn0UAM8qP+4v\n5UeTH/cX8qfRQAzyY/7i/lR5Mf8AcX8qfRQAzyY/7i/lR5Mf9xfyp9FADPJj/uL+VHkx/wBxfyp9\nFADPJj/uL+VHkx/3F/Kn0UAM8mP+4v5UeTH/AHF/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5\nUX9xfyp9FADPKi/uL+VQ3EUflN8q9PQVZqG5/wBU1ACW3+qWpahtv9WtTVHUYUUUUAFFFFABSUUV\nQCGkpaQ1IBRSUtMAooooEJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UlLQAUUUUAFFFFABRRRQA\nUUUUAFFFFABSUtFAxKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB\naKKKAYUUUUCCiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACkNLSGgBKKKKYBRRRQAUUU\nUAFFFFAEsfSn1HH1xUlMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqFzeuj\nFFAGO9KTsNF7IHU0KytnaQcehrFe4lk+85pLW5+yyc8o559j61KlcdjcoooqyQooooAKKKKACiim\ns6p94gfU0AOoqnLqMEeQCWPtVKXVpDwgCj/PrU3HY2CQvUio1uYnfyw4Lc8fSudkupZOrmptOR2u\n0YAsBnOeg4p6hY6GiiimIKhuf9U30qaorn/VPQAy3/1S1NUNt/qhU1SMKKKKLAJRRSUAFFFFABTa\nWigAooooEFJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRSUtABRRRQAUUUUAFFFFABR\nRRQAUUUUAFJS0UDEooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApaSloAKKKKBB\nRRRQAUUUUAFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiii\ngBydamquKsUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwpn3SN9T/Ot2sCU/\nO2P7xrOZcRKRlDAikozUIZe0y7z+4kPI+6Sf0rUrmHJUiReCpzW9a3sU0QYsAR1BPf8AnWsWQyzR\nWfLq0S/cG4/5+v8ASqUuqTv935R7cU7gbbyJH95gPqeaqSapAnT5v8/57VhtI8nVmNSxWFxN92Ns\nerHaMevOM/hU6jLUurStwnyiqUk8kh+Zifx/ya0YdF7zSD/dT/E/4VeisbeLG2ME+p+b+dHLfuBg\nxW00x+RGb3xx+dXItHkOPMcL7DJP49B/OtnFLVWQrlWLTbaLB27z6tz+nT86s7QvAGAOwpaKYgoo\nooAKhuf9U9TVDc/6p6AG23+qSpaht/8AVrU1SMKKKSgBaKSkoQCUUUtAMSloooEFJRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lFAC0UlLQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAlFLSUDCiiigAooooAKKKKACiiigAooooAKKKKACiiloAKKKKBBRRRQAUUUUAFFFFABSUtJQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaQ0AJRRRTAKKKKACiiigAooooAKnXpUFTR9KAHUUU\nUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigApaiuJfIhkkABKqTzXNTancz9ZCo9E4/Uc0AdDNeW8H35AD6d\nT+Qqquswu4RVO0kDex9/7v8AjXO5JpVOCPqKAOzHNKaztNvRIvlPgEdCT1FWJL6CLq2fYUrgTk4B\nNYEjZZie5q1Nq/ZFx7/5/wDr1ms5brUS1KRMWphcVCT70wyCjlHcmLk8Ug3Odoyx9ACf5VW3kmul\n0u18iEMfvuMk8cD078VXKIy4tNuZv4Ng9X4/Tk/pV6LRlHMrk+yjA/M5J/StSkJA6kUWQEEdnbw/\ncjUH1I3H9asVC08S85/z+OKpT6vEmcHP0+b/AAFF/IDSphkjXqwrBm1iR87Qcerf4DiqUl1NLnc5\nx6DgfpRdiOgn1OGEHGCccAnv9BU9ncG6gWQ4yeoFclz9a6PSIZIrfLDbvOR1zj8aYjRooopgFFFF\nABUNz/qnqaobn/VPQAy2/wBUtS1Dbf6palqRi5optFAC0UUUAFFFJQIWkoooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKKAFooooAKKKKACiiigAooooAKKKKACiiig\nAooooASilooASijFFAwooooAKKKKACiiigAoopaACiiigAooooEFFFFABRRRQAUUUUAFJS0lABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiiigAqSOo6evWgCWiiimAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUdPaqU2pwQ8A7yOwpASX/FrNn+4a5Ota81R542QAANWTTAKKKKAJ43x3\nqaOKSYnarPVRetX7O5NvIGycdx7fnUtDRZi0id+XZYx6dTST6RMozFIGx2IwfzyRW0jiVAyng0GR\nF6n2oWgHIzRSxNskUqfeo63NUSGdlbzghUEHOOn86z91nD0RpT/tcD/P4U7hYqpG7H5QT+FdLDdC\nK3j83htuPpWE19L0QLGP9kf1quzM5+Yk/U0ajN2XWYl+6cn2H9TiqE2rTSfd+X6/N/8AW/SqKQyS\nHEaM5/2QT/Kr8OiXUgy+2Me5yfyXP6kUWEyjJNJJ95if89u1M5JxyT9K6GHQ7dP9YzyH/vkfkOf1\nq9HBFDwkap9AB+Z6n8aegrnOw6VdzYwmwHu5K/py36Veh0FRzLIx9k4H5nJ/QVs0UAVoNPtYOViG\nfVvmP/j2f0qzjHFFFABRRRQAUUUUAFQ3P+qepqhuf9U9AEVv/qlqaorf/VLUtSAUUUlAC0lFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQA2iiimAUUUUAFFFFABRR\nRQAUo60lFAFiiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDcsUicg4\nIHBoAkkkjj+8yj8arNqUKnAy30FZMjMWJJJ57n3plZ85VjpAwcZHIorKsLsqfLY5B/StWqTuSwoo\noqgCiiopLmKH77gEdu/4gUXAlorOl1eMfcQt7nAH9c1Rm1OeT+LZ/u8VNxm/x9cUVmaT5uH3iTae\nQT0z/P0rSqgFooooEFFFFAGZrKv5alS3XBAJ/DpWbDp9xP0jIHq3FdIRn/8AVS0hHOXmnPbQeY7D\nqBtHv6ms2uk1z/jzP++tc3TQwooooAKkjYfxHAqOlAzQNGkNVMSCNAWxxljj+Wciq0l9NL3C/wC7\nRb2Nzc4MceB/eJ2j8z/StCHQTwZZBn0T/E/4UrDMdmLHJJP1pMHtXTxaXaRD/V7ie7c8/wAqw5U8\nqRlx0OKHoIrCImrVisQuYxIodWyORnntUdGSrK442kH9aSZR1SIqDCgKPQDFOpsTiREYdCKcaokK\nKKKBBRRRQAUUUUAFFFFABRRRQAVDc/6o1NUNx/qj9KAIrf8A1S1LUVv/AKpfpUtIAooopAFFFFAB\nRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFL\nSUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2iiimAUUUUAFFFFABRR\nRQAUUUUATJTqZH0p9MAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvenED+pG\nP1qxVHVP9Un+9/SplsNGVSUm6jdWZQtalheBh5ch5HQmsktTS5OOtUriZ0Ml5bxjmQfQcmqUurAf\n6tfxY/0qjFZTzfdQgercD/GrsWjgf62T8FH9T/hTuwKct9PLnLkD0Xgc/So0trif7qM3v0/U1uxW\ncEONqDP+1yfwzUzyRxLlyFHenZiMaPSJn++yoPzb8uBWhDpsEPOC59W/zioptYto/uHeR6cCs+bW\n53yEAT6dadgN8Y6fpS1zFvfzJOJSxbPXPPHpWq+rIB+7UsfU0XsBpUVlW95PJMC2dnIPHy1alv4Y\nhyw/lS5h2LdBKjqR+NY02trzsBP6f/XrPl1C4l/i2/T/ABPNGojo5LuGMcn+n86z5tajXIX5voP6\nmsJnZ+WYk+9Pit5psbI3b3xx+fSnZgWLvUWul2bcLnv1qn2rSh0S5fl2WMe/JH4D/Go7jSLmDJAE\ni+qdf++f8M0CKFFKVZSQylSOxpKYBRRRQBoJqLIYo4yRGhGfVh3zXSqcgHrkZzWBpWmediaT7nVV\n/vY9a3wMYHSmMWsDVYfLn3f3xnFb1Z2rx74A3Taf58VMgMSjGaVVY9KlELdyBUXGbGky+ZaqD/Ad\ntX656GY2KNhuGHTA/QVc0i6adZFdiWzkE/3ataks1KKKKYBRRRQAUUUUAFFFFABRRRQAVDcf6o/S\npqhuP9UfpQBFb/6palqK3/1S1LSAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUlABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUANooopgFFFFABRRRQAUUUUAFFFFAEkZ5qSoU61NTAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5LiGH77qPr1qlLrES58tSx9egpXA0aa8iRglmC/U4rDl1SeQcME/\n3eP161XVZ7g8B3z37fnTuM2JdTgTOMufb/GqF1qElwNuAq/TJp8WkTH75CA/if51bj0uBAN25z7n\nj8ql3YGJu96RpAO9aVzouAzRyHgH5W/x4NYuxskY6UcqC49pj2rS0eATMZWYNsPC+57ms3yjg1oa\nJNsnaPPDD/x4dKNAudBRRRVCK95KYbeSQdQvH1zXLzXEs5zI5b+Q+grodWmjS2dSw3MMbc81zNAB\nRRRQA4HFTRTmLkKp+vNV6f2pNXHcmkvJn/i2+y8VXJLHuT+Jq/p9tb3Mm2Ytn+Fc4De1b8Nnbwfc\njUe+AT+ZosguczFYXU33Ymx6t8v8+taMOhE4M0n4IP6n/CtvH5UUxFSHTLSHpGGPq/zH/D8qtgAd\nKKKACiimSSBKTdhpGTrkCgJKBzyCf5ZrDra1O4RoyrHLE8Adqx1id+imhSCw2irKWMrdePr1qdbO\nNOXbP5UcwWNPRpg1thiAU4/DrV1riJf4s/SsAXEEIwn5Convm/hAo1HY3H1D+6v/AH1VG4vg42u4\nx6AZrJaaR/vEmoz71Nmxl5rxR91c/pUD3Mj98fSoBS4quVE3FLE9a0tF3m4OPu7ef6VnbOM102mR\nxrbRlABuGSfU0AXKKKKYgooooAKKKKACiiigAooooAKhuP8AVH6VNUNx/qj9KAIrb/VD6VLUNt/q\nxU1IAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooo\npgFFFFABRRRQAUUUUAFFFFABViq4qcdBQAtFFFMAopKqzalbw5y24jsOeaALdFZf9ptKMoAPrzVy\n2uPOXBxupcw7FiiiimAUUUUCCiiigCG4m+zxs+N2KxZtTnm4U7B6DrW7JGsqFG6EYqOKzgh+6gz6\n9f1pMDn0trm4OQrNnuf/AK9XodGc48xwB6L/AI1sEqn3mVadmlYZTi062i/h3H/a5/SrQUL0AH0p\naKoQUUUUABG4EHuK5q4jMcrL7n8q6WsfVocSBx/EPSplsNGdTImNvcRyL2apljJp4RB15NQpFWN+\nWeOIct+FZ8+oswIT5feqYWSVu7Veg03oZT/wEU7tisjIuem4jOe+O9VK6DWIkjtFCKB+8Hb2Nc/V\nokSiiimAUopKKAJEcqQwOCPSunsrtbqMf3gMNXKirNpctayhx+I9RSQHV0UyOZJEDhhgjPNMa6hU\n/ezTuhk1FUJNQP8ACAPc1Sm1Ec7nz7LUuQWNaS4ROjAn25qlJOXz1+tZT6gf4Vx7nmq73Ej9WNLk\nkyi8UgQkuQT/ALRyfyFMe8ROEXPv2qhk0lNQsTcsveyt0wPpUDOzdST+NJSVVhC0lFdFpdvbPAr+\nWGfuTzzQBhR2003+rjdvcA4/PpV+DRLh/wDWERj0+8fy6V0OAOgxRQFzm73TlswpDl88HIFVeK6L\nU4fNtnwORyPoOtc7UtjA9K2tFm3RvESSUPHstYtXdKkMd1jOFcc+5HSmhnQ0UUUyQooooAKKKKAC\niiigAooooAKhuP8AVH6VNUNx/qj9KAIbf/VrU1Q2/wDq1qakAUUUUgCiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACl\npKKAFopKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgBtFFFMAooooAKKKKACiiigAooooAKlTpUV\nSRmgCSiiimBnazIUtwoP3ziufrd1z/Ux/wC//SsKkxli1bBx61dR2jO4dqylbBFaCtuUGspaFI24\nJhMoPfuKmrFhnaFsjn2rXSVXUMGGK0i7iaH0VFJdQx9XH6VQm1mJPujJqiTVpjyJHyzAVz02sTyc\nKdoqi80sh5Yt7f8A6qQHQzavBH0+Y1TfVZZPunaKz4bC5n+7G2PVuP51q2ujMP8AXOPov+NDQFa3\nnlNwjElzmugqOK3ihHygfXvUlCAKKKKYBRUMtzHH3yfSqEt878KcCpc0VY0JbiKIcnn0FZ1xeecC\noUYqBEkmbABJq5Fp3eTH0FS7sexnF8UwvikmUpIynnBxUeamwGrpEnzSJzk85rWrnLGXyrhDnAJw\nfpXRVrHYTMvXXHkIvcvn8ga56trXzzCPZjWLTJCiiigAooooAM1NGgbljgCoaUfWgC99qjhXanzf\noM1C99I3Tj+f51Wox+XrSsMc0rt1J/Om0H2q1Z2Ul0wABC927Y9qYirU8drcTY2Rsc+1dHBpttBg\niME+rcmrYAHQYoA56LQ7huZCsY/M1Ld6TFbWzOrMzqQc+3etyo5oxLFIn95SPzFAHHUUp449KSgA\nrd0KYlZIz2+Yfj1rCq5pcoiuk/2vl/PpQB1NFFFADXAdGU9wa5WQbXZemCePxrrK57VIfKuSePm+\nb86mQyjTlby3R/7rA/kaSkpAdcjB1DDoQD+dLVPS5vNtVydxX5T+HT9KuVQgooopgFFFFABRRRQA\nUUUUAFQ3H+qP0qaobj/VH6UARQf6sVLUNv8A6tampAFFFFIAooooAKKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKAClpKKAFopKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAoNFBoAbRRRTAKKKKACiiigAooooAKKKKACnp97FMpR1H1o\nAnopTTJJY4xlmA/GmBla6flhHuf5ViVf1W7S5kXyzlVHWs7NIB1WYJgq4Y1UzSUOKY7l5rpB05pj\nX0uNqnA+tVOfzrdsNJjMayTKSSMhc9vehKwN3MbfJKcfMx9BzVmHSrqYj5Ng9W4/SukjgiiGERV+\ngqSmIyYdBiX/AFjs/qBwP8avxWVvBjZGowMZPJ/Wp6KACiiihggpelVZb1I+nJ/SqEt3JIf6VDmV\nY0prtI/cis+W8eTpxUKRvKeBmr0OngcyH8Kj3pMeiKCJJKeAT71di07oZD+Aq+iLGMKABTuB6Voo\noVxixrGNqilp3AHP61A91EnVh9BzRoIydUj2TbuzDP41QrVv547lQBnj+Ks7MSdTUsew0A1tx3yp\nEgbczAdO/wCdYjXKj7ozUT3Mjd9v0pxTBlrVbn7Q6YzgA1nUuSepzSVRAUUUUxhRRRQAUo9KSnRs\nEOevpQBbEUMCAvy392qrvvP90dsUjuztk1oadpbXB3vkJ/OkMjsdOe7O4/Kg7+tdLHEkChE4AoSN\nY1CqMAelOoEFFFFMAooooA5fVofKum9G+YCqVbmuw5EcoHThj7dqxKAEpVYqwYdQQR+FJRQB2ULi\nWNHGDlRT6z9Hl8y2C/3Dj8OtaFABWXrMW6NZAOQcE+3b9a1KhvI/Nt5F/wBkkfUcj9aTGctS4pOn\nFSLGW7VN0M0dDkw0kZPX5gP51t1y6QujB1fa3qKsC6uU6zsfwqlJCaN+iqGmXjXKybmyVb0xxV+m\nIKKKKACiiigAooooAKhuf9S30qaobn/UtQBFb/6talqG3P7pampAFFFFIAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKAFopKKAFopKKAFopKKAFopKKAFpKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAG0UUUwCiiigAooooAKKKjmuYrdcu2\nPYcmgCSjge1ZM+sD/lkp+pqjNezTdWP4UAb8lxFH1cVTl1aNOFBJrGVZZTgKzfnVuLS7iT7wCfXr\nTAdLq1xJwDge1VGkmlPVmP4mtuDRIB/rCz+2cD9K0IraCH7kaj8OaAOWSyuJRuWJ8euMVG8TofmD\nL9RXZAAdqZLDHKpDqGyO4oA42ipbiMwzOhHRj+VRUAKpwc11tpL50Eb+q/yrka6DQ590TRk5KnIH\nsfSgDVooprusYySF+tADqCQBzxWXPrcSHEQL+/aqgv5bnJb5QO1JvQo1pr1I+F5NUJbuSTvgVHHE\n8p+UE1fi08dX59qj3mBQSOSU/KCfer0OngY8w5PpVotFbrzhR/Oq02pxr9wFvc0+WwFtUVOAP0pW\nYL1KiseXVXx94L9OtUZL7d3LfWn6Ab8l7CnGd30qpJqR/hAHuaw2uXPt9KjLFupJotcDSmvi33nJ\n57VUa7Paq9CqWOACT7UcoXHtM7dTTKtRaddS9IyB6niknsntm2OecZ45qhXK1Kil2CgZJOBQwwcU\nkbbGDDtQK5oRaNcy9cIP9r/61Rz6XcwDO0OPVf8ACulibzI1fswB/Sn0WA4tgV4Ix9aSururOKdG\nyi5wcHHeuVZSrFT1BIoASiiigAooooA2NN0ovtllGF6qDnn3rdAC8DH4VT0ybzrWP/Z46+lXDQAU\nUUUAFFFFABRRRQBXv4vOtZV9sj6iuSrtSMgg9+K5G7iMM8iejH8jQBBRRRQBq6HPsmaM/wAQ4/Dm\nuhrkLOUwzo2cfMM/TPNdcDkAjvzQAdKz7u96xr+Jq5OWWJyvUKa5d5nJOT3qHcZY+RPSkNwi9Oap\nljSZpcg7lg3DHpio2djnkmos0sbDeu7pkZ+lVawrm5otrsUzNxv4H0rWqOHb5Ue0cbV/lUlUIKKK\nKACiiigAooooAKhuf9S1TVDdf6pqAIbc/ul+lTVDb/6pamqQCiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAoNFITQAlFFFMAooooAKKKKAGyDcjL6g9K5z7JcSMRt\nY89W/wDr10tFAGLDo0h5kYL7Cr0WmW8f8O/61cooARVVOFAH0paKKAJY+lPqOOpKYBRRRQBzmtQe\nXcb+cOP1rNrpNYg8y3390IPviueCM54GfpRcdhlX9IlMVyP7pGDTY7RV5kOT6DpVjhRhQF+lTKfY\nfKaVxfbeI8Zz1rEvpJWI3SM/sTxV2KCSb7oPPerq6XEcGXLMO3alFtgzn7e1luD8ik+/YVt2ekLD\n80p3tjoOlaUaKgwoCj0FOqiRAqoOgAFZ91q8UWQnzH1q+671K+oIrj5U8uR1PZiKYy1PqDzHP5VW\nMrN3NMAzwAT7CrUOm3U3SMgep4FFgKtFbMOhMf8AWyAey/48Vfh0u1h52bz6tQK5zSQySY2IzfQG\nr0Oi3UnLYjHuefyrolRU4UBfoMUtAzLi0OBP9Yxk/QVeitYIRhI1Hvjn86mooEL6VlaxENiSAdDj\n8/8A9ValQXsXnW8i+xP5UAcm3WkAJ6UGpIhxSuB0GjyFrfYT9z+R6Vo9a5/TZxbyHd90jH61qSX0\nYGUO4nj6UuYosSTLCMsa5a+H792xjcd351oTz7iWY1lzSea2fyoUm2DRFRRRVEhRRRQBt6FNy8RP\nuo/nW2a5TTpfJuoz2Jwfoa6qgAooooAKKKKACiiigArn9ch2yrIBwwxn1Yf/AFsV0FZ2sReZalsc\nocj8eDQBzdFFFACjg11dhL51tEx4OMH8K5Ot7QpQY5I+4O78OlAGsRWHd6PMGZ4iHB5x0IrdzxRQ\nBxro8ZKuCD70ytbXYsSpJgAEYJ9//wBVZNABRRRQB1eny+bbRnvjB9sVarG0KXiSM+zZ/StmgAoo\nooAKKKKACiiigAqG5/1TVNUNz/qjQBFbf6sfSpaht/8AVrU1SAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUjHAJ9q5+fUbiUsN20cjihIDce4jj+8wqtJqCr91c+56VhBzuBJJ5q4CD+VKW\ng1qbcEyzLkVJWJDKYWBHTv8AStlHEigihO4WHUUUUwCkNL2ptMQUUUUAFFFIzqn3iB+NAC0VVk1C\nCPjO4+1WQdwBHcUALRRRQAUUUUAFFFFADk61NVcdakeaOMZJoukBJTXkRMkkVRm1DslZ8kzN1OaX\nN2KL9zfKylFAIIwaz84HHHtUZlUd6ryTk9DUpMRaaRV6mq0tyxBC8fzqDdmkqlEGzodEn8yAqeqt\n/PmtOub0ebyrkKejjH410lVoK9wooooAKpz6ZBcTGRySTjI+lXKKAIYrWCH7kaj3xzU1FFABRRRQ\nAUUUUAFFFFABSO6orFjgY60tc1qN9LO7JyiLxt9frQBTl2mR9mduflNTwoFWqyZY8Vejixy3WpkU\niREpJJFjFMlnCcA81RdixyamMQYskjSHJpYoXnbbGMnr+FOt7Z7qRY179/QV09nZR2i4Xk45PrWh\nJydJU11H5U0iYwAeB7VDQAUUUUAKDggjtXW2kvnQRv6r/LiuRroNDm3QtGTyrZ/A0wNWiiikAUUU\nUAFFFFABTZY/MjdD0ZSPzGKdRQBxjDaSPQkU2ruqwmK6f0b5h+NUqACruly+Xdx84DfKfx6frVKn\nIxRlYcYIP5UAdnS1HE4lQN64PFPoAzdbi32wcfwNn8DxXOGuxuI/NikT1Uj8a5BlKkqexxQA2inb\nKXbQBY0yYw3SZJCk4P4j/GuqrjgdhDDsQfyNddA/mRo/dlBP5UAPooooAKKKKACiiigAqG5/1TVN\nUNz/AKpqAILf/VLU9QW/+rWpaQDqKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANf7rfQ/yr\nkz3rrJDhGPop/lXJHrVIAq3C+RiqlSxNhqUlcaLWasW05gb27iq9HWs0ykb6sHG4HINLWTaXXkna\n33f5Vckv4U77vpVolosk0YrLk1Uc7QBVKXUJXPU49uKYG49xFH1YfnVWTUo1+6M/WsQzO1M5PXJo\nEaUmpyN0IH0qu0zOeWPWooreaX7qMffFakGld5Wzx0FIZmhGkOFBY+1b1ojRwqr8EfrUkUMcP3FA\np9MAooooEFFLUbzJH1NK47D6ZJKkfU1SlvWbIXiqhcseSTUuQ7F6W+OML+dUpbk/xHNVppHU4Ax7\n1WJpqN9wLL3BPSoTIT3qOiq5UhXFyaKSimIWikpaAHxSeXIjehBrr0YOoYdCK42uk0ifzbZQeWTg\n0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALWDfaS+55kddpOcHtWtdXkVom5yM9h61zl3qE10xO\nSq9lFAEkUSxDLdaZLcYBC9aql2bqaSpsMCSTSqCxpVT1qUAUxHS2KRJAhjGAR17k981YrN0ebfCY\nyeVP6GtLj2p3AwNch2TLJ/eGPxWsmul1iLzbYkdU5/DvXN8t0BpXGJRUiwu3apVtD3IobSFYritD\nR5vKucE4VwQf6UxbRB15qdUVegAqPaIrlNhryFf4s/Sq02qCMHCj8aoFgoJNZ00pkb2qotsGdVaT\nefCjnGSOcdqnrI0KUNE8f905/OteqJCiiigAooooAx9dhyscmPYn27VhV1moRCW1lX23flXJ0gCi\niimB0ujTebahT1T5efzrQrmdOvzaMVPKt+hrXGoEj7g/Ok5WDcv4rmdRh8m5fAwDyK24b9ZJRERh\nj0/CqOtRcxyDvlT+FK47GPRRRQAV0GjTeZbbecoSOfzrn60tEl2zNGTwy5A98/4UwN+iiimIKKKK\nACiiigAqG5/1Rqaobn/VNQBBb/6palqK3/1S1LSAKdTaKAHUUUUgCiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiigkDk4AoAhu3McErDgha5augvryEwSIGySMcVz9NAFFFFMC6HXGc0wzKPeq2aSp5ENMlMxPtTD\nIzdTUlvAbiQIO/f2rbi0u2TqC596pKwmznwrMeAT9AatRadcy/w7R78V0CxRp91QPoKdSAyo9GUc\nySE+y1cjsbaPpGM+p5qzRTuAgAHQAfSloopALSUtQyXCR980XGtSbFQyXMceec1RlvGfOOBVYsWP\nrUN9irFuW9Y525FVSzN1JNSxW0kvQYHqauxWUact8x/SlZhcpxW0svQYHqauxWaR9fmNWOlFUkTc\n5zUf+Pyb/eqrUty/mTSN/tGoqsQUUUUAFFFFAC0UlLQAVp6LOI5zGejjj61mVJBIYZFcHGDmgDsK\nKRWDgMDkHvS0AFFFFABRRRQAUUUUAFFFFABVK91KK1GPvPjhR/Wi7v0iykZy+Oo7VjOyglmwSf51\nPMMrzSy3TF3P/wBaoTT5JCx44FM5xVAJTlFXrKzjP7y5IC9h6/8A1qgZBuOzgE8D2pNgMApRmnha\ncBiochk+nzfZ5ssMKRg+1aMmpp/CrH6nH8qyhS0XYWLk1+8wK7QAfWqmxfSgkCmmVF70tWPQkpar\nNdKOgqNrhj0wKfIwui7nHpTTMi9W/Ks9nc9WptHs/MXMTTTtJ9KhopVUkgDnnitNhN3NDRpdlyF7\nPweO/aukrO0uwFunmSAeY3T/AGRWjQIKKKKACiiigBsjKi5bp/OuQnTy5HXtuOPpXSSP5jFj07Dt\nWLqiqJQykHI5xUqV+hTRRoooqiRatW91s+VunaqlFK1wLMM7m6Rh1L4H410WoQ+dauO4Ab8qy9Ft\nCz+ew4X7vua3SNwYHuCKdkM480VJMhjkdTxgmo6kBafaytBcRsP7wH4Hg1HSGmI7Kiq9jKJraJhn\n7oH4jr+tWKYBRRRQAUUUUAFQ3X+qapqhuf8AVNQBBb/6palqK3/1S1LSAKKKKAClFJRQA6iiikAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRTZJFjTcxAHqaAHUmcdazptWiThBvPv0rOm1GeXIJIHoKYG+88cYyzAVVk1SJOi5/SsJ5nc8k\n00ZY9CaLDNGXVpG6EL/u1TkuZH6kn6kmpI9PuJekZ/HirkWinjzHx7Lz+tAjKLs3WkxXRx6bbR/w\n7vduf/rU97K3kGDGv4DFFwOYNFad7pggQyIxI7g9h9azKYBRRRQBraMwBdT36evFbBrn7KTypEb3\n5rf6ipAKKKKACikJA5PAqvLepH05NDYyzwOtV5btI/eqE108nfFQZ9am9wsWZLx5OBwKr5J681ND\nayS84wPU1oRWccXUbj6mhJsexQitZJe2B6mr0VnHF1+Y+9WKKpKwmwooopiCiiigDlJPvt/vH+dN\np7/fb6n+dMpgFFFFABRRRQAUtJS0AFFFFAGtpWoGMiGT7h+6fQ1vVxfTmug0rUPNXyX++Oh9RQBq\nUUUUAFFFFABRTXkROWYL9TVSTVbaPOG3n/ZGf1oAu8DknFZd5fbiUjPHc+tUrnUpZ+Pur6f41T3E\nnrUyZViV229Mk1AQznJp1FJegDRHTwgH4UfnRkDvSHoL04FKKjMg7UwyGq5WwuuxYFDMFGc1ULE9\n6SjkFzFgzqOlMMzH2qKinyoVxSSepNJRRTEFFFFABRRRQAorZ0jTzxPKP90H+dYorrbGXzraNsg8\nYOOxFAFiiiigAooooAKo6q8sdsWibGDzj0NXqiuIfPhkj6blIzQBybTyyfedj9Sf5Uw1dm0q5h52\n7x6rzVIgjg8Uh3EooopiCiiigDq9OcPaxkemPxHFWxWNoUuUki6kHcPpWzQBz+sRCO43D+MZP16V\nm1v6zDvgD8fIefXn0+lc/UgLSGloNO4zb0KbMckWeVOQP9n/APXWtXOaPKY7oL2cY/LpXR0xBRRR\nQAUUUUAFQ3P+qP0qaobn/VH6UAQQf6sVLUcH+rFSUgCiiigAooooAWlptLQAtFFFIAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr30kkMJeMjI69\n65yWaWYkyMT/ACrqXQSKVPRhiq0WnW0fO3cfVuaLgc/HDJIcIjNx2FXItIuH+9hPr1reVQowAB9O\nKWncRmxaNCn32Z/0H9aux20MX3EUfhk/malopDCiiigAooooAbIu9WU9wRXKzRmN2U9iRXWVg6vF\nsmDAYDD9RTQGdRRRTAsR5AHNb9pJ5sKn8D9awBwBmpor9rdGVRknoew/CkgZvFlXqQKqy6hCvCtu\nPt0rClupZjl2J/l+nFEIy3vR0BF+S6eb1A9Kh5PqaswWUkoyflHqavxWkcXbcfU1HKMz4bWSXtge\npq/FZRxcn5j79KsdKKpKwNhRRRTEFFFFABRRRQAUhIUEnsKWo7jHkyZ6bG/lQBzD/eb6n+dNoNFM\nAooooAKKKKACiiigBaKSloAKcjtGwZTgjpTaXFAHT2F8tzF8xAZfvZ4/Gny39tDwXBPovP8AKuYB\nI70UrgbMutj/AJZxn6sf8M1Tk1S6f+IL/uj/ABzVLNG4VIxzO78sxb6kmm0m6m7qqwEvFJkCoiSa\nSiwiUvTTIaZRRYBdxNJRRTAKKKKACilCn3pdtA7DaKkC0uMUrhYWO2mlPyRsfwNXItFuX5bag9zz\n+lbVhKJbeNvbHPqO9WaYjkry2NpL5ZO7gHPsar1ta9DzHKAORtJ/lWLQAUUUUAFb2hS5SSP+6QR+\nNYNXtJl8q6T/AG/l/OgDp6KKKACiiigAooooAWsTXYB8kwGCeD/MVtVU1KMy2soHYbv++c/0oA5W\niiigAooooAvaVKIrqPJwGyv59K6iuLRtjq390g/ka7CKTzI0f+8oPHuKAG3EfmwyLjOVP51yhGMg\n9Qa7CuWvovJuZFHPOfz5qR3K9FJRQA6N9jq/90g/lXXo4dFYdwD+dcdiuk0mYS2qjJJXg5/z6UxF\n6iiimAUUUUAFQ3P+qapqhuf9U1AEFt/qlqWorf8A1S1LSYBRRRQAUUUUAFFFFADqKbS0ALRRRSAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiikoAWqWqwebblscqc57+9WmkWMZYgVRuL9CCijORyTRew0jECFjwDUnkEdWH0q\nbPoAM0mRS5hlaTrgZ/Om9adt3k08LjpTEya306ebBxtX1ata2sIbfn7zf3j/AEFPs5PMhU9xwfwq\nxTFsFFFFABRRRQAUUUUAFFFFABRRRQAUyf8A1Uv+438jT6in/wBTJ/uN/I0AcvRRRTAKKKKACiii\ngAooooAKWkooAcBThxTMmkoYDy1IWNNopDFyaSiimIKKKKACipo7S4m+5Gzc4zg4/OrseiXLfeKR\n/wC8c/8AoOaAM2jFb0OhRLgyuzewwB/U1ejsraL7sSfiN3880AcvHbTS8JGzfQGrsWi3L/e2x/U/\n4V0QAHQYpaAMqLQoV/1js/0wP8auR2FrF92Jfqef51ZooAzdZh3RK4GSp/nWFXVXMYlhkU91P6Vy\ntSxhRRRQBr6LNw0Wf9oD+dbFc1p8vk3CHIAJwc+hrpatAU9Ti862kGMkDI+tcsa7RlDKQe4xXIXE\nXkzSJ/dYgUhEVFFFABQODmiigDsopBLGjg5DDOafWfo0vm220kZjO3j860KACiiigAooooAKQjcC\nD3GPzpaKAOPuYzDM6HjDGoq0tah8qfcAcOOvv3rNoAKKKKACul0eXzLULzmM7f61zVauhzbZmQk/\nMvA9x/8AWoA6CsTW4/mjk9QV989a3Ko6pD5tqxAyV5/x/SiwHNUUUVIwrX0KX55I+Om78ayamsZf\nIuo2OcZx+dMR1dFFFMAooooAKiuf9U30qWorn/VNQBXg/wBWKlqK3/1S1LSAKKKKACiiigAooooA\nKKKKAFpabRQA6iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRRYAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5Z44vvN+ArPm1FjwgwP1oCxoyTJEMscVQn1HsnHv3rPaRn5JNNGe\nnepuytB7zPIckk00ZNWoNPlkwWG1ffrWlDZww4wuT/ePWmlcVzEnSSBVLKRu6VUZya6DU4fMtmx1\nX5s1z1UkguPRsGpqrA81OpzSkCNHTJMOY+55Falc/A/lyq/+0PyroOtCBhRRRTEFFFFABRRSEgcn\nGKAFoqrJqFtH/Fu9lGf/AK1VJNXP8Ef4sf6D/GgdjVpryIgyzKv1OKwpL64kz8+M9l4/Xr+tVyxO\nSSTn1JoA231O3XoS/wDuj/HFUrnVHdSqLtz3PJqhmmkii4hlFFFMAooooAKKKKACiiigAooooAKK\nKUDJoASlx704gL3zTKAFJzSUVpadpv2r53yIx/499PagCLT9Pe8bJDBB1b+ldBDZW8AAWNeO5GTU\n0caxKFUAAdqdQAUUUUAFFFFABRRRQAUUUUAHWub1OLyrl/8Aa+b866SsrWocoko/hOD689KTQzFo\npKWpAAcHPoc11VvL5sKPx8ygn61ylb2jS7oWj/uH+dUmDNKuf1uDZMsg6OMfiK6Cs7WIfMtiwHKc\n/h3piObooooAKKKKANXQ5ds7R/3x/wCg10FchbSeVNG/91h09K64HIz60ALRRRQAUUUUAFFFFAGZ\nrcW63D5+4fzzXO12NxH5sLrxypHNcg42nHpwaAG0UUUAFT2shinjYHHzDP0J5qCigDtsggH1pkib\n0dPVSPzqKxl8+3ic9SOfwqegDjnXY7L6Ej9aSr2rwmO6LcfP8wA/LmqNIYUA4OfSiihCOut5BLCj\n5zlRyPXHP61JWboshe3KH+A4/PmtKmAUUUUAFRXX+qb6VLUN1/qm+lAEFt/qlqWorb/VLUtIAooo\noAKKKKACiiigAooooAKKKKACnU2loAWiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRTJJUiGXYLWbPq6qdsK7jnqRxTsBq01pEHBYA+mawpLyebq5HsvFRZpMd\njpKKp2V2JlCt98frVygVgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigApKhmuo4upyfQVnT6hI/C/KP896VxmnLcRxDk/gKzp9RdsheB+tUSxY0KCTgc57ClqMV\nmZiST1oAz61bg06R8FzsU8+pP4dq0oLaKAfKOf7x60WAzINPkkwW+VffrWlDZww9FyfVuTU+aSqs\nK4UtFFAhGAYEEdRiuWnjMUroexrqqw9Yi2yK4/i4P4dKaAzKlQ1FT04pPUaJa3bGTfCvqOKwd1WL\nW9+zbvlznoM0LQLm9SEhepA+vFYkmqXL9CE/3R/jmqryvIcs5b6nNMRuyX1vF1kDH0Xk/pVR9XH8\nEZ/4EcfyrKzQTQMtyajcv0fA/wBkD+uT+tV2ld87mY/U1Hmmk0CH0ZphOaSiw7km6mbqSiiwhcmk\noopgFFFFABRRRQAUUUUAFFFFABRRRQAU4HFNooAKUUlXNPCi4jLgH5uhoAt6bpXm4knUheoX+97n\n2/Kt1VCAKoAA6AcAUv8AhRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5H5tvImAcqcfXtU9FAHH0VY\nvoTDcOuMDOR9DVepGFXtKkEd0o5w42/ielUadGzIysOqkH8qaA66myIJEZWGQwINKjCRdy8g9KWm\nI4yWMxuyHscU2r+rxeXdMQDh+cn171QoAKKKKACup02US2yc5KjafqK5atrQpjmSIsAPvAe/egDb\nooooAKKKKACiiigArltTi8m6cbcAnI+ldTWJrkP3JB9D7AUAYtFFFABRRRQBvaHKDG8eTkHd+Fa9\nc1pEvl3QG7arAg+/pXS0AZOtw7o0lC/dOGb0HasOurvYxNbyKc9MjHqK5Q8EjGKQwopKKBGnosoS\n4KEn5xgenFdDXIW0hhmjYHGGH5d664EMAR35pgFFFFABUV1/qm+lS1Dc/wCqb6UAQW3+qWpaitv9\nUtS0gCiiigAooooAKKKKACiiigAooooAKKKKAClzSUUAOooopAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFRXX+ol/3G/lUtV7w4tpv9xqAOZPPXn680KcGkoqgLXaikU5ApayZd\nxUYqQQelbNndiYbSfnA/OsWlRih3AnIppiOkoqtaXa3C+jDqP8Ks1QmFFFFAgooooAKKa8iRjLsq\n/UgfzqpJqlunQl/90f44oAu0dKx5NXkb7iKvucsf6VTlu55PvSMfYcD8hxQB0lFZOkXBbfGckjBB\nPp6VrUAFFFFABRRRQAUUUUAFFFJ0oAWjpVaa9ih4zlvQdvrWZPfSSnGcD0FIZqTXcUWecn0FZ0+o\nSycL8g9uv41SPJpVBJwBk+3WgYpZj1oAJ4AyTVyDTHfBk+QenVq0obWGD7q8+p5NFhGbb6bJLgv8\ng/8AHj+H+NaUNrFB91fxPWpqKYgooooAKKKKACiiigANUtTRWt2yQpHIzTbrU44DtX53/QfWsaa5\nkuGy7Z9B2H4VVgIgKWk6UmaVgHik4puaTNFgHE0maSimAUUUUAFFFFABRU8VpPNjZGxB6HGF/wC+\njgVbj0edsb2VPUfeP6cfrQBm0VvRaTbp9/dIfc4H5Dn9atxwRRfcjVffHP59aAOejsriX7sT/UjA\n/M4FWo9HlP33VPplj/QfrW3RSAzW0aLHyySZ9SFP6DH86py6VcJnaN49iK3qKYHJlWU4ZSD6EUld\nYyJIMOoYe4rPvdLhETPENpHOMnGP1xQBh0UUUAFFFFABRRRQAUUUUAPTrUynYQw6jkfWoV61Lmp6\njOpgk82JG9QOn61JWdpEu+Epx8p4/GtGqEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYutw/Okgzy\nMH046fzrJrpNUi822b1X5vyrmzUjEooooA6LS5jJbKDjKZGPbtmr9YeiykSvH/eXr9K3KoDK1uHd\nCsmfunH/AH1XP1193H5sEiDqV4z61yLDBI9DQISiiigAq1ps3k3UZ45YLz/tcVVoB5oA7akqlDqV\nu8ak/KcDjBP8hUn2+2/56f8Ajrf4UroZZoqt9vtuP3n/AI63+FWfTvTEFFFFABVTUk822kHTA3fl\nVukYblI9QRQBxdFTXMZimkQ9jUNABRRRQA+J/LkR+6sD+RzXYRtvRG9VBrjK6bSJvMtVGPuHb9e9\nAF89K5S8i8meVM5wev15rq+lYOuRkSpIAMEYJ46/zpAZVFFFABXUabOZrWMtjcOPy4rl609Jvo7V\nJVk3c4Ixz0HpTA6Cisl9cX+CEn3ZgP0Ab+dVJNXum6FI/wDdX/4rdSuB0NV7uaGNCHkRcjuwz+Vc\n5JczyZ3yu2eoycfl0qGi47HSW/8AqlqWorf/AFS1LQIKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACnU2igB1FJmlpAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBe/wDHtN/uN/Kp\n6r3v/HtNn+41NAcxRRRTAliPaparKcGrNRNDQUUUlQMfHIYmDLwRW3bXKTrnIB7jNYORSCQochiv\n0OKtXEzpWkRPvMq/UgfzqpLqdtH03SH/AGen5nH6VhGTPU5/P+dNL+lOwGrLq79I41X3Y5/QYx+Z\nqpJfXD9ZWH+78v8ALFU9xNFFgH7xTSxpMVZhs5rg/Kpx/ePA/wDr/hTEV+alht5Z+I0Lep7D6mte\nDSYo8GT9435L+Xf8a0FVV4UYA7DgCgDPstM8hg7ud3ovT8fWtGiikAUUUUAFFFFABRxjPaqt5d/Z\nEDbd2Tj2rGmv55jycD+6Ogpjsa82oRR5A+Y+3TNZs17LNwTgeg6flVXJI5pyqWOACT7CpYBn8aAC\nxwBk1et9MeTmT5B6d604reOAfIoB9e/5nNFhmdBpjtzIdo/u/wAVaMVvHCMIoHv3qWimK4UUUUCC\niiigAooooAKKKKAIp7iK3TdI2PbuaxLrVJZ8qnyJ7feP41p6nF5tuxGMrz+Fc7VAFFFFABRRRQAU\nUUUAFLSx7d67hlcjI9vwrpIbaCLBjjToMHGT+ZyaAMCO0uJcbI2IPfGB+ZwKtx6PM2C7onqOpH8h\n+tbdFAFCPSLdeWLv7E4H6YP61ajt4YfuRovvjn8+v61LRSAKKKKACiiigAooooAKKKKYBRRVW6vE\nt+B8z+np9aAMG5j8qaRfRjUVTTkuxYnJPJqGgAooooAKKKKACiiigBVOKl4xUNSocikBoaVL5dwq\n8fPx9K6CuTR9jK2M7TmuqR/MRX9QDSQx1FFFUIKKKKACiiigAooooAKKKKACiiigBG5BHqMfnXKT\nx+VI6ddrEV1lYWsw7Jg/GHHb1HUmkNGXRRRSAmglMMqSAfdOea6vrz2rj810unSiW1TrlflOe+O9\nMRbPIxXKahD5Fw64wM5X6GumuJxbpuIyew965u/lM8m89cYpX1Ap0UUVQBRRRQBfX7o+lLUatlRS\nswUZrOzuVcinc/dBrprKXz7aNzjJXn6iuSYkkmum0qBoLYburndj09BWhJeooooAKKKKAOe1uHZM\nJAPvjk/7VZddFrUYe3DZ5Rs/gf8A69c7QAUUUUAFa2jXSQGRJH2gjPPr9ayaUHHSgDp5NVs4/wDl\npvI7IpOfx4X9ay9R1KG6QKkT9fvNgEfgM/zrNooAKKKKQBRRRQA+iiipKCilpKAOjt/9UtS1Hbf6\npfpUlUSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOoptOpAFFFFABRRRQAUUU\nUAFFFFABRRRQAUUUUAFFBIXqcVWlv7aHO6TJ9F+b+VAFmqWq/wDHq31FQS6uv/LNPxb/AAH+NUbm\n/nnXaSAPQD+vX9aYFKiiimAVYQ8VXooeoExkFM8w0yilZDuOLk03JorRsdN+0je7FU+nJ+hNGiFc\nzqUAk4HP0FdEml2iY+TcfVyT+Y+7+lWViRBhVVR6AAfyouM52LT7qTpEQP8Aawv6Ng/pVyPRHP8A\nrJVX2QZ/U4/ka2KWi4inFplrEQdm8+r8/pwP0q4ABwOB6UUUXAKKKKQBRRRQAUUUUAFFFFAFPUoP\nOgOB8y8isOK0uJMbInI9dpA/M8V1FFO4XMiDSWPMrBf9lev/ANb9a0oreKAYRce/epaKQ7hRRRQI\nKKKKACiiigAooooAKKKKACiiigBkih1KnoRXLyRGN2THQ11NN2JnO1c+uBmmBzsVhcy9I2H+98v8\n8Z/CrkejOf8AWSBfZQT+pAH862KKYFFNKth1Bc4/ibj64XFYtxF5MrpjGD+nauorG1mLEiyDPzDB\n9OKAMulAyaSlU80AS7RW7p774FH93isMVcsZvIZsqSCPWp5irG1RUH2y3/v/AKN/hQt5bsQA/J6D\nB/wp3JJ6KKKACiiigAooooAKKKKAFopp4GTxWVdXxfKJ8q+vc0DsT3l9t+SI89CfT/69ZZJNJUTv\nngVO4xZD2qKiiqsSFFFFMAooooAKKKKACnJ1ptKKAJQa39Il8y328/If51z69K0dHl2TlDzvGKkZ\nv0UUVQgooooAKKKKACiiigAooooAKKKKACqGrweZb7gOUOc/7Per9MlQSoysMhhigDkaKUqVJB4I\n7GkqRhWxo04HmRs3+0v9eax6kjlMZzkj6UAXr66M0hwflHSs+XpQZvao2ctQlqA2iiiqEFFFFADg\n7DvSFie9JRSsBb061+1Tqp+6OW98dvxrqCyRL8zKoAxlmA/WuQjmeL7jMh77TtP6HP50O7SHLMzH\n1JJz9aYHTyajaRdZk/4Dlv8A0HNVJddgX/VxyOffCj8+T+lYHNLQBpya5cH7iIg/76I/l/Kqr6jd\nyfemf/gPyf8AoOKrUUgA02nUhoASiiimAUUUUAOopBS0gCiiigAooooActOqMdakpMoKSlpD0pAd\nHB/qxUtR2/3BUlWSFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBc0ZpKW\nkAtFFFABRRRQAUUUjEIMsdoHvigBaCR3NZlxq8aDEa7z69h7+v8AKs2a9mnPzMcf3RwPyppAbc+o\nW8GRu3t/dX+p6VmzatK/3MRj25P+fpWZS8+5p2AnkuJJfvyM3sSaiL02nRwyScKjN9BQA0sTRmrs\nelXT/wAKp/vH+gzVyLRVH+skLf7ox/PNAGNSVvS6PA/3GZP1H68/rVGXSZ0+5iQe3B/I/wCNAGfR\nTiCCQRgim0AFFFLigAFdLYzLNbpj0xgdq5wdK1NImw7Rk/eGR9aTHY2KKKKQgooooAKKKbJIkQyz\nAfWgB1MkkWIZchR71nz6mORGMH+8f6Cs6SZ5CSxyTSHY1JdVjT7ilvrxUdvqTySqrBQrfh/Wsunx\nK7ONiliDQgsdLRTUztG7g45HpTqYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkoNJ\nQAUUUUwCiiigAqtfxedbOuORyPwqwzhFLMcAVjX2p+blI+F/vdzTAzSMUoFNqQEAdqGBYRBUnA9q\nrLLigyE1DVyrkrS9hULEk+9JuFT2UBu5cfwjkmmoibNy2fzYkY+nNS0iqFAA4wKWmIKKKKACiiig\nApk0qQruY4/nTbi5S3HPXsvesWe4e4bLdOy9qlsZLc3j3HT5U9P8fWquaQkCoCxJosFxzvk0yiir\nEFPMThVcqdrZAbsSK0dP01pWDyghOoHdv/rVo6rb+ZaYRR+75XjGB3oA5qiiigAooooAKKKKACii\nigCRDU0T+W6tk8EHiq68GpTwKnqM61GDqrDoRmlqlpc3m2wycleP8Ku1QgooooAKKKKACiiigAoo\nooAKKKKACij3NRNcwITulQY7ZGfy60Ac/qkJhun/ANr5uffriqdaOq3cNz5flkkr1OMDHpzzWdUs\nYUlLRQBHRTttNpgFFFFMQUUUUAFFFFAC0tNp1ABRRRSAKKKKACkNLSUAJRRRTAKKKKAFFLTadSAK\nKKKYBRRRSAKkqOnqeKTGhaKKKkZ0Vv8A6talqK3/ANWtS1oSFFFFIAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKWkooAdRSZpaQBWJrMbCRHGdpXBI9QTW3Uc0CTrtcZHWm\ngOVxUiQSy/cRm9wDj866KOxtosYjX6kZ/WrAVR0AH0GKdwOej0m5k6gJ/vEf0zVyPRV/5aSE/wC6\nAv685rWpKLgVo9PtosYiU+7c/wA6sBQvQYpaKkAooooAKKKKAMbWYMMso6Hg/h3rJrqL2ETwOnfG\nR9RXLkbeDTTAKeKZTh0oYDqlt5TDKj+h5+neoqKQzqkYOoYdCM0tUdLm3w7c/c4/CrEl1FF95ufQ\ndaVwJqjlnjhGWYfTvWXcamz5CfL/AD/OqLSM3U9aBGhcaoxyI+Pw5qg8rPksck1HT44nlOEUsfag\nZHUiI8hwqlj7VowaUeDMf+Aj/GtKOGOIYRQo9qYGbBpXQzH/AICP8a0o4UiGEUAU+igVwooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACg0U2gAooopgFFFFABRRRQBkavNIpEY4QjP4//WrJ\nrodQs2uUGzG4evTmsV7SeP70bfXqP0pgQUUUUALTs0yikMM1taM4MbJ3U5/CsbFXdOk8mdQc4bii\n4jfooooAKKKKACqt1eLACq8v/wCg+5qG91DblIj9W/p/9eskkk9aQ7EjuzksxyajLYpGeoaFELis\nSaSij2HWqEABJwASfStiw00r+9lxnsh5/wC+u1SWOmrFh5Pmk7Dsv+JrRoAWpQN64PfNQ1Kh4oA5\nGaMxSOhGNrEVHWnrMGy4LjOJB+GR6VmUAFFFFABRRRQAUUUUAKOtSZ9ef6VFTxSA1tGm2yNGTw3I\nHvW5XKW0pilRumCK6pTuAPqAfzpgLRRTHmii+/Ii/VgP/r0APoqjJq9mnRy/+6p/rgVVk15eRHCT\n6Fmx+Y/+vQBsUVzsmtXT/d2R/wC6P6nJqpJdzy/fldh6bjj8qAOokubeLO+VAR2yM/l1/Sqr6xaI\neC7/AO6v/wAVtrm80uaANmTXDzsiHsWb+gx/Oq0mrXT5wwQeigf1yf1rP3CjdSuMleeWT70jt9WJ\n/rUefc0zcaM0AOJoFNpwoAWiiikAUzrT6FFAEdFKw5pKoAooooEFFFFABSikpRQAtFFFIAooooAK\nKKKAENJSmkpgFFFFABTqbS0AOFBGKVRSsOKkdhlFFFMQU5abSjiiwD6KWkqLFHRQf6talqOD/VrU\nlaEhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAXNL\nTaKAHUUgpaQBRRRQAUUUUAFFFFABRRRQAVzeow+TcOAMBvmH410lZesQBoxIByp5x6VSQGJSikpR\nQA+lAzTN9SCk0MkjlaHO04JprOW6mmipIoZJThFJpWAjp8cTynCKWPtWlBpPRpTn/ZH9TWjHGkY2\noAo9qAM+DSRnMrZ/2V/qa0I4kiGEUKPan0UCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiim5oAU0lFFMAooooAKKKKACiiigAooooAw9Wh8uYPjiT+YrOrf1SLfbkjqhz+HesCm\nAUCilHWgCQAUtIKWpYHRwSebGr+o/WpKz9Km3IydxyPpV2WdLddzn8PWgY5nVBuY4ArIu9QMmVj4\nX17mo7q9e5OAdqDt/jVXigBT6k1EX9KQuabTsgCiipIoJJ2CoMmmIakbyNsUbjW9ZWK26hmGZPX0\n+lPtLNbVfVj1b+n0q1QAUUUUAFPjOc0ynJw1AFXWIBLb7+8fIx6HrXNV2brvRl9QRXITR+VI6+jE\nflQBHRRRQAUUUUAFFFFABTl602lHWgCQcVdbV7kKEXy029wOenvxVIGmmpGSyXtzJndNIQe244/L\npUG4nqaSiqEFFFFABRRRQAUUUUAFFKBQaLAJRRTgKAEAp2KdRSGNpaSikAuaUU2lBoARxTKkao6p\nAFFFFAgooooAKKKKAHUUUUgCiiigAooooAKbTqSgBKKKKYBRRRQBKtO4xUYajJqR3G0tFFMQUUUU\nALmkoooA6a3/ANUtS1Fb/wCqWpaYBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig\nAooooAKKKKACiiigAooooAKKKKAClFJRQAopabSikAtFFFABRRRQAUUE4FU7jUoYc4O9h2HT86AL\nnTmqN5f26oyE7yQQQv8AjWRPfzXH3mIH90cCq1UgEooooAcopxpgNOpMB1a2kyZVkPUcjjtWRViz\nl8mZG7Hg/jQM6KlpAcjNLSEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaSi\nmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1lDqVPQg1zE0ZidkPY11NYmrxbZQ4/iH6imBm0UUUA\nSr0paYnpTjUtDJ7af7NJv68Uy5vHuDlvwHYVXJNJTWgh240maSimAUUVYtbSS5fABC/xNigBtvbP\ncPtQfU1v2tqlsmF5Pc0+C3jt0wgA9T60/cq8llH4igB1FQPeW8f3pF/A5/lVd9WgH3Vdv0oAv0Vj\nvq8hzsRR7nJNVX1C5f8A5aEf7uB/KgZ0RIQZJA+vFRG+t4T80i/hz/KubZ2flmJ+ppM0BY6CTWrd\nfuK7n8APz5rDu5lnmZ1Tywe2c8+tR5pppIQlFFFMAooooAKKKKACiiigB45pSOKatPNSBHijFLRT\nAMUYpQKdik2MjxSVJikK07gMooopiCiiigBRTt1MooAeCTTqjBxTw2akoSiiigQUUUUCBjTTS0hp\noBKKKKYBRRRQAUUUUAKKWmj+lSBaQDaMGnbRT8UrjIsGlwakxRii5Vhm2msuKmpj8ihMViKiiiqJ\nCiiigBRS02nUrAFFJmimAtFFFIApKSimB1Fv/qlqWorf/VLUtABRRRSAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkLBRknA96pz6jF\nHwnzH9KALp4GSQBVKfUY48hfnb9BWXNdyTfebNVyaQya4vZZj8zceg4FVc5oNSwWk1wfkU4/vdBV\nCIamhtprg4jUn37D8a1bbSETmY7j6DpWkiKgwoAA9KVwMV9JaOBnZsuOcDpWZXXkZ61y95CYJnXt\nuOPpQBBTxTKUUAPooopDOltJfOhRvbH4jipqyNImwzRHvyK16dhBRRRUgFFFFMAooooAKKKKACii\nigAooooAKKKKACikzSUALSUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqMXm27eq/M\nPw/+tVqkKhgQeh4oA5OipJ08qR1PYkVHTAUHFHekpaAEooooAKKKWgBybARvzj2rQGqeUu2GIAf7\nXPPrWdRSAtSajcyfx7f90YqBpXbqxP40yigAoopaACiiloGJRS02kAZpKKKoQlFFFABRRRQAUUUU\nAFFFFACjrUlRU8dKTAU0gpaMUrjQClpaSluMKKQ0madgGmjFHWpAtO4iKipCuTTSppiG0UUUAFFF\nFADs0tMp1KwC0UlLSASjFOFPxkU7jIKKUjBpKYgooooAKKKKAFFTVBVyFQy1L2KjqRiirARRRgel\nRcdiDBp3ln0qeii47EPlNSPD8pqeihN3FYzaKcwwTTa1IegUUUUAFFFOCEjNADaKKKAHUUUUgENJ\nSmkpgdRb/wCqWpait/8AVLUtIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACimvIkYy5xVCfUwvEYz7n/CgDQZlQZZsCqE+pomRH83HXtWZLcSS\nnLGoaQyxPdyTHljj0qDNJU8NrLP90HHqelICCpYraWc4RT9e1asGlxpzId59O1XgqoMKMD2pgULf\nSY05k+c/pV9VC8AAfSlopiClpKKAFzWRrEA+WUfRv6VrVDcwieF09uPrQBzFFKwwSD24pKYDxS0g\npaQySCUwyq47H9K6ZX3qGHQgGuVrd0uXzIdvdOPwoAvUUUUCCiiikAUUUUAFFFFABRRSU7AFFJRQ\nAtJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU1pY4/vOo/EZ/Kq76jbIfvFv90UAWqKzJNXU\nZ2IfbP8AhVdtUuG6YX6CgDbpjTRJ951H1P8ASufe5mk+9Ix/GoiSe9AG62pWyn7xb6Cq0mr/ANyP\n8zWVRSGPuZmuH3NjPtUFPplMQUopKBTAfto206ipGMxRSkUlNCCiiimAUtFGKQBRRS0DCiikpAIT\nSUUVQgoopaQCUlOptMAooooAKKKKACiiigAp4PamUo60rAPpaSikMcaTpQTTCc07BcCaTrSCnUAO\nUYp2aZk0maAH7qTdTaKAYpOabilooENop1JimAlOptKKTAWloFFIAqVaaiEmrKx4pNlWKcqFWplW\n7lflzVSqTuJhRRRTEFFFFABVq1bgjP4VVqWFtrik1oOJdooorKxdgoopaQCUUtIaAKlyuGz61BVy\n4XKZ9Kp1utUS0FFFFBIVYt2/hqvT4m2tmkBYnIC9KrUsr7zTaAClptOpgFJilpKAOnt/9UtS1Fb/\nAOqWpaACiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTJJ\nkhGXbb/Os641TqIhj3NFwNJ5Ei5ZgKz7jU8cRj8TWZJNJIcsxNR1IErzvKcsSetRUVYgtJp/ujj1\nPSmMr1PBaSz/AHV4/vdq1INMii5f52x+FXgAAAOKAKMGlxx4Mnzt+lXQAowMAD0paKYgooooAKKK\nKACiiigAooooA57UYPKuG44bkVTrc1eHfEJB/B1PtWHTAUU+o6eDSYxav6VN5U23s/8AMVQpVcxs\nGBwQRQB1NGajilEsauO4p9AgooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUVBJeQR5Bfn0F\nAE9FZ8mrRD7qlvrVZ9WlI+VVX9aANmms6J95lH1Irn5L24kzmRsHsOB+lQliepJ+ppDN97+2T+Pd\n7Dmq76tGPuIze5/wrHooAvyarO33Qq/Tn+dVnu53zmVsH0OP5VDRQApJPU5pKKKACiiigAooooAK\nKKKAEplPpppoQlFFFMB60/FRLUmaloYhptOPNJTQCUUtApAFFLRQAUUUmaAAmm0UUwCloooEFFFF\nABSUtFADaKKKYBRRRQAUUUUAFFFFAElB6U0UppAMpcUYpaYBiiiikAUUUUAFFFFABRRRQAUUUUAF\nOxSDmpAtJsYgX0qRY+eaciYqQVPMygAA7CnUlLUDEcblIrPIwa0apTjEh98GtIMmS0IqKKKskKKK\nKACiiigDSQ7lB9qWobZsqR6VNWEtGWFFFFIApKDSUxg43KRWeRg1o1SmXaxrSLJZFRRRVkhRRRQA\nUppKWgBKdTaWgBaSlpKAOnt/9WtS1Fb/AOrWpaQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUfnUU1zFD95ufQdazJ9TduE+UeopAaclxFD99ufSs6fVGbIiG3371nF2fkn\nOaaaBkjSPJ1NR0oqxBZSzngYHqaAK1WILOac/KOD/Ef6VqwadFDjd85/SrnTpxTAo2+mRx4Mnzt+\nlXQMcClooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkTzEZOzAiuWkQxsynqDiurrD1eDZKJB0c\nfqKYGdTgabSigB9FFFSM2NJm3I0Z6ryPoa0a56ym8mdTnAPB/GuhpiCiiigAooooAKKKKACiiigA\nooooAKKKKACmvIsakscVDc3cdsOeW7CsW4uZLg/MfoOwoAsXmotNlI/lT9TVCiikMKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACkpaSgApD0paKBDKKKKoYop9R08UmAtFFFIBKWiigAoopKAAmm\n0uKXFMBtLTsUUgG0uKWloHYbil20tLRcLDcUu2ilouBDRTm602qEFFFFAgooooAKKKKAFXrTqZTx\nQAlFKaSkAUUUUAFFFFABRRRQAUUUUAFFFKBmgB8a1OFpEWpMVm2UIBTsUUtSUFFFFABUFymQGqem\nyLvQj2q47ilsZ9FFFakBRRRSAKKKKAJ7ZsPj1q5WchwRWgDkA1nURSFpDS0lQMSiiigYVXuR0NWK\nZMMxtVQeomijRRRWpAUUUUALSUUUAFAopRQA6iiikM6W3/1S1LUVv/ql+lS0CCiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKrzXsMP8WT6Cs2fUZJPunYPQUgNSa6ihB3Nz6d6zLjU5JPl\nT5R+v51RJycmkoGKXZuSaZThViCymnOQuB6mgCtVmCyln6DaPU1qQadDEMkb29+n5VcxjgUxFO30\n6KLDEbm9+lXMYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnqMPnQH1Xkf1FXK\nMZGPXigDkqKnvIvJndegzxUFMBwNOpgp9IYZx9a6Gzm86FD3xg/UVztaekS4Z4yevIpCNeiiimAU\nUUUAFFFFABRRRQAUUVHNPHAu52/DufwoAk6VnXepBMpFgt69h/8AXqrd6i82VT5U/U1RoYxzOXJL\nGm0UUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigApKWkoAKKKKBBRRRQMaaSnmmVQgpV60lK\nOtAD6KKWpGRmloNJTAXFKBSilpNgJRS0UXGFFFFIAooooAWiiikAUUUUAI3SoqnPQ1CapCYlFFFU\nIKKKKACiiigApy02lXrQA/FNp9NpDEooooEFLSUUALSUUUALSUUUAFTRrUaKSatKuBUyY0OFKKAK\nWsygooooGFFFLQAUtJRTuIzpBtZh702rF0uCD61XrVbEsKKKKYgooooAKvwNuQe3FUKs2rdRUy1Q\n0WTSUUVkWFFFFABQKKKAKDjDEe9Nqe5XDZ9agrchhRRRQIKKKKAClApKeopAFFO2mk2UFWOkg/1S\n1LUVv/q1qWgkKKKKACiiigAooooAKKKKACiiigAooooAKWqdxqEUPH3j7VmT6hLLwCVHoKANWe/h\nh6Hc3oP61lz6hLLkZ2r6CqdFSMCSeaKAM9KtQWEs2ONo9TTAq4zVqCwlmxxtHqa1YLCGHBI3H1NW\nulAipDp8MOCRvb1PQVboopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQBlavBkLIByODWPXUXEQmidD3BrmGBUkEYIpgJT6ZThQA6pbaQwSq/vz9DUNLj+VSFjqFO4A\njvS1jw6k8UaoUBwOpzUg1Y941/OmOxqUVk/2w3/PNfzNaFrP9ojD4x7UCJqKKKACikJCjJ4FZV5q\nW7KQ/wDff+H+NAy1d36W+VX5n9Ow+tYssrzPuc5ph+uaKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABSUUUCCiiigAooooGFMp9NNNCEooopgPWnUwU6kxhRRRQAUtFFSNBRRRQA\nUUUtABRRRQAUUUUgCiiigA7VEwqQmmNVoTG0UUUxBRRRQAUUUUAFFFFADx0opFpTUgJRRRTAKKKK\nACiiigApQM0lTwp3NJ6DRIibRUlJS1m2UkFLRRSGFFFFABS0lLQAUUUUhEU67kNUa0iMis9xtYj0\nNbQ2FIbRRRVEhRRRQAU+Ftjj34plApNAaNFNQ5UGnViy0FFFFAwooooAiuFyufSqlWbhu1Va1RDC\niiiqEFFFFABU6jioKsL0H0pMqItBxiig1Azftv8AVrUtRQf6sVLVkBRRRQAUUUUAFFFFABRRSEgc\nk4oAWkLKvJOKoz6pGnCDefXtWZNdyzdW49O1IZrXGpRxcL8zfpWVPeyzE7m49B0qtS0CFyaSirdv\nYTT9ti+pH8qBlXrx1q3Bp003JGxfU1qw2MMGMDcR3NWKYirBp8MHON7epq1RRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALXP6pAYp93Z+f8a3ZJEi\nUs5wBXPX14bpxgfKvT1osBVpRSU5abAeFp4AFIOlBbFSMWmsaaTSUBcD1rU0iX76duorL5OABkmt\n6wtRbx5b7zcn2pgXKinnjgXLn6D1qvdaikIKp8z/AKCsaWV5m3McmgCe5vZLnj7q/wB3/GqtFFIA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApKKKBBRRRQAUUUUDCiiigApDRRTQ\nhtFFFMBc08VHTwaTAWiiikUhaKKKQC0UUUAFFFFABRRRQAUUUUgCiimsaYhCabRmkqgCiiimIKKK\nKACiiigAooooAVafTBT85pANopaKAEooooAKKKcq5NAx0SbjVoDHFNVcU+s2ykgpaSlqRhRRRQAU\nUUUAFLSUtABRRRSEFU7ldr59auVBdLlAfStKe4Mp0UUVoQFFFFABRRRQBatmyCPT+tWKp25w/wBa\nuGspKzLQlFFFSMKDwKKimfauO5pxVxFR33NSUoGTT5FxitiWR0UUUCCiiigBQORVioFPIqepZSCh\nqKQ1AzoLf/VLUtRW/wDqlqWtCAooooAKKKZJLHCDvYD9TQA+kd0QZYgfWs6fVVGRGM/7TVmSTyTH\nLMTSA1bjVETIiG4/3j0rMkuZJydzZ/lUFFABRSjOeO9W7fTppsFhsX36/lTAp4PvVy306abk/Ivq\na1oLGCDGFDH+8asUAVYLCGHtub1I/pVqiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigAooooAKKKKACop7mO2Ulz9B61LWXrERZUcdsg/pigDMuLh7hyzfgO\nwqGiimAUtJRQA7caXrTKXNKw7imkNJRTEXtOWHe0kpxs6DsalutSaT5Y/lX9TWf2paQwooopAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJS0lABRRRQIKKKKBhRRSUALSUUUxBR\nRRQAhFJT6ZTAKVaSlFJgPooopFIKWkp1IAopaSgAooooAKKKKACiikJxQkAhao6KBV2JClFApaAE\nNJTqbQAUUUUAFFFFABRRRQAU5abTloY0OpKWlA5pDsNoqTZ7Um2lcLEY5q1EmBmkRKlqeYLBS0Ut\nQUFFFFABRRRQAUUUUAFFFFABS0lFAC0jDcpHqKKKFoxWM08UVJMu1zUdbEsKKKKYgooooAVTgg1o\nA5APtWdVy3OU+lTNaXLiS0UUVmMOlU5ZNzdanmbapqn1q4rQlkiLzUjfdP0pEGBS0X1HYr0Up4NJ\nVEsKKKKYhR1qcHIqvU8fIqWUh1IaWlxUDN63/wBUtS1Fb/6paJbiKHlm/Ada0IJaZJKkQy5ArNn1\nQ8iIY/2j1/Ks6SV5SSzE0AaU+qdoh+J/pWbLM8xyzFjTe1NpAFFLjPSrtvpss2C3yL79T9BQBRxn\ngVdt9NlmwW+RfU9TWrDZRQAYGT6nrVimBWgsYIcYUM2OpqzRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzwieNkPepKKAMO\nbSZ1J2bXH4Zqm9vLH95GH4GuooOCMEZHSmByVFTXUXkzOno1Q0AFFFFAwpRQBThQIKWkpaQwooop\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE0ABNG6m0lMQ+iiikAUUUUAFFFFAxKSlop\niCiiigApwFIKdQygqM9akprUJgxlFFFMkctOpgp9SxoKfTKcKGMKKdSVICUUuKMUAJRS5FNLCmlc\nAJxUROaCc0uKtKwhKUU4Lml20NgNop2KUClcdhtNIqbbTHFFxWI6KKKYgooooAKKKKACiiigB+RT\nl5qMVInFSxofmnqKTFSLgVBQop1ICKWkxhS0tJSAKKKKEAUUUUAFFFFABRRRQAUUUUAFFFFAFe6X\no1VavyruQ1QraL0IYUUUUxBRRRQAVPbthsetQU+M4YGk9hpl6j/GimSNtWskiytO240yMZNNPNTo\nMCtHoiEOoooqCiGQc59aZU0gyM1DWiJYUUUUxBUsZqKnJ1pPVDRPmpB0qMVKOlYvQslbU32bU+X3\n71RZ2c5JJJ7k00UlakC0UoGelXbfS5ZeX+Revv8Al2oApAZ6davwaZLLy/yL+taUFpFbgbRk/wB4\n1YpgQw2sUH3VGfU9amoooEFFFFABRRRQAUUUUAFFFU7m/ih6fOfQf1oAuUdBknFY0urOeEUD361V\ne+uH6ucUAdCzqn3iF+px/OonvrZOsqn2Uhj+hrnZJZJDlmLH3plMDcbVoBnAJ96rSaxIfuIF9zzW\nZRQBdfU7lv4gvsB0q9YX/nfJI3z/AJZrEpKAOtorOsNREw2SnD9j/e+natGkAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBIGSSAPegDJ1iEDZIO/yn/GsitTUL5ZVMaD\nIz94/wBKy6YBRRRQMfRRRUgFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGmGn\n009aaASiiimIcKWkpaTAKKKKQwpKKKYgooopgFKBShadSbGhMUdKM0ZqRhRSZFGaqwmR0UppKYhR\nTs0ynikwFpQcUlBoHcXdRuplFFkFxd5oyaSkzSsFxSabRRVCFAqRVpAQBRvpDH0UzzBR5gpWHsPx\nRUe+k3miwXJs01+lRbqM00hXEooopiCiiigAooooAKUDJpKkjXmhgS4AFLS+tJWbepaCiimO2KEg\nED/vBz3q4Kzh1rQjbKg0TQkOooorMYUUUUwEpaKKBiUUtFACUUtFFwEooooAKKKKADqKz5BhiPet\nCqlyvOaumyWQUUUVoSFFFFABS0lFAF6NtyioJ3y2PSiJ8IRUJOTSSSKvcVRk1MKbGuKfSlYEFFFL\nUDGkZFQVYb7pqt3NaIlhRRRTEFFFFAFhTkVJnioozxinGspF3IkUscAEn2q/Bpcr4MuEHp3rRs4I\n44wVUZPfvVmtCSGC1jgA2qMjuep/GpqKKBBRRRQAUUUUAFFFFABRRTHkSMZdgv1oAfUE91Hb/e/L\nvWfcaqWysX/fZ6/hWaSWPJoAt3GoyzEhCY06Y9fqapUUUwCikzRmgBabRRQAUUUUAFFFFABWzp2o\nb8Qv17HPX6571jUUAdbRWXp2o79sMud3RW659j71qUgCiiigAooooAKKKKACiiigAooooAKKKKAC\niiigAooooAKKOtZ15qYT5Ivmbu3Yf4mgC5POluu5z9B3rFur6W5OPup2A/rUEkrzNuc5NMpDA80w\nin01qaAbRRRTEKKdTRTqljCiiigApaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKSigAphp9\nNNNCEooopgFPplOHSkwQtFFLikMbRS0tMY2gGiiggNxoyaKM0FXDNFFFAgooozTAQ0lLSUAFKOtJ\nQKAJKDRRSGNopDSUxC0lFFABRRRQAUUUUAFFOCE07y6GFiOjFTBBS49qVx2IcUbDU4prNii9waIt\nppKcTTaYgooooAKKKKACrEfSq9TRv2NJ7DRJRRRWZQVXc5NSu2Kgq4oTFFXohtQVVgTcwPYVcpTG\ngpc0lFZjFzRmkooAdRTaXNAC0UUmaBC0UUUgCiiigAopKSmMKjmXchqSg8jFVDRiZnUUrDBpK1IC\niiigAooooAKcnJptSRCk9holAxS0UVmUJRRRQAyQ4FQ1LKe1RVrFEsKKKKBBRRRQA+M81KelQpwa\nmNTJFHQW/wDq1qWorf8A1a1LTJCiiigAooooAKKKKACiqdzqMVv0+dvQH+ZrJnvZbgnLYH90dKAN\nK61RY8pF8x9ew/xrIlnklOXYsaiozTAWikpKAHUU2igAooooAKKKKACiiigAooooAKKKKAF9K19O\n1DO2GQkt2brn2NY9FAHW0VkafqP/ACzmb02sf5Mf61r0gCiiigAooooAKKKKACiiigAooooAKKKK\nACmvIsalmYKKhubuO2HPLHoo/wA8ViXFxJcNlj9F7CgZYu9Raf5Uyqfqao0UUgCiiigAooooAYeK\nSnEU2qEFOFNpRQMdRRRSAKKKKQC0UUUAFFFFABRRRQAUUUUAFFFFACUUUUAFFFFAgppp1FNbgMoo\nopgFKDSUUAO3UbqbiigB26kzSUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAPWlpgNPpANIptSGo\nzQAUUUUwCiiigApyrmgLmpQMVLkUkLRRRUjCiiigBDwKjY5oZ+1NzVpCYlFFFMkKKKKACiiigAoo\nooAmWT1p+arU/fxU2Q7iMcmkpKkhG5hmquBZhj2L7nmpaKSspO7LCiiipAKKKKACiiigAooooAKK\nKKACiiigAooooFcKKKKAKlwMNUNWrgZGfSqtbIlhRRRTEFFFFABU0fSoafGcZpS2GiaiikrIoWlp\nKDTQEMh5plOfrTa1RLCiiigQUUUUAA4qdTuFQVItJ6lLU6S3/wBWtS1Fb/6taloJCiiigAooooAK\nz9VdkhG04y1aFZusf6qP/f8A6UAYlFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigArW0/Uf+WUzf7rn+THP61k0UAdbRWNp+olcRSkBf4W9PQGtmkAUUUUAFFFFABRRRQAUUVHc\nTx267nOPQdz9KAJKzrvUlTKQ8t3bsPp6/wAqo3N/LcZ52r/dU9f971qrSAViXO4kk0lFFAwooooA\nKKKKACiiigBDTKeaaaaBiUUUUxDgaWminUgCiiigYClpBS0gCiiigAooopAFFFNpgLRRRQIKKKKA\nCiiigAooooQDaSnbaMVQDaKdtpdo9aAGUU7AoxQA2lpcUUANop2KTFIBKKdiimA2lxS4opXAbS0t\nFMBKKWigBtFFFABTxTKUUAPpNuaKUdaQxPLNGypaKVwsR+XSiOn0Umx2DGKKKKQwooooAKY54p9R\nydqa3BkdFFFWQFFFFABRRRQAUUUUAFFFFABRRRQAU5G2sDTaKANGimRNuQGpKxe5oJRRRSAKKKKA\nCiiigAooooAKKKKACiiigQUUUUAFFFFAhrjcMVQIwcVoVTmGHP8AntWkGJkdFFFWIKKKKAClHWko\noAsDpRQvSlrNosKQ8DNLTXPy0JAyCiiitCAooooAKKKKAHAVNtGKYgqwV4po3prQ27f/AFa1LUVv\n/q1qWpMAooooAKKKKACs3Wf9Qn+//StKsbWv9ZF/un+dAGXRRRTAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACtTT9QMe2KXG3oGPG369BisuigDraKxdOv/ACsQycrnhs/d\n9jk421tUgCiiigAopNwA3EgDrnPFZd5qWfkh/F//AIn/ABoAsXV+lvwPmk9P8f8ACsWSR5m3Pyab\nRSGFFFFABRRRQAUUUUAFFFFABRRRQAUjUtBpgR0UUUxCilptOpALRSUUALS0lJSC4tFJS0DCiiig\nQUUUUAFFFFABRRRQAUUUUDCnYpBTqBhSYooJpagKaZRmkqiQooooAKKKKACiiigAooooAKKKKACi\niloASg0U3NABRRRTAKKKKAH0UlLUsaJB0paYtPpMoKKKKkQUUUUxhRRRQAUhGRS0UICvRUnl/Wm7\nSK0FYbRRRQSFFFFABRRRQAUUUUAFFFFABRRRQBYtn5K1ZqjGcOp96vdRms5lR2CiiioKCiiigAoo\nooAKKKKACiiigAooooJCiiigAopM0ZphYKguFyAampsgyhqo6MGUqKKK0JCiiigAooooAljp9Qr1\nqcVMi0xKZIeKkqKQ9KSEyOiiirJFXrSuMUsfWnSClcLEVAooFMETxirH8NQR1O3AqkddOKSNm3/1\na1LUVv8A6talqDkCiiigAooooAKxda/1sX+4f51tVi61/rYv9w/zpgZlFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFaOn3/kfu5MlOx67f64rOooA63OahnuYr\ncZduf7o+8foKxINRmhjKA5/u5/g+lV2ZnJLEknuaQFm5vZLk88J2X/Gq1NzS0MApaSikMWikooEL\nRSCigYtFFJQAtFFJmgBaKTNLTAKKSikA0jFJTjTaaEFKDSUopgLRRRSAKKKKAFooopAFFFFMAooo\npAFFJRTAWikpaQBSgUmaXNAx1JSbqTNFgHE00mjNJTQmFFFFABRRRQAUUUUAFFFFABSGlptMBRS0\ngpaQADQaKbmgAzRRS4pgJRTwKGHFJO47DKKKKYhwpabTqTBAODUtRU9allIdRRRSGFFFFABRRRSE\nFFFFMYUUUUABwe1ROMVLTHGRTTYmiKiiirJCiiigAooooAKKKKACiiigBRV6Ntyg1Qq1bNnIzUTK\niT0UUVmUFFFFABRRRQAUUUUAFJS02gBaKSimAUUUUCCiiigAooo/woApONrEU2pJsF+KjrVEBRRR\nTAKKKKAFBwanFV6mjNS9hpj6gc81MTUB60RQ2JRRRVEkkY5qQ8g02MU8ipe5ZWopzCm1RBNGasE5\nFVEOKshsinc6aTVtzct/9WtS1Fb/AOrWpak5gooooAKKKKACsXWv9bF/un+dbVYutf6yL/dP86YG\nZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAO\npAaSigB9FJS0rAFFFFABRRRSAKKKKACiiigAooooAKKKKACmU+kpgNopcUYpgLRRRSAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbQAUUUUwClzSUUAFFF\nKKAClpaAKQIcBS0UVJRCeKKe4plWJhThTacKBC04Gm0VLRRIDS00UoqQFooooAKKKKACiiigYUlL\nSUALUgXFIq06k2BTYYJFJUs64aoq1IYUUUUAFFFFABRRRQAUUUUAFSwNteoqUdaBo0OtFNjO5RTq\nxluWFFFFIAooooAKKKKAEzSUUUxBRRRQAUUUUAFFFFABTZG2qadVaZ8nFVFAyGigUVoQFFFFABRR\nRQAU5G2mm0UATM3FRGlNNoAKKKKAJFbFLvptJSGITmkoopgFL+VJSikB09v/AKtalqCCRPLHzCpP\nNj/vr+dAh9FN82P++v50nmx/31/OgB9FNMif3l/OkMiL1ZR+IoAfXP6qT9qYZPAAHt9K3fMj/vD8\n6wNSObqQg5+7/KmgKlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAOFLSCikAtFJRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRRYAooooAKKK\nKACiiigAooooAKKKKACiiigAooopgFFFFIAooooAKKKKACiiigAooooAKKKKACiikoASiiimAUUU\nUAFFFFAC4paKKGAU8UgFPFQxiUUfnRQMRhkVFU1REYqkJiUopKBTsIfRQKKTGOFOpq06pGFLSUtI\nAooooAKKKKBhSgZpBzUoGKBXFpKM0nFSMbKu5aq1f25GKosMMR71pHYliUUUVQgooooAKKKKACii\nigAooooAtWz5BX05qeqcDYce9XKzmtS47BRRxRxUBcKKTI9aMigaFpDSE+9Ju96Yri0UmR6ij8aN\nQFoqNpgrYxTlcN0p2YrjqKQHikzRYY6ijNFFgGu21Sapk5NTXDdqgFaxRNxQKCMUgpxoENooooAK\nKKKACiiigAooooAKBRSigB1BpaQjikVYbSUtOC0xWGgUuKdS0yuU/9k=\n',
u'output_type': u'pyout',
u'prompt_number': 278,
u'text': [u'<IPython.core.display.Image object at 0xa2c42d0>']}],
u'prompt_number': 278},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 271},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 271},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'def imgOpen(object):\n', u' img '],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 272},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imagRandz.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'AttributeError',
u'evalue': u"'str' object has no attribute 'show'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-273-145edbdcb3a0>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimagRandz\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mAttributeError\x1b[0m: 'str' object has no attribute 'show'"]}],
u'prompt_number': 273},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 273},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"img2 = Image.open('street1715.jpg')"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 274},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'img.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 275},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'img2.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 81},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgAgain = img2.rotate(180)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 82},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgAgain.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 83},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 83},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgLower = ImageChops.constant(imgAgain, 2)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'ImageChops' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-84-02f8b06c2543>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgLower\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mconstant\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgAgain\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m2\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"]}],
u'prompt_number': 84},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgOver = ImageEnhance.Brightness(imgLower, 3)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'imgLower' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-85-0ff9e4822fa9>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgOver\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageEnhance\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mBrightness\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgLower\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m3\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'imgLower' is not defined"]}],
u'prompt_number': 85},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgLaw = enchane.enchancer(imgOver)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'enchane' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-86-b3d275ea4a7a>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgLaw\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0menchane\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0menchancer\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgOver\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'enchane' is not defined"]}],
u'prompt_number': 86},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgLower.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'imgLower' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-87-f45aaf132dd9>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgLower\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'imgLower' is not defined"]}],
u'prompt_number': 87},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"img4 = Image.open('edit.jpg')"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 88},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'img4.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 89},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'from '],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'SyntaxError',
u'evalue': u'invalid syntax (<ipython-input-90-b812af2a111f>, line 1)',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-90-b812af2a111f>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m from\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m invalid syntax\n']}],
u'prompt_number': 90},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgNever = ImageChops.blend(img4, imgAgain, .5)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'ImageChops' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-91-aa706f946102>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgNever\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mblend\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg4\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimgAgain\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m.5\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"]}],
u'prompt_number': 91},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 91},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"imgTitle = Image.open('street0276.jpg')"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 92},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgTitle.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 93},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgComt = ImageChops.blend(imgTitle, imgNever, .5)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'ImageChops' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-94-afe2112b29e2>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgComt\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mblend\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgTitle\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimgNever\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m.5\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"]}],
u'prompt_number': 94},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgComt.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'imgComt' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-95-0d98e3d93c85>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgComt\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'imgComt' is not defined"]}],
u'prompt_number': 95},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgConvertz = ImageEnhance.Color(imgComt)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'imgComt' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-96-7c27bff797eb>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgConvertz\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageEnhance\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mColor\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgComt\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'imgComt' is not defined"]}],
u'prompt_number': 96},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgNever.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'imgNever' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-97-d984b3647799>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgNever\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'imgNever' is not defined"]}],
u'prompt_number': 97},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'img3 = ImageChops.composite(img, img2)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'ImageChops' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-98-d324501a7059>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg3\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mcomposite\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimg2\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"]}],
u'prompt_number': 98},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'bighImg = ImageChops.darker(img, imgNever)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'ImageChops' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-99-56e9844e5ec6>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mbighImg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdarker\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimgNever\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'ImageChops' is not defined"]}],
u'prompt_number': 99},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'bighImg.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'bighImg' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-100-e14f7a6ba4e5>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mbighImg\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'bighImg' is not defined"]}],
u'prompt_number': 100},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import random'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 101},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'randomNumbz = random.randint(0,20)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 102},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lizt = []'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 103},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lizt.append(randomNumbz)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 104},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"hello = 'hello there. i am going'"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 105},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print hello'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'hello there. i am going\n']}],
u'prompt_number': 106},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'revHello = string(hello)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'string' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-107-71f4a7bc2988>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mrevHello\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mstring\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mhello\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'string' is not defined"]}],
u'prompt_number': 107},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print lizt'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'[18]\n']}],
u'prompt_number': 108},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 108},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 108},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lizt.append(hellothere)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'hellothere' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-109-c782da6e04dc>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mlizt\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mappend\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mhellothere\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'hellothere' is not defined"]}],
u'prompt_number': 109},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 109},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'from PIL import ImageEnhance'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 110},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'enchan = ImageEnhance.Brightness(img)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 111},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'chanEnv = enhancer.enhance(9)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'enhancer' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-112-b8eb66ca3f31>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mchanEnv\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0menhancer\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0menhance\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m9\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'enhancer' is not defined"]}],
u'prompt_number': 112},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'chanEnv.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'chanEnv' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-113-3a5f90d5fb40>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mchanEnv\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'chanEnv' is not defined"]}],
u'prompt_number': 113},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import cocos'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 114},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'cocos.'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'SyntaxError',
u'evalue': u'invalid syntax (<ipython-input-115-cf7488254da9>, line 1)',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-115-cf7488254da9>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m cocos.\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m invalid syntax\n']}],
u'prompt_number': 115},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'# PIL_ImageEnhance_bright1.py\n',
u'# darken and lighten an image using PIL\n',
u' \n',
u'from PIL import Image\n',
u'from PIL import ImageEnhance\n',
u' \n',
u'# pick an image file you have in the working directory\n',
u'img2 = Image.open(img2)\n',
u' \n',
u'# factor 1.0 always returns a copy of the original image\n',
u'# lower factors mean darker, and higher values brighter\n',
u'for k in range(0, 9):\n',
u' factor = k * 4.0\n',
u' print(factor), # 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0\n',
u' img_enhanced = enhancer.enhance(factor)\n',
u' \n',
u' # safe images as Audi_bright025.jpg to Audi_bright200.jpg\n',
u' # to the working directory\n',
u' img_enhanced.save("twar_color%03d.jpg" % (int(factor*100)) )'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'AttributeError',
u'evalue': u'read',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-116-85cf29b63596>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 6\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 7\x1b[0m \x1b[0;31m# pick an image file you have in the working directory\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 8\x1b[0;31m \x1b[0mimg2\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg2\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 9\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 10\x1b[0m \x1b[0;31m# factor 1.0 always returns a copy of the original image\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1991\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1992\x1b[0;31m \x1b[0mprefix\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mread\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m16\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1993\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1994\x1b[0m \x1b[0mpreinit\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36m__getattr__\x1b[0;34m(self, name)\x1b[0m\n\x1b[1;32m 512\x1b[0m \x1b[0mnew\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'data'\x1b[0m\x1b[0;34m]\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtobytes\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 513\x1b[0m \x1b[0;32mreturn\x1b[0m \x1b[0mnew\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m--> 514\x1b[0;31m \x1b[0;32mraise\x1b[0m \x1b[0mAttributeError\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mname\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 515\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 516\x1b[0m \x1b[0;31m##\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n",
u'\x1b[0;31mAttributeError\x1b[0m: read']}],
u'prompt_number': 116},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import ImageChops\n', u'import random'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 117},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'wireNum = random.randint(1000, 6000)\n',
u'\n',
u'wireDub = wireNum + 50'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 118},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print wireNum, wireDub'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'3872 3922\n']}],
u'prompt_number': 119},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"imgName = 'wire'\n", u"imgTwo = 'wire'"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 120},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'img = Image.open("wire3000.jpg")\n',
u'img2 = Image.open("wire2000.jpg")'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'IOError',
u'evalue': u"[Errno 2] No such file or directory: 'wire3000.jpg'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIOError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-121-b4d3201bba56>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"wire3000.jpg"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2\x1b[0m \x1b[0mimg2\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"wire2000.jpg"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1986\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0misStringType\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1987\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1988\x1b[0;31m \x1b[0mfp\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mbuiltins\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"rb"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1989\x1b[0m \x1b[0;32melse\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;31mIOError\x1b[0m: [Errno 2] No such file or directory: 'wire3000.jpg'"]}],
u'prompt_number': 121},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'img.show(img)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 122},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import random\n',
u"ranz = random.choice(['constant','invert','lighter','darker', 'difference', 'multiply',\n",
u" 'screen'])"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 123},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print ranz'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'screen\n']}],
u'prompt_number': 124},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'screen = ImageChops.difference(img,img2)\n',
u'screen.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 125},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"screen.save('edit.jpg')"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 126},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'brightLight = ImageEnhance.Brightness(screen)\n', u'\n'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 127},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"img3 = 'ImageChops.' + ranz + '(img, img2)'"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 128},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"openFilz = Image.open('edit.jpg')\n", u'openFilz.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 129},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightFilz = ImageChops.lighter(screen, img)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 130},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightFilz.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 131},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"party = Image.open('33561.jpg')"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 132},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 132},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgSwap = ImageChops.difference(party, img2)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 133},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgSwap.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 134},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imgBlack = ImageOps.col(imgSwap, 50, 100)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'ImageOps' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-135-386d9f1b8114>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimgBlack\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageOps\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mcol\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimgSwap\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m50\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;36m100\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'ImageOps' is not defined"]}],
u'prompt_number': 135},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print imgWhite'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'imgWhite' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-136-21c051a20798>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0;32mprint\x1b[0m \x1b[0mimgWhite\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'imgWhite' is not defined"]}],
u'prompt_number': 136},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 136},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightXus = ImageChops.darker(img2, img)\n',
u'lightXus.show()\n'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 137},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightFilz.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 138},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightNope = ImageChops.multiply(img, lightFilz)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 139},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightNope.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 140},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightGone = ImageChops.invert(lightNope)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 141},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightGone.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 142},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightCheck = ImageEnhance.Sharpness(lightGone)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 143},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lightCheck.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'AttributeError',
u'evalue': u"Sharpness instance has no attribute 'show'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-144-15ea9899b633>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mlightCheck\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mAttributeError\x1b[0m: Sharpness instance has no attribute 'show'"]}],
u'prompt_number': 144},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'from ftplib import ftp'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'ImportError',
u'evalue': u'cannot import name ftp',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mImportError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-145-78a382fad531>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0;32mfrom\x1b[0m \x1b[0mftplib\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mftp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u'\x1b[0;31mImportError\x1b[0m: cannot import name ftp']}],
u'prompt_number': 145},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print img3'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'ImageChops.screen(img, img2)\n']}],
u'prompt_number': 146},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import ImageOps'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 147},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 147},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'img5.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'img5' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-148-92af25d77188>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg5\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'img5' is not defined"]}],
u'prompt_number': 148},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'#!/usr/bin/env python\n',
u'# Batch thumbnail generation script using PIL\n',
u'\n',
u'import sys\n',
u'import os.path\n',
u'import Image\n',
u'\n',
u'thumbnail_size = (28, 28)\n',
u'\n',
u'# Loop through all provided arguments\n',
u'for i in range(1, len(sys.argv)):\n',
u' try:\n',
u' # Attempt to open an image file\n',
u' filepath = sys.argv[i]\n',
u' image = Image.open(filepath)\n',
u' except IOError, e:\n',
u' # Report error, and then skip to the next argument\n',
u' print "Problem opening", filepath, ":", e\n',
u' continue\n',
u'\n',
u' # Resize the image\n',
u' image = image.resize(thumbnail_size, Image.ANTIALIAS)\n',
u' \n',
u' # Split our original filename into name and extension\n',
u' (name, extension) = os.path.splitext(filepath)\n',
u' \n',
u' # Save the thumbnail as "(original_name)_thumb.png"\n',
u" image.save(name + '_thumb.png')\n"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u"Problem opening -f : [Errno 2] No such file or directory: '-f'\n",
u'Problem opening']},
{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u' /home/will/.config/ipython/profile_default/security/kernel-5361de15-41f5-4815-877b-800068dbe0b1.json : cannot identify image file\n',
u'Problem opening --KernelApp.parent_appname=\'ipython-notebook\' : [Errno 2] No such file or directory: "--KernelApp.parent_appname=\'ipython-notebook\'"\n',
u"Problem opening --parent=1 : [Errno 2] No such file or directory: '--parent=1'\n"]}],
u'prompt_number': 149},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print img3'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'ImageChops.screen(img, img2)\n']}],
u'prompt_number': 150},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'showImg()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'showImg' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-151-23b4cba0268d>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mshowImg\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'showImg' is not defined"]}],
u'prompt_number': 151},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'doeRung = os.uname()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 152},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'lenNumbz = len.doeRung()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'AttributeError',
u'evalue': u"'builtin_function_or_method' object has no attribute 'doeRung'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-153-5ad541b89365>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mlenNumbz\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mlen\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdoeRung\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mAttributeError\x1b[0m: 'builtin_function_or_method' object has no attribute 'doeRung'"]}],
u'prompt_number': 153},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'class WireLoad(object):\n',
u' def showImg():\n',
u" return('hello there')\n",
u' \n'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 154},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'ranNumbz = random.randint(0,50)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 155},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print ranNumbz'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'0\n']}],
u'prompt_number': 156},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'for data in range(ranNumbz,100):\n', u' print data'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'0\n',
u'1\n',
u'2\n',
u'3\n',
u'4\n',
u'5\n',
u'6\n',
u'7\n',
u'8\n',
u'9\n',
u'10\n',
u'11\n',
u'12\n',
u'13\n',
u'14\n',
u'15\n',
u'16\n',
u'17\n',
u'18\n',
u'19\n',
u'20\n',
u'21\n',
u'22\n',
u'23\n',
u'24\n',
u'25\n',
u'26\n',
u'27\n',
u'28\n',
u'29\n',
u'30\n',
u'31\n',
u'32\n',
u'33\n',
u'34\n',
u'35\n',
u'36\n',
u'37\n',
u'38\n',
u'39\n',
u'40\n',
u'41\n',
u'42\n',
u'43\n',
u'44\n',
u'45\n',
u'46\n',
u'47\n',
u'48\n',
u'49\n',
u'50\n',
u'51\n',
u'52\n',
u'53\n',
u'54\n',
u'55\n',
u'56\n',
u'57\n',
u'58\n',
u'59\n',
u'60\n',
u'61\n',
u'62\n',
u'63\n',
u'64\n',
u'65\n',
u'66\n',
u'67\n',
u'68\n',
u'69\n',
u'70\n',
u'71\n',
u'72\n',
u'73\n',
u'74\n',
u'75\n',
u'76\n',
u'77\n',
u'78\n',
u'79\n',
u'80\n',
u'81\n',
u'82\n',
u'83\n',
u'84\n',
u'85\n',
u'86\n',
u'87\n',
u'88\n',
u'89\n',
u'90\n',
u'91\n',
u'92\n',
u'93\n',
u'94\n',
u'95\n',
u'96\n',
u'97\n',
u'98\n',
u'99\n']}],
u'prompt_number': 157},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 157},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 157},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'# PIL_ImageEnhance_bright1.py\n',
u'# darken and lighten an image using PIL\n',
u' \n',
u'from PIL import Image\n',
u'from PIL import ImageEnhance\n',
u' \n',
u'# pick an image file you have in the working directory\n',
u'img = Image.open("wire1337.jpg")\n',
u'enhancer = ImageEnhance.Color(img)\n',
u' \n',
u'# factor 1.0 always returns a copy of the original image\n',
u'# lower factors mean darker, and higher values brighter\n',
u'for k in range(0, 9):\n',
u' factor = k * 4.0\n',
u' print(factor), # 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0\n',
u' img_blend = enhancer.enhance(factor)\n',
u' \n',
u' # safe images as Audi_bright025.jpg to Audi_bright200.jpg\n',
u' # to the working directory\n',
u' img_enhanced.save("twar_color%03d.jpg" % (int(factor*100)) )'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'IOError',
u'evalue': u"[Errno 2] No such file or directory: 'wire1337.jpg'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIOError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-158-56827c5a5194>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 6\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 7\x1b[0m \x1b[0;31m# pick an image file you have in the working directory\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 8\x1b[0;31m \x1b[0mimg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"wire1337.jpg"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 9\x1b[0m \x1b[0menhancer\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageEnhance\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mColor\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimg\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 10\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1986\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0misStringType\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1987\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1988\x1b[0;31m \x1b[0mfp\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mbuiltins\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"rb"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1989\x1b[0m \x1b[0;32melse\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;31mIOError\x1b[0m: [Errno 2] No such file or directory: 'wire1337.jpg'"]}],
u'prompt_number': 158},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'colorSwap = ImageEnhance.Color(0)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'AttributeError',
u'evalue': u"'int' object has no attribute 'convert'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-159-e7bdce99b631>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mcolorSwap\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageEnhance\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mColor\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m0\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/ImageEnhance.pyc\x1b[0m in \x1b[0;36m__init__\x1b[0;34m(self, image)\x1b[0m\n\x1b[1;32m 48\x1b[0m \x1b[0;32mdef\x1b[0m \x1b[0m__init__\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mimage\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 49\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mimage\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mimage\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m---> 50\x1b[0;31m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdegenerate\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mimage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mconvert\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"L"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mconvert\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmode\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 51\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 52\x1b[0m \x1b[0;31m##\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;31mAttributeError\x1b[0m: 'int' object has no attribute 'convert'"]}],
u'prompt_number': 159},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import os'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 160},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'x = os.chdir\n', u'print x()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'TypeError',
u'evalue': u'chdir() takes exactly 1 argument (0 given)',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mTypeError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-161-a19011a11b63>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 1\x1b[0m \x1b[0mx\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mos\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mchdir\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 2\x1b[0;31m \x1b[0;32mprint\x1b[0m \x1b[0mx\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u'\x1b[0;31mTypeError\x1b[0m: chdir() takes exactly 1 argument (0 given)']}],
u'prompt_number': 161},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"swapImg = pn.Image.convert('p', colors=8)"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'pn' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u"\x1b[0;32m<ipython-input-162-37883efbb6ea>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mswapImg\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mpn\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mconvert\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m'p'\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mcolors\x1b[0m\x1b[0;34m=\x1b[0m\x1b[0;36m8\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m",
u"\x1b[0;31mNameError\x1b[0m: name 'pn' is not defined"]}],
u'prompt_number': 162},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'from PIL import ImageFont, ImageDraw'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 163},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'draw = ImageDraw.Draw(img2)\n',
u'\n',
u'font = ImageFont.ImageFont()\n',
u'\n',
u'draw.text((10,10), "Hello World", font=\'love.ttf\')'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'AttributeError',
u'evalue': u"'str' object has no attribute 'getmask'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mAttributeError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-164-95255cd68980>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 3\x1b[0m \x1b[0mfont\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageFont\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mImageFont\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 4\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 5\x1b[0;31m \x1b[0mdraw\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtext\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m10\x1b[0m\x1b[0;34m,\x1b[0m\x1b[0;36m10\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"Hello World"\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mfont\x1b[0m\x1b[0;34m=\x1b[0m\x1b[0;34m\'love.ttf\'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/ImageDraw.pyc\x1b[0m in \x1b[0;36mtext\x1b[0;34m(self, xy, text, fill, font, anchor)\x1b[0m\n\x1b[1;32m 265\x1b[0m \x1b[0;32mexcept\x1b[0m \x1b[0mAttributeError\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 266\x1b[0m \x1b[0;32mtry\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m--> 267\x1b[0;31m \x1b[0mmask\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfont\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mgetmask\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mtext\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mfontmode\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 268\x1b[0m \x1b[0;32mexcept\x1b[0m \x1b[0mTypeError\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 269\x1b[0m \x1b[0mmask\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfont\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mgetmask\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mtext\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;31mAttributeError\x1b[0m: 'str' object has no attribute 'getmask'"]}],
u'prompt_number': 164},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'randnum = random.randint(1000, 6667)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 165},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print randnum'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'5831\n']}],
u'prompt_number': 166},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'doubNum = randnum / 2'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 167},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"nameNow = ('wire' + doubNum"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'SyntaxError',
u'evalue': u'unexpected EOF while parsing (<ipython-input-168-5eab49ae8019>, line 1)',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-168-5eab49ae8019>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m nameNow = (\'wire\' + doubNum\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m unexpected EOF while parsing\n']}],
u'prompt_number': 168},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'daStrng = []'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 169},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'daStrng.append(doubNum)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 170},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print doubNum'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'2915\n']}],
u'prompt_number': 171},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print daStrng'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'[2915]\n']}],
u'prompt_number': 172},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'daStrng.append(randnum)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 173},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'for numz in range(0,8):\n', u' daStrng.append(randnum)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 174},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print daStrng'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'[2915, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831]\n']}],
u'prompt_number': 175},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'str(daStrng)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'pyout',
u'prompt_number': 176,
u'text': [u"'[2915, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831]'"]}],
u'prompt_number': 176},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'strngNum = str(randnum)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 177},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print strngNum'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'5831\n']}],
u'prompt_number': 178},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import os'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 179},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'os.curdir'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'pyout',
u'prompt_number': 180,
u'text': [u"'.'"]}],
u'prompt_number': 180},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print os.chdir'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'<built-in function chdir>\n']}],
u'prompt_number': 181},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'ImageChops.difference(img, img2)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'pyout',
u'prompt_number': 182,
u'text': [u'<PIL.Image.Image image mode=RGB size=1280x720 at 0x8539830>']}],
u'prompt_number': 182},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'imagRandz'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'pyout',
u'prompt_number': 183,
u'text': [u"'street2877.jpg'"]}],
u'prompt_number': 183},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'fileSwap = ImageChops.lighter(img, img2)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 184},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'fileSwap.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 185},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 185},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'filzSwao.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'filzSwao' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-186-ad01e1fb8daa>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mfilzSwao\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'filzSwao' is not defined"]}],
u'prompt_number': 186},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': []},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import ImageDraw'],
u'language': u'python',
u'metadata': {},
u'outputs': []},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'draw = ImageDraw.Draw(img)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 187},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'draw.line((50, 100) + img.size, fill=1)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 188},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'draw.polygon((100, 1000) + img.size, fill=1)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 189},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'draw.line((0, img.size[1], img.size[1], 3), fill=128)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 190},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'del draw '],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 191},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'img.save("hello.PNG")'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 192},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'helloz = Image.open("hello.PNG")'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 193},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'helloz.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 194},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import Image, ImageDraw\n',
u'\n',
u'im = Image.open("wire1232.jpg")\n',
u'\n',
u'draw = ImageDraw.Draw(im)\n',
u'draw.line((0, 0) + im.size, fill=128)\n',
u'draw.line((0, im.size[1], im.size[0], 0), fill=128)\n',
u'del draw \n',
u'\n',
u'# write to stdout\n',
u'im.save("hello.PNG")'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'IOError',
u'evalue': u"[Errno 2] No such file or directory: 'wire1232.jpg'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIOError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-195-7eacd8267433>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 1\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mImageDraw\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 3\x1b[0;31m \x1b[0mim\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"wire1232.jpg"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 4\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 5\x1b[0m \x1b[0mdraw\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageDraw\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mDraw\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mim\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1986\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0misStringType\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1987\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1988\x1b[0;31m \x1b[0mfp\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mbuiltins\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"rb"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1989\x1b[0m \x1b[0;32melse\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;31mIOError\x1b[0m: [Errno 2] No such file or directory: 'wire1232.jpg'"]}],
u'prompt_number': 195},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import feedparser\n',
u'\n',
u"compLink = ('http://compohub.net/feed/13/28')"],
u'language': u'python',
u'metadata': {},
u'outputs': []},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'dafeed = feedparser.parse(compLink)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'feedparser' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-196-ba3be5bf02c8>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mdafeed\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfeedparser\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mparse\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mcompLink\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'feedparser' is not defined"]}],
u'prompt_number': 196},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'for info in dafeed:\n', u' print info'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'dafeed' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-197-cb873d03631c>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0;32mfor\x1b[0m \x1b[0minfo\x1b[0m \x1b[0;32min\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2\x1b[0m \x1b[0;32mprint\x1b[0m \x1b[0minfo\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;31mNameError\x1b[0m: name 'dafeed' is not defined"]}],
u'prompt_number': 197},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"title = dafeed['entries'][1].title\n",
u"description = dafeed['entries'][1].summary\n",
u"url = dafeed['entries'][1].link"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'dafeed' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u"\x1b[0;32m<ipython-input-198-5a3b086da897>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mtitle\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;36m1\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtitle\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2\x1b[0m \x1b[0mdescription\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;36m1\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0msummary\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 3\x1b[0m \x1b[0murl\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;36m1\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mlink\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n",
u"\x1b[0;31mNameError\x1b[0m: name 'dafeed' is not defined"]}],
u'prompt_number': 198},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'posts = []\n',
u"for i in range(0,len(dafeed['entries'])):\n",
u' posts.append({\n',
u" 'title': dafeed['entries'][i].title,\n",
u" 'description': feed['entries'][i].summary,\n",
u" 'url': dafeed['entries'][i].link,\n",
u' })'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'dafeed' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u"\x1b[0;32m<ipython-input-199-f5ae7c7b5cd4>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 1\x1b[0m \x1b[0mposts\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m[\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m----> 2\x1b[0;31m \x1b[0;32mfor\x1b[0m \x1b[0mi\x1b[0m \x1b[0;32min\x1b[0m \x1b[0mrange\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;36m0\x1b[0m\x1b[0;34m,\x1b[0m\x1b[0mlen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 3\x1b[0m posts.append({\n\x1b[1;32m 4\x1b[0m \x1b[0;34m'title'\x1b[0m\x1b[0;34m:\x1b[0m \x1b[0mdafeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0mi\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtitle\x1b[0m\x1b[0;34m,\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 5\x1b[0m \x1b[0;34m'description'\x1b[0m\x1b[0;34m:\x1b[0m \x1b[0mfeed\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'entries'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0mi\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0msummary\x1b[0m\x1b[0;34m,\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n",
u"\x1b[0;31mNameError\x1b[0m: name 'dafeed' is not defined"]}],
u'prompt_number': 199},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'urlGetz = posts[0]'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'IndexError',
u'evalue': u'list index out of range',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIndexError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-200-3efaf7f7f3f2>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0murlGetz\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mposts\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;36m0\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u'\x1b[0;31mIndexError\x1b[0m: list index out of range']}],
u'prompt_number': 200},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 200},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"urlGetz['description']"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'urlGetz' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u"\x1b[0;32m<ipython-input-201-44441cf6c790>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0murlGetz\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0;34m'description'\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m",
u"\x1b[0;31mNameError\x1b[0m: name 'urlGetz' is not defined"]}],
u'prompt_number': 201},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print os.getcwd()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'/home/will/Desktop/wirepil\n']}],
u'prompt_number': 202},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print urlGetz'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'urlGetz' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-203-34fc76a8aa11>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0;32mprint\x1b[0m \x1b[0murlGetz\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'urlGetz' is not defined"]}],
u'prompt_number': 203},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"imagRandz = random.choice(os.listdir('/home/will/Desktop/video'))"],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 204},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'newImage = Image.open(imagRandz)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'IOError',
u'evalue': u"[Errno 2] No such file or directory: 'wire1398.jpg'",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mIOError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-205-100f1bcda21e>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mnewImage\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimagRandz\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mopen\x1b[0;34m(fp, mode)\x1b[0m\n\x1b[1;32m 1986\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0misStringType\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1987\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1988\x1b[0;31m \x1b[0mfp\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mbuiltins\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mopen\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mfp\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m"rb"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1989\x1b[0m \x1b[0;32melse\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1990\x1b[0m \x1b[0mfilename\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;34m""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;31mIOError\x1b[0m: [Errno 2] No such file or directory: 'wire1398.jpg'"]}],
u'prompt_number': 205},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'newImage.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'newImage' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-206-d1e66199b3e7>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mnewImage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'newImage' is not defined"]}],
u'prompt_number': 206},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 206},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import ImageFont, ImageDraw\n',
u'\n',
u'draw = ImageDraw.Draw(img2)\n',
u'\n',
u'# use a truetype font\n',
u'font = ImageFont.truetype("love.ttf", 42)\n',
u'\n',
u'draw.text((400, 25), "a film by William Mckee", font=font)\n'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 207},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'img2.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 208},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'ranNumz = random.randint(2, 22)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 209},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import ImageEnhance\n',
u'\n',
u'enhancer = ImageEnhance.Brightness(img2)\n',
u'\n',
u'enhancer.enhance(show()\n',
u'\n',
u"'''\n",
u'for i in range(2):\n',
u' factor = i / 0.5\n',
u' enhancer.enhance(factor).show("Sharpness %f" % factor)\n',
u"'''"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'SyntaxError',
u'evalue': u'invalid syntax (<ipython-input-210-5706a6b018a4>, line 11)',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-210-5706a6b018a4>"\x1b[0;36m, line \x1b[0;32m11\x1b[0m\n\x1b[0;31m \'\'\'\nfor i in range(2):\n factor = i / 0.5\n enhancer.enhance(factor).show("Sharpness %f" % factor)\n\'\'\'\x1b[0m\n\x1b[0m \n \n \n \n ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m invalid syntax\n']}],
u'prompt_number': 210},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahNow = ImageChops.darker(newImage, img)'],
u'language': u'python',
u'metadata': {},
u'outputs': []},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahNow.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': []},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahChange = ImageChops.darker(blahNow, newImage)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'blahNow' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-211-feb65a09a084>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahChange\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdarker\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mblahNow\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mnewImage\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'blahNow' is not defined"]}],
u'prompt_number': 211},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'\n'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 211},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'import random'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 212},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'randz = random.randint(0,20)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 213},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'print randz'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'12\n']}],
u'prompt_number': 214},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'for numz in range(0,20):\n', u' print numz'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'0\n',
u'1\n',
u'2\n',
u'3\n',
u'4\n',
u'5\n',
u'6\n',
u'7\n',
u'8\n',
u'9\n',
u'10\n',
u'11\n',
u'12\n',
u'13\n',
u'14\n',
u'15\n',
u'16\n',
u'17\n',
u'18\n',
u'19\n']}],
u'prompt_number': 215},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahChange.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'blahChange' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-216-8f39e5ca4d2a>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahChange\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'blahChange' is not defined"]}],
u'prompt_number': 216},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahNope = ImageChops.invert(blahChange)'],
u'language': u'python',
u'metadata': {},
u'outputs': []},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahNope.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'blahNope' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-217-1cc8142a657b>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahNope\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'blahNope' is not defined"]}],
u'prompt_number': 217},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahWhite = ImageChops.difference(blahNope, blahChange)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'blahNope' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-218-3d4b6b97ec22>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahWhite\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mdifference\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mblahNope\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mblahChange\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'blahNope' is not defined"]}],
u'prompt_number': 218},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahWhite.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'blahWhite' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-219-3377270a1f8f>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahWhite\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'blahWhite' is not defined"]}],
u'prompt_number': 219},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahBlack = ImageChops.subtract(blahWhite, newImage)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'blahWhite' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-248-ba3101d68696>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahBlack\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageChops\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0msubtract\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mblahWhite\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mnewImage\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'blahWhite' is not defined"]}],
u'prompt_number': 248},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahBlack.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'blahBlack' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-249-e17cc0b165de>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahBlack\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'blahBlack' is not defined"]}],
u'prompt_number': 249},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahGray = ImageOps.grayscale(blahBlack)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'blahBlack' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-220-875b1ce42ff3>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahGray\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mImageOps\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mgrayscale\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mblahBlack\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'blahBlack' is not defined"]}],
u'prompt_number': 220},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'blahGray.show()'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'NameError',
u'evalue': u"name 'blahGray' is not defined",
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mNameError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-221-b0ad072c27a0>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mblahGray\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshow\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u"\x1b[0;31mNameError\x1b[0m: name 'blahGray' is not defined"]}],
u'prompt_number': 221},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'ls'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'33561.jpg hello.PNG README.md street1016.jpg wirePIL.ipynb\r\n',
u'artcontrol.ipynb LICENSE smerk-color.png street1715.jpg\r\n',
u'edit.jpg love.ttf street0276.jpg Untitled0.ipynb\r\n']}],
u'prompt_number': 226},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'from wand.image import Image'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 223},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'from wand.display import display'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 224},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"img2.transform('300x300', '200%')"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'ValueError',
u'evalue': u'missing method data',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mValueError\x1b[0m Traceback (most recent call last)',
u"\x1b[0;32m<ipython-input-247-711ded140086>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mimg2\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mtransform\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m'300x300'\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m'200%'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m",
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\x1b[0m in \x1b[0;36mtransform\x1b[0;34m(self, size, method, data, resample, fill)\x1b[0m\n\x1b[1;32m 1634\x1b[0m \x1b[0mmethod\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mdata\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mmethod\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mgetdata\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1635\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0mdata\x1b[0m \x1b[0;32mis\x1b[0m \x1b[0mNone\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 1636\x1b[0;31m \x1b[0;32mraise\x1b[0m \x1b[0mValueError\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m"missing method data"\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 1637\x1b[0m \x1b[0mim\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mnew\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmode\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0msize\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mNone\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 1638\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0mmethod\x1b[0m \x1b[0;34m==\x1b[0m \x1b[0mMESH\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u'\x1b[0;31mValueError\x1b[0m: missing method data']}],
u'prompt_number': 247},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'display(newzImg)'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'ClosedImageError',
u'evalue': u'<wand.image.Image: (closed)> is closed already',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mClosedImageError\x1b[0m Traceback (most recent call last)',
u'\x1b[0;32m<ipython-input-244-71e5fc9139b3>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mdisplay\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mnewzImg\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m',
u'\x1b[0;32m/usr/local/lib/python2.7/dist-packages/wand/display.pyc\x1b[0m in \x1b[0;36mdisplay\x1b[0;34m(image, server_name)\x1b[0m\n\x1b[1;32m 64\x1b[0m library.MagickDisplayImage.argtypes = [ctypes.c_void_p,\n\x1b[1;32m 65\x1b[0m ctypes.c_char_p]\n\x1b[0;32m---> 66\x1b[0;31m \x1b[0mlibrary\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mMagickDisplayImage\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mimage\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mwand\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mstr\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mserver_name\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mencode\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 67\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 68\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n',
u"\x1b[0;32m/usr/local/lib/python2.7/dist-packages/wand/image.pyc\x1b[0m in \x1b[0;36mwand\x1b[0;34m(self)\x1b[0m\n\x1b[1;32m 459\x1b[0m \x1b[0;32mreturn\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mresource\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 460\x1b[0m \x1b[0;32mexcept\x1b[0m \x1b[0mDestroyedResourceError\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m--> 461\x1b[0;31m \x1b[0;32mraise\x1b[0m \x1b[0mClosedImageError\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mrepr\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m)\x1b[0m \x1b[0;34m+\x1b[0m \x1b[0;34m' is closed already'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 462\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 463\x1b[0m \x1b[0;34m@\x1b[0m\x1b[0mwand\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0msetter\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n",
u'\x1b[0;31mClosedImageError\x1b[0m: <wand.image.Image: (closed)> is closed already']}],
u'prompt_number': 244},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'from __future__ import print_function\n',
u'from wand.image import Image'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 230},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"with Image(filename='hello.PNG') as derbNow:\n",
u" print('width =', derbNow.width)\n",
u" print('height =', derbNow.height)"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'width = 1280\n', u'height = 720\n']}],
u'prompt_number': 233},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u' derbNow.size'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'IndentationError',
u'evalue': u'unexpected indent (<ipython-input-237-a67f999b541a>, line 1)',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-237-a67f999b541a>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m derbNow.size\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mIndentationError\x1b[0m\x1b[0;31m:\x1b[0m unexpected indent\n']}],
u'prompt_number': 237},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'\n', u"Image(filename='edit.jpg')"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'jpeg': u'/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a\nHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy\nMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCALQBQADASIA\nAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA\nAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3\nODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm\np6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA\nAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx\nBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK\nU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3\nuLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyi2iT\nyF+VfyqXyo/7i/lTbb/UJU1ZlEXlR/3V/Kjyo/7o/Kn0UAReVH/dH5UnlR/3F/KpabQAzy4/7i/l\nR5cf/PNfyqSkoAZ5af3F/Kk8tP8Anmv5VJSUAR+Wn91fyo8tP7q/lTzRQAzy0/ur+VHlp/dX8qfR\nQIZ5af3V/Kjy0/ur+VOooAZ5Uf8AcWhkjXnC/lSuwQZNZNzN5p68elawpcwCT3IlOAihfYVXyPQU\n0kk4FKEzXcoJKxmKSD0UflSbTT1XFOpvyC5FtNLtNSU1mo3JuNwPWk4pO9O2ihIpIbgUu0dqcVpo\np6AxMClAoo/CnYGGBRilpKEgQtSKvsPyqIVMv3aTRohdgqQIvoPyqOng1nYoRo09BUe2pqSgYwAe\ng/KghfRfyp60jrSAjwtLt+tKKWqAbtX2pdq+gpaWkAbV/uj8qdsX0X8qKKQBtT+6Pypf3f8AcH5U\nUw0gHYj/ALq/lR8v90UlFAD1K+i/lUqunov5VBSUcqA0ElTui/lUy+W38C/lWYHIqeOY1jKn1E0X\n/KT+4v5UeUn9xfyqBJ6nWQGs3Fkh5Mf91fyo8mP+4v5U+ioAZ5Uf9wflR5Uf9xfyp9FADPKj/uL+\nVHlJ/dX8qfRSAb5Sf3F/Kjyo/wC4v5U6lpgM8uP+4n5UeXH/AHF/Kn0UCGeXH/cX8qPLj/uL+VPo\noAZ5Uf8AcX8qPKj/ALi/lT6SgBnlR/3F/Kjyo/7i/lT6KAGeVH/dX8qPKj/ur+VPooAZ5Uf9xfyo\n8qP+4v5U+igBvlx/3V/Kjy4/7q/lTqWgBnlx/wBxfyo8mP8AuL+VPooAZ5Sf3Fo8pP7q/lT6KAGG\nJP7q/lTfKT/nmtSGkpgM8pP7i/lR5Uf91fyp9FADPLj/ALi/lR5cf91fyp9FADPLj/ur+VHlx/3V\n/Kn0UAM8uP8AuL+VHlR/3V/Kn0UAS+VHj7i/lR5UX9xfypUPFOpgM8qL+4v5UeVF/cX8qfRQAzyo\nv7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UARmKLP3F/Kjyov7i/lT6KQxnlRf3F/Kk8qL+4v5\nU+ihgM8qL+4v5UeVF/cX8qfRQAzyov8Anmv/AHzSiKL/AJ5r/wB80tOFAhvlRf8APNf++aPKi/55\nr/3zT6KYDPKi/wCea/8AfNHlRf8APNf++afRQAzyov8Anmv/AHzR5UX/ADzX/vmn0UAM8qL/AJ5r\n/wB80eVF/wA81/75p9FADPJi/uL+VHkxf3F/Kn0UAM8mL+4v5UeTF/cX8qdRQAzyY/7i/lR5Mf8A\ncX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UAM8mP/nmv5UeTH/zzX8qfRQAzyY/\n+ea/lR5Mf/PNfyp9FADPJj/55r+VHkx/881/Kn0UAM8mP/nmv5UeTH/zzX8qfRQAzyY/+ea/lS+T\nH/zzX8qdRQA3yY/+ea/lR5Mf/PNfyp9FADPJj/55r+VHkx/881/Kn0UAM8qP+4v5UeXH/cX8qfRQ\nAzyo/wC4v5UeTH/cX8qfRQAzyY/7i/lR5Mf9xfyp9FADPJj/ALi/lR5Mf9xfyp9FADPJj/uL+VHk\nx/3F/Kn0UAM8mP8AuL+VHkx/3F/Kn0UAM8mP+4v5UeTH/cX8qfRQAzyov7i/lR5UX9xfyp9FADPK\ni/uL+VHlRf3F/Kn0UAM8qL+4v5VDcRR+Q3yr09Ks1Dc/6hqAI7f/AFC1LVe1kRoVG4Z9O9WKzKCi\niigAooooAQim06koAYaSlpDQAtFJS0AFFFFAhKY0gUdabNKIx7/yqhI+45zW0Kel2BNcZkBP5Vln\nOTk81pRPng1DdQDBdRzXTTVtCGU14qwqgiq+c9KcsmOtbNX2JHtxTAaefmFIFpLbUQh6ZptSEYFR\nHrTTASnKTSUqnB5plokprDilzSMwqUMjpaSl71ZLQtLSUdaQ43FAqRaAKWpbNUPooFFQMSloooAU\nUEg02kpAFLTc0uaYBSikpaAFpKKWgA5opc0xjQA6lxUQJzUwoYCUUtJSABS9KSloAcr4qZJveq1L\nU2QGik1Tq2ay1arEcuKxnC2wmi9RUaSZqSsWiQooooAWiiigGFFFFAgooooAKKKKAEooooAKKKKA\nCiiigAooooAWikooAWiiigApDS0hoASiiimAUUUUAFFFFABRRRQBLH0p9Rx9cVJTAKKKKACiiigA\nooooASg0UUhiUUlLQwCiiigBKdTacKYhaKKKACiiigAoopKAFpKKKACiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkpaACiiqFzeujlFAGO9JsaL2QOpoVlbO0g49D\nWK9xLJ95zSWtz9lm55Rzz7GpTHY3KKKKskKKKKACiiigAooprOqfeIH1NADqKpy6jBHkAlj7VSl1\naQ8RgKKm47GwSF6kVGtzE8nlBwW54rnZLqWTq5qbTkdr9GALAdc9BTCx0NFFFMQVDc/6hvpU1RXP\n+oegDmx9wVOl1NH0c49DyKrJ9ylrv5U1qSacWpE8Sr+IqzHeQyfxBfZuDWKDTqzeHi9h3OgorAV2\nX7rEVYj1GReH2sPXpXPKhLoNM1qSqyX8L98VZVlcfKVNYOLRQlNp1JQIKKKKBBVO5uguUXqO/aoL\nm+LZRAQO7etVN1dNKi92BJuJ69+9GaYDThXTYQobBq0pDDBqmRT0crUtDI5o/LbPY1EePpWiQsiV\nQkTymK9u1VGRL7jeR0p8Z5wajHymnJy1W9VcTtuSPUeKeRTelJbEjKUUhpKrcaVxSKKTNLQOzEpc\nZpO9SCi5aQzBNSgUopeKTZSQZoptLUlDqWkp4GaTAbmjNBGKSgBad1plOBoAMU2n02kgEp1NpaAF\noxSiigBDTDUlRmhAAp+aYBTitNgOzmjFRg4qUVLAQilANLTxikAzFJipcU3FCYDBkU/NGKTFDAni\nkxVuOTNZoqdJMVlOHYGjRpagjlzU4OawasQFFFFIQUUUUAFFFFABSUtJQAUUUUAFFFFABRRRSAKK\nKKYBRRRQAUtJRQAtIaWkNACUUUUwCiiigAooooAKKKKAHJ96pqrirFMAooooAKKKKACiiigBKKKS\nkMKKKKGIKKWkoGJT6aKdTEFFFJQAtJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWHM+6Zvqa3KwJT+8bHrWci0FIyhgRSUZqUMvaZd5/0e\nU8j7pJrUrmHJUiVeCpzW9a3sU0AYsAR1BPetEyGWaKz5dWiX7g3GqUuqTv8Ad+Ue3FO4G28iR/eY\nD6nmqkmqQJ0+asNpHk6sxqWKwuJvuxNj1Y4GKkZal1aVuE+UVSknkkPzMT+NaMOi955R/urV6Kxt\n4sbYgT6nmnYDBitppj8iM3vjirkWjyHHmuF9hya2cUtOwrlWLTbaLB27z6tzVnaF4AwB2FLRTEFF\nFFABUNz/AKh6mqG5/wBQ9AHMKelLTB2pc16cVoQOpwNMoBoaGSZpKbmkzSQC05GKnIJB9qZmlpaC\nZcjvZkGMhv8Ae5qymor/ABoR/u81mZoJrJ0oyGbX2mHZuEq9M9eazLi7ac4BwnpVOnLSjQUSrj6W\nikrQBwp1NBp/WkxADRTaM0DJY5NpqZ0EqVUqeN+1Jq2qApsCpwaQHmr0sQcVRZSjYNVF3JaJN/rS\ncGmZoqrIiwUlLQOTTRURKKk204LRctIjxTgKeRRipuWkFJmkOaTmkMWingUlACing0wU6gANJQKW\nkAUlLS8UAN5pQDTgKeKTYEdGaeRTMUXAUGloxxTckUgFIpmKkzmlwKAGCn0YoNADCKUGlxRtouAt\nAJFOApcUmAuaKZRmlYB1FKKWhsBlLmlIpKAJUcirUcmapA1MjVnJCaL9FQxyZqasGiAooopAFFFF\nABSUtJQAUUUUAFFFFABRRRSAKKKKYBRRRQAUUUUAFBopDQAUUlLTAKKKKACiiigAooooAKnX7tQV\nNH0oAdRRRTAKKKKACkpaSgApKWikMSiiigApKdSUALRRRTEFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS1FcS+RbySgAlVJ5rm5tRupjhpCo9F4oA6C\na8t4PvygH06mqq6zC8gjVTtJA3Mf6VzxpV4YfWgDshzSms7Tb0SJ5L4BHQk9asSX0EXVs+wpXAnJ\nwCawJGy7E9zVqbV+yLj3rNZy3WpepSJi1MLioSfemGQUco7k5cnikG5ztGWPoBmq24k10ml2vkW4\nY/fcZJ9BTsIzItNuZv4Ng9W4q9FoyjmZyfZRgVqUhIHUijQCCOzt4fuRKD6kZNWKhaeJec1Sn1eJ\nM4OfpzRcDSphkjXqwrBm1eR87AcerVTkuppc7nOPQU9RG/PqcMIOME44BNT2dwbq1WQ4yeoFclzX\nR6RDJFaZYbd5yPXFAjRooopgFFFFABUNz/qHqaobn/UPQBy1JTwOKWvRT0JGc0Zp1FO4hoNLSGlz\nTGgp1NzSbqVhD6aTR1oxTC42lFFFIY8E0uabRQMfT1NMFL0qBjjTadmkNACZpynBplKKb1Qy4j5F\nQ3EO7kUiNg1aBytZfCxMy+hpRVieLHIqFRW17isJTkpCuDSrQUlYlxR0pR0ppqC0hCaA1MJopgSE\nigUyigB+abRSigAXipKTFJmkA6im07FIBKKXFLincBRTqjpamwDqTFJmn0AJnFHBpDQKAEPFIDTj\nSYoAcDS4pFFOoABS8UwmikA/NJmkpDQAuaKbS0APFOpgNOpAGaKbSigAp6tTTTaLAWkarUbVno1W\no2rGaJZaopFOaWsSQooooAKSlpKACiiigAooooAKKKKACiiigAooooAKKKKACkNLSGgBKKKKYC0U\nUUAFFFFABRRRQAVJHUdPX71AEtFFFMAooooAKSlpKACkpaSkAUUUUDCikpaAFooooEFFFFMAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACijp7VSm1OCHgHeR2FICS/\n4sZs/wB01ytal5qjzxNGAAGrLpgFFFFAEsb471NHFJMTtVnqovWr9ncm3mDZOO4qWhosxaRO/Lss\nY9OppJtImUZikDY7EYraRxLGGU8GgyIvU+1CA5KWKSFtsqlW9DUVbmppDO6t5wUqMHNUN1pF0RpT\n/tcCquFisqMx+VSa6OG6EVpH53DbcfSsNr2TGECoP9kVXZmY/MxJ96QG5LrEa/cOT7CqM2rTSfd+\nX681TSKSU4RGY/7IzV6HRrqQZYLGPc5P6UWEUXmkk++xNMwSfU10EOh26f6xnc/kKvRwRQ8JEqfQ\nYphc52HS7uYjEewHu/FX4dCUczSE+yDFbFFAFaDT7WDlYRn1bk/rVnGOKKKACiiigAooooAKhuf9\nQ9TVDc/6h6AOaH3KSlH3aK9CIhKKdijFO4hhFJinUYouA3FAFPFOxQ2SxlFOxSUANNNqSmGmgDNL\nSUCixZIKWmg0uamwxaWkpwFIBKKdijFK4yLcQatQvUJTNPT5aJbFJF3YHFUZYijZxVyKSpJFEgrJ\nPlY7GZkGmY5qWWPYaaEJHFbXTAVHzTic1DjBpckUrBccy0zBp+aSqQBRSilpAMp4ptPoAdnimmin\nYoAFNOJqPpS5pAOpaZmlzSsAtFJmloAKXNGKMGgAzThUdOFIB5pKSloAQ04GmmkosBJikoBoNACg\n0tMpwNAC0UUmaQC0UlLQAhpAacabimA7NFJiikA4Gp0NVhU61nJCLqGpKro1WBWDWpDCiiipASii\nigAooooAKKKKACiiigAooooAKKKKACiiigAoNFBoAbRRRTAKKKKAFooooAKKKKAClHWkooAsUUUU\nwCiiigApKWkpAFFFFAxKKKKQBQKKBTELRRRTEFFFFAwooooAKKKKACiioblikDkHBA4NAEkkkcf3\nmUfjVZtShU4GW+grJkZi5JJPPc0yo5irHSBg4yORRWVYXZU+UxyD+latNMlhRRRVAFFFRSXMUP33\nAI7d6LgS0VnS6vGPuIW9zwKozanPJ/Fs/wB3ipuM3+PriiszSfNw+8SbTyCen+elaVUAtFFFAgoo\nooAzNZV/KUqW64IBrNh0+4n6RED1biukIz/+qlpCOdu9Oe2tvNdh1A2is6uj1r/jx/4GK5ymMKKK\nKACnoRnBPFMpaARorqbRRCNAWA7k1WlvZpO+36UtvZXFzgxx8f3jwKvxaG3Hmyj6LQMx2Ysckk0g\nrpotMtY1/wBXuJ7tzWHKnlTMuOhxQ3YViAKTVmxEf2uMSqGRuMEVFRkq6uONpzSuVY6pEVBhQFHo\nBinU2JxJGjDoRTjTEFFFFAhaKSigBaKKKACiiigAooooAKhuf9QamqG4/wBQfpQBzo6GlxQn3adx\nXfckZRQaKYCEU2nUUAAFLSUuaTJYppppSRTCwoSAQ03FOzSfhVAkxtAp+0mnrHTuXYYAaeFqVY6k\nEdQ5DsRqlOCVKFxS1k5FJDQtIyVJSGlzFWIsUmKfS4FUAxSQato+ar7ad0qWgHzRBxkVV2lDV1G3\nDFRTJkcU4u2jAqSLmoqmzjrTGFagIKKbnFOoAUUGlphNABS9KRTTjQAmakBqKnU2A80lITSikA4U\n6mUtACYpaKdU3AKcOaYaUUWAcRTKkJ4qM9aQDxRTRS0AOpMUoooASilpKACloApaACjFJTqQCUE0\ntJQAmaUUYpwpMBuadjNNZaFJpiHgVIKizT1aoYE6GrSHIqolWkrGRLH0UUVmISiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAbRRRTAKKKKACiiigBaKKKACiiigCZKdTI+lPpgFFFFACUUUU\nhiUUtIaACiiloASikp1MQUUUUAFFFFABRRRQAUUUUAFV704tX9SMVYqjqn+oT/eqXsNGVSUm6jdU\nFC1qWF4GXypTyOhNZJamlycdaauJnQyXlvGOZR9ByapS6sB/ql/FjVGKynm+6hA9W4FXYtHA/wBd\nL+CinqBTlvp5c5cgei8Co0trif7qM3v0rdis4IcbUGf9rk1M8kcSZchR3p2YjGj0iZ/vsqD8zWhD\npsEPOC59WqKbWLaP/VneR6cCqE2tTvkIAg9qdgN4Y6fpS1zMF9NHdCVmLeuea1H1ZAP3Slj6mi9g\nNKisq3vJ5LgFs7OQeOKtS38MQ5YfypXHYt0EqOpH41jTa0OfLUn9KoS6hPL/AB4+lPUR0Ul3DGOT\n/SqE2souQnzfQVhszOcsSTT47eWU/u42b6DinYVyxd373K7MYXrVGtOLRbh8FysY9+TTLjSrmDLA\nCRfVf8KAKFFOZShweD34ptABRRRQBfXUHjMUcZIiQjPqa6RTkA9cjOawtM03zyJpfuDkD1rdAxgd\nKYxawNVh8u63f3xnFb1Z2rx77UN02mpYGJRjNKqselSiFu5AqbjNjSZfMsVB/gO2r9c9DMbKNsPw\nw6Yq5pNy0yyJIxLZyCfSqRLNSiiimAUUUUAFLSUUALRRRQAUUUUAFQ3H+oP0qaobj/UH6UAc4kEh\nGRTvKl9a2YI1MC5FP8hD2roVcXKYPlP60eQ/rW99nT0pPs6elH1hCsYfkP60nkuO9bvkr6VWmRap\nV3sPlMry29aPKb1q9gUmBV+0HyFMRE96eIKsbaKXOVykIhp/lgU/NJmldlWG7RTxikozRdhYeKKb\nmjNIB1FJmjNABml6000ZoAMUuabmimA6lqPdS7qLAPBwc1NncKrbqkRqlxAZKmagNXThhVOVdpqo\nPoBCeDRRxRWwC5pKSnCgBMUtLSVIBRmikxVALTqaKdUgOooooAWijNJmkAZoFFLigBaKKKQCinUL\nTqQCYoozRQAlLRS0AFNzQaSkA8Up4pVxSkCk2IizSilIpKLjHUUlLTAWjFJRQAtOAplSLUsCSP71\nW0NVkHzVZQVjIlklFFJWRIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFIBtFFFUAUUUUA\nFFLRQAUUUUAFFFFAEkZ5qSoU+9U1MAooooASiiikMKSlpKAClpKWgBKWkpaYgooooAKKKKACio5L\niGH77qPr1qlLrES58pSx9egpXA0aa8iRglmC/U4rDl1SeQcME/3eKrqs9weA7579qdxmxLqcCZxl\nz7VQutQkuBtwFX6ZNPi0iY/6whAfxNW49LgQDduc+5qXdgYm73pGkA71p3GjbQzRyHjs1Yu05xjk\ndaLILjzKT0rS0i3Eshlds7DwvvWb5Zwa0NFlMdyYyeHH609BXN+iiimBXvJTDaSSjqF4rmZZ5J2z\nI5b2rf1WaNbN0LDewxtzzXN0AFFFFACg4qaKcxHIVT9agpe1Kw7k73kz/wAW0eg4qHlvU1d06CC4\nl2zMwP8ACM4zW9DZ28H3IlHvjJpiObisbmblYm+pGK0IdDJ5mlx7KK2sflRQBUh0y0h6Rhj6vzVs\nADpRRQAUUUySQJSbGkZOtwKAkoHPQmsWtjUrhGiKscsTwB2rKVGb7qk00IZRVlbOVuox9alW0jTl\n2zRdBY1NHmVrQhiBs4/CrjXES/xZ+lYIuIYh8n6VE14x+6AKQzbfUP7q/wDfVUbi+Drtdxj0AzWW\n0rv95iab9KLdx3LTXij7q5/SoXuJH74+lQmiiyFcUknrWjo283Zx93HNZ+35c10umRxrZxlABuGS\nfU0xFyiiigAooooAKKKKACiiigBaKKSgBahuP9QfpU1Q3H+oP0oAitv9QPpUtQ23+pFTUgCiiikA\njVSmq433apS1pAtEBptKaK6Bi5pKQ03NAAaKKKYBRS02mAZpc03NFIB2aXNNzRTsMWim0UhD6TNJ\nSUwAikzSg0jUDDNIHpKjbNUkBdR6JVDiqscmKsq2RUNWdxFIgqcGlA3VakQMKrgba0jIBmCOtFPf\nBqOmgFzS02lpgLRSU7FSAlLRiloAWkp1FABRSU4UgEp1LSEVIDqQihadQA1afSU4UANIpBTjTc0A\nPFBpAadSAZSgUUvSmAUZNGaWkAmaSlxSUAOFIaWigBBUigUynCpAVgMUitQx4pBRYRYQ1bQ1TSrK\nVhIlkoopRRWYhKKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKWkooAbS0UUwEpaKKACiiigAo\noooAKKKKACrFVxU4+6KAFooopgJRSVVm1K3hzltxHYc80hlukrM/tNpRlAB9eat21x5yYON1K4WL\nNFFJTGLRSUtMkKKKKAIbib7PCz43YrFm1OebhTsHoOtbskayxlG6EYqOKzgh+6gz69aTA59La5uD\nkKzZ7mr0OjOcea4A9FrYJVPvMq07NKwynFp1tF/DuP8Atc1aChegA+lLRVCCiiigAI3Ag9xXNXEZ\njnZfc10tY+rQ4mDj+IelS9hozqSFzb3KSL2apFjJp4RB15NSpDsb8s8cQ5b8Kz59RZgQny+9Uwsk\nr92q9BpvQzH/AICKLsLIyLnpuIznviqldBrESR2ChFA+cdq5+rRItFFFMAo70UUAPVyjBgcEV01l\ndrdQj+8Bhq5arFpctaziQfiPWgDq6KZHMkkYcMMEZ5pjXUKn72aLoZNRVCTUD/CAPc1Sm1AHO58+\ny0rhY1pLhE6MCfbmqUk5fPX61mNfMfuKB9eartNI/wB5qmzHcuFIEJLkE/7RyaY94icIufeqOaKp\nRFcsNeSt3C/SoCzN95j+NNpaYhKWiug0u3tntVfygz9yeeaAMSK3mm/1cTMPYVeh0a4c/vCEH5mu\ngwB0GKKAOcvdPFmFIctnrxVTiui1OHzbJ8DkciudqWxgelbWizboniJJKnj2FYtXdKkMd9jOFYc+\n9NDOhooopkhRRRQAUUUUAFFFFABRRRQAtQ3H+oP0qWobj/UH6UARW/8Aqlqaobf/AFS1NSAKKKKQ\nDW+7VKWrrfdqpLWkNy0VSKaaeetMNdKGFNopKYDqSim5NAD800mm5pM0WGOzSZpKKBDs0ZptFMB2\naM02iiwx9JSZozRYLiilNNzRmgA20u2lBpaLgVyuDT0Y0rU3FN6oC2pyKjkTvTFbFS7s1FrAVDSY\nqSRec0zd2rRCG9KdTT1ooAWnZpmadQA7NLUdOBoAdS4oFLSATFOFJRmgB9JTC1JmpAkWpKjU1IKQ\nC4pMU6koAaaZinmm5pgFGTTqTFACg0ppBS0AJilozS0gCkNGaaWoAfRTA1O3UAFLmlGDScUALnNP\nUU1alUVDYD4xVlBUCVYWsZMljqKKKzJFpKKKACiiigAooooAKKKKACiiigApaSigBaKKKACg0UGg\nBtFFFMAooooAKKKKACiiigAooooAKlT7tRVJGaAJKKKKYGbrMhS0Cg/fOKwK3Nc/49o/96sOgZYt\nmw2PWraO0Z3DtWarYIq6rbkBrOatqUjcgmEyA9+4qWsaGdoXyOfatZJVdAwYYppiaH0tQyXUMfVx\nVGbWIk+4uTVkmrTHkSPlmArn5tXnk4U7RVJpZJD8zE0WA35tXgj6fMapvqssn3TtFUYrG5nOUjP1\nPFadrozD/XuPoKTQFa3nlN2jElzmugqOK3ihHygfXvUlCAKKKKYBRUMtzHH3yfSqEt878KcCpckV\nY0JbiKIcnn0FZ1xeecCoUYqBEkmfABJq5Fp3eXH0FS7sZnF8UwvikmUpMynnBxUeaVgNXSJPnkTn\nJ5zWtXOWMvlXaHOATg10VaLYTMvXXH2ZF7ls1gVs68fmhHsTWNTJCiiigAooooAMVJGgbljgCo6P\n0oAu/aY4U2x/N/Ko3u5G6HFVqWiwXHF2bqxNMo+tWrWzkupAACF7tQBVqaO1nlPyRs2fQV0UGm20\nGCIwT6tzVsADoMUAc/Folw3MhCD86lu9KjtrNpFZmdSDn2rbqOaMSwSJ/eBFAHIUUHOcUUAFbehz\nErJEe3IrEq5psvlXqZ6NxQB09FFFADXAeNlPcVysg2yMvTB6V1lc9qkPlXhPHzfNSYyjTlby5Ef+\n6c0lJSA65GDoGHQgGlqnpc3m2K5O4r8pq5TEFFFFMAooooAKKKKACiiigAqG4/1B+lTVDcf6g/Sg\nCOD/AFIqWobf/VLU1IAooopAIaqTVcqtOKuD1KRRamE096Ya6UUNpCaDSVQxc0pplLmiwBimmlpD\nVIBKKKSmA7NJ+dJRQAtGaSkoAdS5plLQA6lptFILEgozTAaM0WAU0UmaTJpiHU8Go80ZpNDJjyKr\numKnVs051DCpuIqYpCMUpyGp3UVYDBTxTDSg1QDsUlGaM1IDhS7qbSUAPzSUlFAC0tIKKTQDhUoN\nQU8Gk0BPmjNQ7sUvmUrBYeRTcUbxUbPQOzJM0m+o92aQmgpRZMHpC9RUUh8o/fS76jxRii47Di5N\nNyfSjFGKVwF3U7dTM0ZpjsiTfSebSZpuKAsidHzUoaq8YqwFqGwsiRXqdZarYxRurJoORMuedSiT\nNUd5pwc1LSJdJF7cKdmqO804SmixLpl3dRVXzDUiyetS0Q4MmopobNLmkTYdRRRQIKKKKACiiigA\nooooAKDRQaAG0UUUwCiiigApKWigBKWiigAooooAKen38UylHUfWgCekpxqOSWOMZZgPxpgZWun5\nIR7msSr+q3aXMy+Wcqo61n5oSAXNWYZgq4Y1VFKaGr6MLlxrlR0Gaja9l27VOBVetqx0pGiWWdSS\neQuaVkht3MgmSU4yWqzDpl1MfubQe7V0UcEUS4RFX6CpKYjKi0OMHMsjN6gcVeisreDGyNRgYyeT\nU9FABRRRQwQUvSqst6kfTk/pVCW7kkP9KhyKsaU12kfuRWfLePJ04qFI3lPAzV6HTwOZT+FTq2PQ\noIkkp4BPvV2LTuhkP4Cr6IsYwoAFO4HpVpIVxixrGNqilp3AHP61A91EnVh9BzQIydUj2XG7swz+\nNUK1b+eO5QAZ4/irOzEnU0mPYaAa2475UgQNuZgOnesRrhR90ZqN7iRj1x9KaTBlrVLn7RImOgFZ\n9KTmkqiUFFFFABRRRQAUdaKcrbWzjkUAWvLihQNJy/pVZn3HOMD0pGYucnrWhYaa10Q8gxH/ADoA\nisdPe7OT8qDvXSRxJAgROAKEjWNAqjAHpTqQBRRRTAKKKKAOa1OLyb18dG5FUa29chyI5QvsTWHQ\nAtOVirAjqKbRQB2ELiWFHGDlafWfo8vmWYT+4cVoUAFZesxboVlA5BwTWpUN5H5tpIv+ySPrSYzl\nqXFJjHFSLGW7UhmjocmHkjJ68gVt1y6QujB1fa3qKsC6uU63DH8KaaE0b9FUNMvGuEk3tkqfTHFX\n6YgooooAKKKKACiiigAqG5/492+lTVDc/wDHu1AEdv8A6palqG3P7hampAFFFFIAqGUVNTWFNaMD\nOmXFVzV2ZapsK6oPQ0Qw0lBpK0QxKKDSVQC0lGaM0AFNzS0hoABTsimUZqgH0lNzRmpAdSUUlUAu\naWm0tSAuaUGmUtOwD6SkBozSAWkNJSigB6GpQ1VicU+N6loQ+VM1Bypq1nNMdaEwIzyKjqSgrV3A\nTHFGKTkGnZpAJtpKdS0AJRSmmdaBjqMikxS4qeZArCZpeaB1p4qXJivYZto2+1PzRmo5mUmNxSYp\n+KSnzFJjaKKKLg2LSYp9FJSsJOw2iiimir3CiiihjENFLSUxhTwKaKkApNjJUFS1CjYNS5BrNhYC\naSnYzTKQITFOWlpwFANhxSYp4WnbaCWxoFPApQKeBSIbEFPFAFKDipZDJBRmoi9HmUibEtLUYenZ\nqRDqKQGloEFFFFABQaKDQA2iiimAUUUUAFFFFABRRUc1zFbpl2x7Dk0ASUcD2rJn1cf8sVP1NUZr\n2abqxoA35LiKPq4qnLq0acKCTWQqSSHADMatRaXcSfeAX60wFl1a4k4BwPaqhkllbksxrbg0WEf6\nxmf2zir8VtBD9yJR+HNAI5hLS4kXKxMV9cVG0bIcOhH1rsAAO1MlhjlQh1DZHcUXCxyFFSTxmKZ0\nPBBqOmIAcGuqtJfOtY39RXKVvaJPuhaInJU5ApMaNWiimu6xjJIX60AOoJAHPFZc+tRIcRAt71U+\n3y3BJbgDtSexRrTXqR8LyaoS3cknfAqOOJ5T8oJq/Fp46vz7VOrAoJHJKflBPvV6HTwMeacn0q0W\nit05wo/nVabU41+4C3uaLAW1RU4A/SlZgvUqKx5dVfH3gv061SkvS3ct9afoBvSXsKcZ3fSqkmpH\n+EAe5rFM7t3x9KjLEnk07CuaE18W+85PPaqpuWPSq9OALHAGfaiyC4rSu3U0yrUWn3Mv3YiB6mku\nLN7eTZIRnGeKYitTlUuwVeSaQjBxSqxRge4NAF6LSLmTkgJ/vUyfTLiHnbuX1WujibzIVfswzT6A\nONIIOCCDSV1N1ZxTxtlFzjg471zDKVYqeo60ANooooAKKKKANfTtLaTbNMML1APetwALwMfhVPTJ\nvOsY/wDZ461cNABRRRQAUUUUAFFFFAFe/i86xlX2yPrXKV2ZGQQe/FcldRmG5kT0JoAhooooA1NF\nm2XBjP8AGOK6CuStZTFco4OORn6V1gOQCO/NAB0rPu73rEv4mrk5ZYHK9QDXLvM5Jye9TqMsfInp\nSG4RenNUyxpN1LlHcsG4Y9MVGzsc8k1FmnoRvUt0zzVWFc2tFtdiGduN3A+la1Rw7fIj2jjaKkpi\nCiiigAooooAKKKKACobn/j3apqhuv9Q1AEVuf3C/Spqht/8AULU1SAUUUUAFFFFAEEyVRlWtQ1Tm\nj61rTZafQzjTc1K64qGupPQYZpKKSqGLSUlGadgFpKKKLhcKKKKBDqKKKAExRiiimK4lFGKKQXCj\nNFFA0woooFFh3ClBooxSAMZoAwaUUhNAEitUnUVBmno1KwCOMU0NU55FQMuKYhSKZThzTT1poBc0\nuSaULSgVDkFxMUoFOorNybE22JQaKKENBS0YopMpi0UlFArBTadTTQioiUUvG2kqmi2h1GaSio0I\nsgoooxTSRaSCkopRVDFGKXFIpwaeBSbGNVamC0zFSA1DYIQrRyKfSgVJQisRT8ZoEdPCmghsQLTw\nMUqVKBSbM2xqrT9tKBS1LZDYm2kpS1Rk0gSY7NFMzS5pjsIaSnUlUMUGnZqOnbqkTQ7NPD1DmnA0\nNA0Tg0tQ5pwapsQ1YkoNNBpSaRIlFFFMAooooAKKKKAGyDdGy+o7Vzotbh3I2Mfc10lFAGNFo8jc\nyMF9quxaZbx/w7/rVyigBFVU4UAfSloooAlj6U6o46koAKKKKBnPavCY7veOj881m10Orw77TzO6\nHP4VghSx4GaYWG4q9pUpivAex4NMS2UcyH8BVjhRhQF+lS5AomjcX23iLGc9axbuSR3AklZh71di\ngkm+6Dz3q4ulxHBmyzDt2oi2NmDDbS3BxGhI9a2bTSFhO6U7mx0HStKNFQYUBR6CnUyRAqoOgAFZ\n91q8UWVj+Y+tX3XehX1GK5GVCkrL/dNMZZnv5JmzVZpGPc00Ak1ai066m+7EQPU0CKlFbEOhsT+9\nkA9hV+HS7WHnZvPq1AHNpFJJ9xGb6Cr0OjXUnLAIPc810KoqcKAv0GKWgZmRaJDGcyOX+nFXYrWC\nEYSJR745qaigQvpWVrEQ8tJQOhxWpUF7F51pIvtmgDk260AZoqRBnNAG/o8ha02E/crR61z+mzi3\nmO77pGK1JL6MDKHcTx9Km5RYkmWEZY1y96P9KdsY3HNX559xLMazJZPMfNNNtgyOiiimSFFFFAGz\noU3Lwk+4FbZrldPl8q+jbsTg11NABRRRQAUUUUAFFFFABWBrUO24WQD5WGCfU1v1n6vF5llvxyhy\nKAOcooooAM11VhL51nEx4OMGuVrc0OUeVJF3B3UAaxFYd3o8wdnhIcHnHQit3PFFAHHOjRttcEH0\nNNrW1uMi4SQDAYYOPWsmgAooooA6nT5fNsoz3xg+1WqxtDl4kiP+9mtmgAooooAKKKKACiiigAqG\n5/1DVNUNz/qDQBHbf6ofSpaht/8AVLU1SAUUUUAFFFFABTJF3Cn0ULRgZs0dU3GK2JYsrxWfNFXV\nCZaZSpKey4pldCKCiiikIWiiimIWiijFIVwopaKYXEopaKQXEooxRimFwooopDCkpaKBjaXNJRTu\nFx9GKYDTs0hhQDR1ptAFhTmkdc1EhxU26p6gRKtO20dDSk8VLvcUrp+QClxTacKmSaE4tBRS4oqb\niuJRilopXHcbRRRTRaCiiikAmaKO9JTsOwUUGimMKKKShjFoooosCQUoptLQykmBqQUgSn7DUlpB\nThSrHmpliqGwbVhiipkSnKmKlAouYuQ0KKXFOxTaRFxcUvSm7qN1SKw7NNZqTNIaqw7CbqKaaUUx\n2Fp1NpaBi02hmwCfasp7iSU5Zjg9hUtpEOSjuaD3Ecf3mFV3vwPuJn3NUiOKZU81whPmNiCdZlyK\nlzWNE5jfcPxrWRxIgIpp3LSuSZpc02lqxkgNOzUOeKA1TYzaJ80tQhqeGpWIsPoopGdU+8QPxpCF\noqrJqEEfGdx9qsg7gCO4oAWiiigAooooAKKKKAHJ96parjrUjzRxjJNK6QySmvIiZJIqjNqHZKzp\nJmbqc0r9ii/c3yshRQCCMGqGcDjj2qIyqO9QPMzHg0kmySy0ir1NQyXLEELxVcmm1aQXOj0WbfbM\nh6q1aVc5o83lXgU9H4ro6YhKKWkoASqk+mQXFwZXJJPUVbpaAIYrWCH7kSj3xzU1FFABRRRQAUUU\nUAFFFFABSO6ojFjgY60tc3qF9LPK0fKoONtAFSTZ5rFPu54qaJcLk1WAOcCrscWOW60mNEiJSSSL\nGKZLOE4B5qkzFjk1MYgxXkMjZanRQvM+xFyadbQPcTLGnU10tnZR2iYXk45PrViOTpamuY/KuHQD\nGDxUNABRRRQAoODmurtJfOtY39RXJ1v6JMGt2izypzQBqUUUUAFFFFABRRRQAU2WPzIXQ9GBFOoo\nA41hhiPQ0lXdTi8m+f0bkVSoAKuaZL5d9HzgMdtU6crFHDDqDmgDsaWo4nEsYb154p9AGbrUW+zD\nj+Bs/hXPCuvuI/NgkT1BFciylWIPUGgBKKXBo20AW9Pm8m9iOcKTg109ccp2sGHY5rroH8yFH7sA\nTQA+iiigAooooAKKKKACobn/AFDVNUNz/qGoAht/9QtT1Bb/AOqWpaQDqKKKQBRRRQAUUUUAFQyx\n5qaimmNMypYcZqm6YrdkjDCs+aGumnU6FpmfS050200GujRiaFopaKRLYUUUUCCiloosAlFLRQAl\nFLSUAFFFFACUUtJTKCiiikMKSlptMoKUUoFLSbC4uKToad2pCKi9mJaMeCCKZ900iGn4yKp6liUA\n0nsaKz8mTfoySlpoNOrNohoSkpaShIaQUUUUFCUUUlNFIQ0UUUyhaKMUuKVxXEopcUlCYJjaWigA\nnpTuWhRzTgtSRxcVMsWO1TcbaQxEqcRihUxUgqGyG7iBakHFJ0pC1BDY+jdUW+gnNILD99N3UzBo\noHYeKU0xafTATNGaQ0lAxaKSigBc0dabThQAj/cb6VkDtWxIcRsfRTWQOlZ1Ohz1ugU0in0h6Vmj\nOnKzI6mgnML57dxUFOHSqTsdaNpWDjcDkGnVl21x5Jw3Kn9KtPexL0+b6VqmBYJoxVB75z91QKga\naR+rn8KXMhOcUaT3MUfVh+dQNqSj7ik/Ws/Ap3HbApcxk6nYnfUpW6cfSoGnZzyx60gjZ+EUt9BV\n2DS+8rdugpBuUQjSHCgsfat60Ro7dVfgj9afFDHD9xQKkoAKKKKBBRS1G8yR9TSuOw+mSSpH1NUp\nb1myF4qoXLHkk1LY7F2W+OML+dUpbk/xHNV5ZGU4Ax71XpqN9wuTvcE9KiLk96ZS1aSJuJRS0lMQ\nd6KSlpDHxN5cqv8A3TmuuRg6Bh0Irjq6TSpxLaAdShxQBoUUUUAFJS0UAJRRRQAUUUUAFFFFABRR\nRQAtYV7pTh3nR12E5xWrc3cdrHucjd2HrXPXV/LdSZJ2r2UUAOiiWIZbrTJLjAIXrVYsW6mkpWAC\nc0oG40oXJ5qQAUwOlsUiS1QxDAI69yasVm6PNvtzETyp/StLj2ouBg63DsuVk/vDH5VlV0erxeZZ\nlh1TmudxzQgYlFPWJ26CpRasepFFwK+K0NIm8q9AJwrDBpi2qjrzUyoq9ABUuaHY2GvIV/iz9KrT\naoIwcKPxqgWCgk1QlkMjE0JtjZ1FpN59ujnGSOcdqnrJ0STMLxHsc1rVRIUUUUAFFFFAGPrkXyxy\ngexPtWJXVahEJbGVfbdXK0IAooooA6TSJhLZ7O6fLzV+ua0++NoxU8q36VrDUCR/qx+dJuwF/Fcz\nqMPk3r4GAeRW3DfrJOISMMelUdai5jlHfINK47GPRRRTAK6DR5d9ns7ocVz9aeiy7bhoyeGHA96A\nN6iiimIKKKKACiiigAqG5/1Bqaobn/UNQBDb/wCoWpait/8AULUtIAp1NooAdRRRSAKKKKACiiig\nApjoGp9FGwFCa3PpVGSE+lbhXNQSQA1tCr0LTMQcGn1amtvQVUKsvaulSTQmri0U0GnVWxDVgooo\npCCiiigAooooASiloplCUUUUAJRS0YoHcSloxSik2O4tIaWkNShxClFJQKBsCvelDYPNLnimE0ot\nji2PbDcikFMBxTj603qW1cdkUZFNzSVO5K10JBS9qaKfWbViGrDKKKKaKQUlKKKL2KWglOpKXPFJ\nsTY00maUDcad5dVbuWo6ajQC1SiAU+OOrAWpbsVsVvJHpUiRYqwFzTtmKhyE5DVTFPxRSE0rmd22\nBppNBeoyaZSQ7fRuqOloKsh2KeopBS0iWO4pppM0ZpCQUuaTa3oacEPoaY7oKSn7KPLNF0TcbSVL\nto20uZC5iCnUrLimFgOTgCqLG3DFbeQjg4xWVmr1xdRvC0anJNUTWcznrPVBmlzSUVmY2G04Cilz\nTua+1fQTFLilVS7hV6k1dSziH3izH8qpRbEoykUcjFPSCST7qH6mtRYo0+6oH0FKatQRoqSW5RTT\n+7yfgoqwtpAv8GT7nNS0tVoi1FIQADoAPpUgNMpRQwaJlNOqMGmPcpH3zUNk2LOKhkuY4885qjLe\nM+ccCqxYsfWob7BYty3rHO3IqqWZupJqWK2kl6DA9TV2KyjTlvmNKzC5TitpZegwPU1dis0j6/Ma\nsdKKaRNzndR/4/pv96qtS3D77h29TUVaCClpKKBBRRS0hiUUlLQAVp6NOI7kxno44+tZlSQSmKZX\nBxg0AdfRQrBwGByD3ooAWiiigBKKWkoAKKKKACiiigAqleajFbDH3nxwBRd36RZSI5fHUdqxnZQS\nzYJNTcZBNNJcuZHOahp7vuPHAplUIKUcmr9naxk+ZcHbH2HrVZkG87OATwPalcLDAKUZp4WnAYqb\nlE+nzfZ7nLDCkYPtWjJqafwqx+pxWUKWldhYuTX7zArtAB9aqbF9KCQKaZUXvRqxklLVc3I/hWo2\nuGPTijlYXRczj0ppmRerflVEux6kmm0+QnmJZZmk69KiopRlmwOpqxbl/SJSl6qno/FdHWdpdgLe\nPzZQPMbp7Vo0AFFFFABRRRQA2RlRMt0/nXJTJsmZR0B4ropH8xyx6dh2rH1JV88FSDkdqSdxtFGi\niimISrdvc7Plbp2qrRQwLMMrm8R1PO6ug1CHzrFx3ADVmaNaFpftDD5V+77mtwjcGB7gigZx5oqS\nZDHM6njBqOkAtSWshhuo3HUHFRUhoEdlRVexlE1nEwz0x+NWKYBRRRQAUUUUAFQ3X+oapqhuf9Q1\nAENv/qFqWorf/ULUtIAooooAKUUlFADqKKKQBRRRQAUUUUAFFFFADWQNVWa2z0q5SYzVKTQ0zJlt\nsdqrGNlreZA3Wq0lsprojW7juZOaWrclp14NVmhZe9aqSewOK6DcUYpDuHUUb6ohxY6iiipEJRRR\nTEFJS0UFBS0ClxRcYlFFFQAUUUUIpCUUUUFB2ptOpDSvYIuwh6U9OaaaRTg1Vy0x7JtNGKfnIpmc\nHFTJdUEl1QUtBx60mR61G5PxC0Um4VJ5Up6Rt+VCY0mRZoDVKtnOedtTLZP/ABAUuaPUrQqk0ojJ\nq4th71OtqBS54oOZIpRx4qYIKs+QKesYFZuoL2hXVKeBU20Uu0UucjnIgKdT6KVxcxCQ3oaQoxqe\nilzBzPoVvJb1FOWHHWp6KXMHMyLyF9TR5K1LRSuK8hoUDtS7R6UtFFxXYm0Dpil/KiilcQUUU2SR\nY49zEAeppgOpM461ny6pGoxGu8+/SqEt7PMMF8A9qpRbA3HnjjGWYCqsmqRJ0XP6VjszNyzZpuPz\np8ncLl2TUZ5Ony/Soly3LMT9aSOyuZPuRn8aux6XIPvyAZ9Bmm7Cd3oirgCkzV9bSNTgkt9aebWB\n/wCHB9uKXKP2L6szcU2rM9sYVDA7lz6dKrkVDTRnKLi7MAKQilBoNBJZ09gJnU9xWgwrGhk8qdX9\nDWxnIrVHVDYKSloqixtOppIHJ4FV5LxE+7yaGxlngdaglu0jPrVGW4eU9cVBiouJlqS9eTgcCokY\nk8806G1kl5xgeprTtrOOMnI3H1NKzZDVkVorWSXtgepq9FZxxdfmPvViikkQ2FFFFMQUGikoA5Z/\n9Y31NNpz/fb602qEFFLSUAFLSUUhiUtJS0AFFFFAGtpWoGMiCT7h+6fQ1vVxfvXQaVqHmp5D/fHQ\n+tAGpSUtJQAtFJS0AFJSPIicswX6mqkmq20ecNvP+yM0AXOByTisu8vtxKRnjufWqdzqUs/H3V9K\npbiT1pMqxK7bemSagIZzk0tLSQDQlPCAfhR+dGQO9K7HoL04FKKjMg7U0uTTsF0TihmCjOarZPek\no5Sbk5mHYUwysajop2Qri5J680lFFMAooooAKKKKADvWzpVhki4kXj+EGsY11djL51lG2QeMHHY0\nAWKKKKACiiigAqjqjyx2ZaJsYPOPSr1RXEPn28kfTcMZoA5V5ZH+9Ix/Go6uzaXcw87dw9VqmQQe\naAEooooAKKKKAOp05w9jGR6Y/GrYrH0OXMckPcHcK2KAOf1iIR3e4fxjJ+tZtb+sw77YScfIeawK\nSAKQ0tBoGbehzZikizyDkD2rWrnNHlMd8F7OMV0dMQUUUUAFFFFABUNz/qD9KmqG5/1B+lAEMH+p\nFS1HB/qRUlIAooooAKKKKAFpabS0ALRRRSAKKKKACiiigAooooAKKKKAGlQajaBT2qaimm0MpSWm\nelVpLT2rWpCoNaKqx3MRrcjvUZjYVuGJTUTWymtVW7juZHPpRurSa0qJrSq9pEdolHIpc1Za1qJr\ncjoatSixciEopuxqNrUrJh7Ji0UnNHNIPZMWjNN5pCTSZXI0AyzYUEn0FSLbTt0jI+vFXrC1EUQk\nP3m/SrlYyq2diboyPsNwf4Vx67qd/Z0/qtatFS6r6BczV0w95efYU5dOVTyxNX6Kj2khXZWWxjBz\nz+dPNpCeqCpqKXPLuF2RC3hUYESfiuaeEVeiqPoMU6ilzMWoUUUUgCiiigAooooAKKKKACiiigAo\noooAKKKKBBRRRQAUUUUAFFFFABRRRQBXvpJIbcvGRkde9YckrStuZix966J0EiFT0YYqtFp9vHzt\n3H1bmqjJIDFWN5DhFLH2FWo9NuH+8An1raVQowAB9OKWjnYXM+PSYwcyOW+nFW47aGL7iKPwyalo\nqW2wCiiigCN1qGrVV2+9WiNYsHG9GU9wRWOAVYg9Qa16z7lAs54wDzRJaE1V7tyvS0YoFZnKNPWt\nS2fzIF/I1l1JFM8SsF7+taRdtzpjJLc1Cyr1IFV5b1FGFyx9ulUmLO2WbJ96aelHP2D2t3ZDpZ3k\n6nA9KiqeK0klGfur6mrsVpHF23H1NFjTUpRW0kvQYHqaux2UcfJ+Y+/Sp84oqkrFBUsVRVND92hm\nctiWiiioMwooooAKQkKCT2FLUVzj7PJnptNAHMv99vrSUCiqELSUtJQAUGig0DEooopALRSUtABT\nkdo3DKcEdKbS4oA6ewvluYPmIDL97PFPlv7aHguCfRea5gEjvRSuBsS62P8AllEfqxqnJql0/wDE\nF/3RVPNIWFIY9nd+WYt9Tmm03dSbqdgJeKbkCoySaSiwiQvSbyabRTAUn3pKKKACiiigAopfwoxQ\nFhKKcFpcYouOw6O3mlOEjY/hVyLRrl+W2oPc1s2EoltI29sc+tWaBHKXdsbWcxls8ZzVetnXIfmj\nmA6jBNY1ABRRRQAVuaFLmOSP0ORWHV3SpfKv0H975aAOmooooAKKKKACiiigBaxdchAKTgYJ4NbN\nVNSjMtjKB2G78qAOXooooAKKKKALulyiO/TJwG4NdPXGoxV1b0Oa66KTzIUf+8ueKAG3Efm28i4z\nkVyhGMg9Qa7CuWvovJvJFHPOaSHcr0UlFMQ6N9kiv/dINdejh41YdxmuOxXSaVMJLILkkrwc0gLt\nLRRTAKKKKACobn/UNU1Q3P8AqGoAhtv9QtS1Fb/6halpMAooooAKKKKACiiigB1FNpaAFooopAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNIp1NY0AiB6gNSO1RVojpS0DaKaUFPppNO7KRF5dL5dPF\nOp3YyIxCpIbYO/PQUoq9GgUUnJmU5WVh2KbT6aetYs5xKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACUUtFIQlFLRTASilooASilooASilooASiiloGJRRmigQ\nVFJUtRuMinF6lR3GVWvYz5YkxyDUpkWMZYgVUnvA6lEXIPUmtGzVpNWZWyAKbuHpTaKzMVTSJB0p\nvQ07OBTCaDK12TRwSS8qvHqeBVuK1SPljub1pbV98A9RwanrVRSOiMFHYKKKKZYUUUUwFqaL7tQ0\n9DUsmS0J6KKKgyCiiigAqOf/AFEv+6akqGf/AI95P900AczRRRVCCiiigApKWkpDClpKKAClpKKA\nHAU4cUzJpKAHlqQsaSiiwBk0lFFABS0lLQAlFTxWs0x+SN2HTIFXI9EuW++UT/eOf5UAZtFb0OhR\nLgzSM3sOBV6Oytovuwp+IzQBzEdvNKfkjZj7CrkejXTn5tqfU10QAHQYooAy4tDhX/WOzfTircdh\naxfdhX6nmrNFAGbrMO6BXAyVNYVdVcxiW3kU91rlaljCiiigDX0Wbhoc/wC0BWxXNafL5N2hyACc\nHPpXS1aAp6lH5tnIMZI5H1rmBXZMoZCD3GK5K4j8m4eP+6cUhEVFFFABS5pKKAOwikEsKODkMM5p\n9UNHk82z2k8ocCr9ABRRRQAUUUUAFIRuBB7jFLRQByNxGYp3QjkGoq0tXh8q73AcMM596zaACiii\ngAro9Il8yyC85Q4rnK1NFl2XTISfmXgUAb9Ymtx/PHJ6jH41uVR1SHzbFiBkrzRYDmqKKKACtfQ5\nD5kkfqNwrJqexl8i8jc9M4pAdVRSUtMAooooAKiuf9Q30qWorn/UNQBBB/qRUtRW/wDqFqWkAUUU\nUAFFFFABRRRQAUUUUALS02igB1FFFIAooooAKKKKACiiigAooooAKKKKACoHapXOBVWQ81aLgtRj\nmos08mmVZ0IM0oop4pDYgFOooQbyB+dBN+pNAmfmNWaRQFHFLWTOVtthTT1p1NNJjQlFFFIAoooo\nAKKKKACiiiiwBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJQAtFJupN1ADqKbk0l\nADs0ZptFIBc0ZpKKACiiigAoqOWeOL7zfgKz5tQY8IMD9aANJ50iGWOKoXGodo+PfvVBnZ+STQM9\nO9UotBcC7OcscmiporKV8FhtHvV+K1ijxxk+pqlG5ok2ZxQrjcCM8jNLxVy7T9yGHO05NUMmplGz\n0Mat0xDSU7HFNpCgy1ZPiXZ69Kv1kI2x1b0Oa1+taweh0RegUUUVYwopaSgApqt89ONREgHJxihj\ntcuoc0+s77dDH6n2AqJ9YP8ABF+LGs2YyRrU15EQZZlX6nFYUl9cSZ+fGey8VXLE5JJOfU0hG2+p\n269CX/3RVG51R3Uqi7c9z1qjmmHFAhKKKWqEJRRRQAUlKaSkMKKKKACiiigAoopQMmgBKXHvTiAv\nfNMoAUnNJRWnp2mm6PmSZEY/WgCKwsHvH5BEY6sK34bK3gACxrx3IyamjjWJAqgADtTqACkpaKAC\niikoAWkpaKAEopaSgA61zepxeVev/tfNXSVla1DmNJh/CcH1pNDMWikpaQADg59Dmuqt5fNt0fj5\ngCfrXKVvaNLutmi/uGmmDNKsDWoNlwso6OMVv1navD5lmXA5Tn8KYjnaKKKACiiigDU0SXbdNH/f\nFb9cjbyeVcRvz8rCutByM+tAC0UUUAFFFFABRRRQBma1FutVfP3T+dc/XX3Efm27rxyuOa5JhhiO\n4oAbRRRQAVNbSGO5jcHHIzUNFAHaZBAPrTJE3xunqCKisZfPtInPUjmp6AOOddkjL6HFJV/VojHf\nM3Hz8gCqFIYtIDg59KWkpiOut5BLbo+c5A5FSVm6NIXtCh/gOK0qACiiigAqK6/1DfSpahuv9Q30\noAhtv9QtS1Fbf6halpAFFFFABRRRQAUUUUAFFFFABRRRQAU6m0tAC0UUUgCiiigAooooAKKKKACi\niigCOWqchqxK9Vm5rRHRBEeadTcUoqjUfS02jNAh1WrdNqZPU1XgXc9Xaze5hN9ELRRRUmQUhpaQ\n0gG0UUUhhRTJJUiGXYLWdNqoXiFQeepp2A1Ka0iDgsAfTNYUl5PN1cj2Xios0NDsdJRVOyuxMgVv\nvj9auUhWCiiigAooooAKKKKACiikzQAtFJmk3UAOopmaM0AOyKTdSUUgF3UZNJRTAKKKKQBRRRQA\nUUUUwCiiikAUlQzXUcXU5PoKz5r+R+F+UUJN7AaUtxHEOT+ArPm1B2yF4H61SLFjQoJOBznsKtQS\n3HcVmZiST1oAz61ah0+R8FzsU8+pNaMFtFAPlHP949aHNLYLGbDYSSYLfKvvWjDZww9FyfVuanzS\nVLbYhj02lY5NJWq2NlsIwDAgjqMVkkFTg9QcVsVm3aBZ8/3hSkrozqq8bkFIaWg8iszni9RK0bOT\ndCB3HFZlSwzNCxIGc1cXZm8JJM1aTIXqQPrxWc13Mx+9t+lQkknLEk+9U5obqI02u4I/49x/2arv\nqXPyR/maokUnep5iee+xZNzLJ958ewpCKjSpsVLbZjOTGnpVdxg1axxUUi5FCYQnYg3U3NIwwaSr\nRqLk0UUUwCiiloEJRRRQAlFFFIYUUUUAFFFFABTgcU2igApRSVc08KLuMuAeehoAuadpfmkS3CkJ\n1C+tbiqEAVQAB0A4Apf8KKACiiigAooooAKSlooASlpKKAFooooASoLyPzbSRMA5HH1qxSUAcfRV\ni+hMN264wM5FV6kYVe0qQR3yjnDjbVGnRsyOrDqpBpoDrqbIgkjZWGQwINKjCRNy8g9KWmI4+RDH\nIVPVTTKvarF5d87DOG559ao0AFFFFABXT6bKJbJOclRtNcxWzocx3SQlsD7wBoA2qKKKACiiigAo\noooAK5fUovKvZBjAJyK6isXW4eUkH0PtQBjUUUUAFFFFAG5ocoMTxZOQc1r1zeky+XfAb9qsMGuk\noAydbh3RJKq9DhjWHXV3sYmtJFOemRj1rlDwSMYpDCikopiNPRZQl2UJPzjAroa5G2kMVwjg4wa6\n0EMAR35oAKKKKACorr/UN9KlqG5/1DfSgCG2/wBQtS1Fbf6halpAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFLmkooAdRRRSAKKKKACiiigApHpaY5oQytJUJp8rVDmtTpgOpKSloLEpwXNFWraP+Kk2\nTKSSJo0CJgU+iiszlYUUUUCCjtRRQAyorr/j1l/3TUtV7w4s5v8AdNSM57Jz1oPrRRWxJL2paarZ\nAp2RUF3BGKkEHpWxZ3YmG0n5wPzrFoVih3AnIocQOloqnaXa3CejDqKs1DBjs0maSigQuaTNFFAB\nRTXkSMZdlX6nFVZNTgToS/0FFgLlHSsiTVpG+4ir7nmqslzNKfmlOPTOBVKDFc6GiszTJT80Z5PU\nVp1LVnYYUUUUAFFFFABRRRQAUUUnSgBaOlVpr2KHjOW9B2rMnvZJTjOB6ChJsZqTXcUWecn0FZ89\n/LJwvyD2qmeTSqCTgDJ9qvlsFxSxPWgZPAGSatw6a74MnyD071ow2sMH3V59TyaHJLYkzrfTpJcF\n/kH6mtGG1ig+6v4nrU1FQ22MKKKO1IAqNmzxSM2aStYrqaJdRKXNJSVRoPNVb5VMIJ4IOQKSS72/\ncG4+p6VTdmc7nJJpSkkYznFaDKSlorK5ziGlpQKMUwuJS4opKQhetJilooEAqQGo6cKQMkpGFKoZ\nugJ96eIXJ6AfjVJNgqcnsijItRVrR2cZP7wlj6DgVoRQxRj5IlX3xzV2N1FrcwI7O4lPywvj3GBV\nqPSJj/rHVPpzW1RSuBmto0WPlkkz6kA1Uk0y4Q/KoYD0NbtFAzlmUqcEEH3ptdUyJIMOoYe4qhea\nZCIWkhG0jnGeMU7isYdFFFABRRRQAUUUUAFFFFAD061Mp2EMOo5FQr1qXNJ7jOpgk82BG9QOlSVn\naRLvtynHynitGmIKKKKACiiigAooooASilpKAClopKAFooooAxNbh/eJKM8jBrJrpdUi82yb1X5q\n5s1IxtFFFMDotLmMlkoOMpkY9qv1h6LKRO8X95etblMDK1qHNusufunH51g11t3H5trIg6kcZ9a5\nMjaxFAhKKKKACrenymG9ibA5OPzqpRjAoA7SkqlDqVu8Sk/KcDjGak+323/PX9DSGWaKrfb7bj97\n/wCOmrPp3piCiiigAqpqSebZSDpgbqt0jDchHqCKAONoqW5jMVw6HqDUVABRRRQA+NzHKjj+Eg11\n0bb40b1UGuOrpNIm8yxUY+4dv1oAvnpXKXkXk3UqZzg9a6vpWFrcZE6yADBGCfekBk0UUUwCuo06\nczWUZbG4cVy9amlX0dqkqybvm5GKAN+isl9cX+CAn3ZsVUk1e6boUj/3V/xpXA6Gq93NCkZV5FXI\n7nmuckuZ5M75nbPUZqGgdjpbf/ULUtRW/wDqFqWgQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFOptFADqKTNLSAKKKKACo3qSo5OlNDW5TemYqV6jrQ6ovQSlpN1N3elMZLEu58VoAADAqK3h8t\nMn7x61LWTOabuwooopEBRRRQAUUhYCmlqLgBIFV7xs2co/2TUx5qveZ+yS5/umkmMwsUtFFbEjT9\n7608U1hkUopDQtFFJQMWNzE4ZeCK2ra5SdM5APcZrDyKRXZTlSQfapcbgdG0iJ95lX6nFVZNSt06\nbnPt0rG+Y9aAvrQodwuaEmqv0jjC+55qo95cSdZW/Dio9oFFUopCuM2mnBRS5qSG3lm+4nHqelAi\nLinxwyTOQik49BWnDpqJjzDvP6VeVVXhRgDsOAKly7DsUbTTzE4eRzu9Fq/RRWbdxhRRRQAUUUUA\nFHGM9qrXVybZAQu4k49qypbuaYnc+B2A6VSTYPQ0ptQijyB8x9qzpryWbgnA9B0qt1FOVSxwASfa\nq5EtwuGfxoALHAGTVyDT2fmT5B6d6vxRJAPkUA+vehvTQtJspQaY7cyHaP7vetGK3jhGEUD371LR\nWbdybhRRRSEFFFISBQgsxSQKhLE0McmkrVI1ihaWm0oqhjJpUiUbicnsOpqhJO8nB+Ueg/rVm9Td\nFuGMqc/hVGpm2Y1ZNaIdRRRWZzDaSlpKBhRS0lACGm07p1rWigiTBRFPoetVGNzWEbmWkTv91GPv\njip1spG+8VUe55rSIpp4q1BGqporJYxjlmZvbpT1ijj+6gHualpcVSSRailsNIytRYIqfFNZaZSY\nwHFWImqt0qWI8ipYppWLVFFFZmIUUUtMQYooqrdXiW/A+Z/T0pgYVzH5dy6ehqGppyXcsTknk1DQ\nAUUUUAFFFFABRRRQA4HBqTjbUNSocihgaGlS+XdqvHz8fSugrk0fY6tjO05rqkfzI1f1ANShjqKK\nKoQUUUUAFFFFABRRRQAlFFFABS0lFAA3II9RiuUnj8qZ067TiusrC1mHZcB+MOO1IaMukpaSgCaC\nUwzpKB9055rq+vPauPzXS6dKJbFOuV+U570CLZ5GK5W/h8i7dMYGcj6V0txOLePcRk9h71zl9KZ5\nt564xRfUCpRRRTAKKKKALq/cH0pajVsoKVmCjNRZ3KuRTOc7c8V01lL59lG5xkjn61yhOTk10elQ\nNBZjd1c7selWSX6KKKACiiigDn9Zh2XQkA4ccn3rMroNZjD2gbPKHP4Vz9ABRRRQAVq6RdJA0iyP\ntUjNZVGSDQB00mq2cf8Ay03kdlGc/wBKzNQ1CG7j2JEwx/E3FZlFABRRRQAUUUUASUUUVJQUUUUA\ndHb/AOoWpajtv9Qv0qSmSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOoptOpA\nFRSVLUExpopbleQ1AzUkz/NUPXrWh2RjoOZ6vWcOQJW5zyKrWcHnSbm+6K1ahsxqy6IWiiipOcKK\nKQtQAucU0tSdaSpAKKCQvU4qvJfW8RIaTJ9F5oAsVS1P/j0P+8Kgl1Zf+WUf4tVOa+mnG1yAvoKp\nJ3AiopAaWthBTVOBTqKVgG8ml20tFFguxNvrS4FFWrSyNyNzMUQenek3bcLFWjt05+tbKafbpj5S\nT6sanWJEGFVVHoBio50OxiraXEnKxtn34qzHpTn/AFkij6c1p0tLmCxVj0+3jxlS/wDvVaAA4HA9\nKKKXMMKKKKQBRRRQAUUUUgCiiimBU1CHzLfIHzLzWUsE0vKxOc98cV0FIzBRk1SlYLXMuHS2PMrB\nfYdatrHFANsa4/2u9K0hb6UyqV92bxjYdmjNNoqyyZHwcHpU1VBUqSdjWcl1Mpw6omooprOFqErm\naTFZsVCzZozmkrVKxqlYKKSimULS02loCwSKHQqehFZYOOvUcVqA0hRM52rn1xzRKNzOcOZGeI3Y\n4VCakW1c9SB+FXKKSghKjFEC2qDuScdzVNgVYqeoOK0qqXagT7v7wpSiraE1ILluitmgnijFJjis\nzn0E5rTsn3QBf7pxWfgU+KUQuWxkEYxVRdmdNPc1s0hqv9sg/v8A6GhbuAkAMc+mK0uWTUA0UlUM\nfRTaWkIRhmkiGJPzp1AoYPaxOG5xTqgBxUqvUGbRJRTDwMnisu6vi+UT5V9e5pCsT3l9t+SE89Cf\nSsskmkqN2zwKW4wkPao6SiqWhIUUUUAFFFFABRRRQAU5PvU2lFAEoNb+kS+ZabefkNc+v3a0dHl2\nXRQ87xipGb9FFFUIKKKKACiiigAooooAKKKKACkpaKACs/V4PMtNwHKHOfar9MlQSxsrDIYYoA5K\nigqVJB4I7GipGFa+jTgeZEzf7S1kU+OUxtnJH0oAvX10Zpjg/KOlZ8nSgy+1MLFjzTsISiiimAUU\nUUAKGI6GjJ70lFAFuwtvtV0qH7o5P+FdMWSJPmZVAGMs2K5JZJIuUdl9wcUjyNISWYsfUnNAHTSa\njaRdZ0/4Dz/KqsmuQD/Vxux9+K5+loA1H1u4b7iIg/Oqsmo3Un3pn/A4/lVWigANFFHegAooooAK\nKKKACijvRQAUUUUAFFJS0AOWnUwU+kygoooPSkB0UP8AqRU1RW/+rFSZqiRaKKKQBRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFGaSgBc1XnNT1DPTRUNzNk+9RHG0z7U6dzTnXdJj1rSt\n4BAmAKps6KlSy0JUQRoFXoKdRRWZyhSEgUjNTGIQZY7QPfFJsB2aQkdzWdNqiAYiUMfU9Kzprqac\n/O/HoOlNRYGxPqFvBkbt7f3VrPl1SaQ4jAQe1UqTg+gqlFAPkmll+/IzfU0zBNFPVHkPyKSfYZqr\nJAMxRiraadcydVC/7xq0mkLn95ISP9kYpcyAyqdWtJpMLcxuyfqKpyabOhymJB7cGjmQFaim/dOD\n+Ip1UAUUUmaYgNblnKJLZV7jjA7VgnrWhpcu2VoyfvDj61nNXQ0a1FFFZDCiiigAoopskiRDLMB9\naAHUySRYhlyFHvVCfUhyIxg/3jWfJK8hJY5JpqDYGnLqiJ9xS314qODUXedVYKFP4Vm06NWaQbFJ\nINaciSEdHRTUzsG7g45HpTqyGFFISFGTVaSfPA/OmlctRbZO0qgccmq5JY0wGlrVI2UUhaWm0VRV\nh1GKSnUCG0+mmlzQDJFcgYphoBpaSRKSEoBopQKY2FJTsUlAkAopDSUgG0tLSUwFooooAKiuV3QE\n45U5qVnCIWY4AqlPOZjgDC/qaTaS1JnJJakANJRR3rE40hCaSnYpMUzdTSQmKUUVJBCZpQg49T6U\n1qS25Ghbt5kKsfxqbFIqBQAOMClrU2EpaKKYBSUtJQA4UTSpCm5jj+dRzXKW689ey96yJp3nfLdO\nwrNsTJ57x7jp8qelV80zgUwnPNKxDYrtk0yiimSFSGJxGHKna3APrWhp+mtK4kmBCdQPWtHVLfzL\nDCKMR8jjGB3oA5qiiigAooooAKKKKACiiigCRDU0T+XIrZPBB4quvBqU8Ck9xnWowdFYdCM0tUtL\nm82zGTkrxV2mIKKKKACiiigAooooAKKKKACiiigApKX3NQtcwIx3TIMds80Ac/qkJhvn/wBr5uap\n1o6pdw3Pl+WSSvU4xWdSGFFFLQAyil20lUIKKKKQBRRRQAUUUUAJS0UUAFFJS0AFFFFABR3opKAF\nooooAKKKKADvRRRQAUUUUAFFFFABUlR09TxSY0OooopDOgt/9UtTYqC3/wBUtTigQoopKWmIKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigBKKKKACo5RkU+lpoaIootvNT0lFIQ6mu2KCeM1\nG3JqWxoOtZOpp+/V8cFcZ981rVHNAk6bXGR1oiBzuaekUkn3EZh7CtxLK3jx+7B9zzVkBR0AH0GK\nrmFYw49OuXPKBf8AeNWY9IH/AC0lP4DFalJS5mMrpYW8eP3QPu3NThQvQYpaKkQUUUUAFFFFAGTq\nsO2VZR0bis8Gt+8iE1s6d+o+tYHJORWkHdALTDTgaQ9a0QDakgkMUyuOxqOim1fQR0yMHQMOhGaW\nqWmS7oNufucfhU8l1FF95ufQda5Xo7FE1RyzxwjLMPp3rMn1FnyE+X+dUmdm6nrVKDYrl+fU2bIj\n4/CqLyM+SxyTTKckbyNhFLH2rVRUQGU9EeQ4VSx9q0INLPBmP/ARWjHDHEMIoUe1TKougGdBpfQz\nH/gIrRjhSIYRQBT6Kzbb3GFMeRUHP4AUx7gKMLyfX0qqxLHJpxh1NI076sc8rP7e1MpKWtjoSSVh\n1LmkooBjqKSgUCHUtJRQAtJRTqBCU8CmU8GgTAiilzTaLCHUhoqMmgBaUU0GloAkptGaKCRO9Opn\nen0DZSumJk2fwjnFQVduYGk2svJHWqTKy/eUj8Kzknc5qsW5XEpKdSVBiJSYpaKCriEVd09gS69/\nvVSzUlvJsuFY9DwauOjLpuzNem0uaQmtDoEpaQUtMAqtcXQiBVOX/lUdzeEkpEeO7VSxxUOVhSdh\nrMWOSck96Z0p1BqDNyI/rSUppKoQoUk4ArWsdOK/vZsZ7IefzqSx01YsPJ80nYdhWjQAtSgb0we9\nQ1Kh4oA5KaMxSshGNpxUVamsQ7LveOj/AM6y6ACiiigAooooAKKKKAFHWpM+vP8ASoqeKGBraNNt\nmaInhuQK3K5S2lMU6N0wa6lTuAPqAaAHUUUx5oovvyov1OKAH0VRk1ezTo5f/dFVZNeXkRwk+hZq\nANiiudk1q6f7uyP/AHRVSS7nl+/M7D03UAdRJc28Wd8yAjtnmqr6xaIeC7/7o/xrm80uaANmTXDz\nshHsWaq0mrXT5wwQeiis/cKN1AyV55ZPvSu31bNR59zTcmkzRYBxNIKSlFAC0UtJSAWm0tKoo2AZ\nRSnrSUxC0lFLQAlFFFABR3oo70AFFFFABRRRQAUUUUAHeijvRQAUUUUAFFFJQA4UpGKFFKw4pdR2\nGUUUUxC0q02lHFAElFFJU3KOgg/1K1JTIP8AUrT6Qh9FIKWmmAtFFFMQUUUUAFFFFABRRRQAUUUl\nAC0UlFABRRRQAUUUUAFFFFAC0UUUAFI3SjNMZuKAQhOTSUUVIxc0tNooAdRSClpAOFFNp1ABRRRQ\nAUUUUAFFFFAgrAvYvJu2GMA8it+s3VIQUEqjkHB+lVHQDKozRSGtQEopQtIKdxEiSNFnacE00uW6\nmmipI4pJWwik0tFqMjp8cbyHCKWPtWjBpXRpTn/ZFaEcaRjagCj2qHU7AUINKGcytn/ZWr8cSRDC\nKFHtT6Kzbb3GFFFQXFysQx1b0pJFKLexK7qgyTVCW4ZyccCo2d5DljTQa2jE6oUlFXJAadUYNPqy\nmgop2KTFBIopabRQA+ikBpaAFBpabS0hC0tIKWgQtAoooAWikpuaBDzTaUUUAAFGKUUtMlsZS0UU\nhhSilooEJS0EU2gCldRlJiezcioauXaZiBHVTVKspqzOSqrSFxSGnUhHFSZjM0maUijbTRqjWgk8\nyJX9R+tPqpYybQ0ffqKsSTLCuWOT6etaJnSndXHF1QbmOAKz57tpMqnC/qabPM8x+bhewFRbaly7\nGbn2GYpcU7bRipZk532GGmHrTyKRI2kfaqkk00JDUQuwCA5PYVt2VitugZhmT19KLS1W1T1Y9Wq3\nuqix9FN3UbqAHU+M5zUe6npw9AFXWIBLab+8fIxXNV2brvjZfUYrkZk8uVk9CRQBFRRRQAUUUUAF\nFFFABTl+9TaUdaAJBxV1tWuQgRdiY7gVSBpppIZLJe3Mmd07kHtnioSSe5ptFMQUUUUAFFFFABRR\nRQAUUoFBpgJRS0oFIBMUuKfRSGNooooAM0optKDQANwabTmptMTEpaSigBaKBS0AJRS0lABRRRQA\nUUUUAFFFFABRRSUALRRRQAUUUUAPWncbaYDRzSsO4yloopiCiiigBc0lFFAHSW/+oWpKjt/9QtSV\nAxRTqZThQAtLSUtUIKKKKACiikoAKKKKACiiigAooooAKKKKACiiigApaSloAKKKQmgBrGmUtGKk\nYlFFFABRRRQAUopKKAFFVp5yjbYz8/c+lOmm8oYH3qqKMfWhuyNqcLaskFzcA/MQwqUXxHWI/gaj\nIpuKSkzTlRcF3Af+Wn58VKCGGQc1Q8laQRbTkEg+oNLmRLpI0aKz/OuFGBITjpnmpo5rhusQJ9c4\noRjUioatlrpzVK7voBG0ZO8kYIWq9zb30p+Ygr6L0rNdGRsMD+NWl3M1OL2CiiitR3Gk5o6UpFNo\nQgrV0uTKsh6jkcVl9KntZfJuFbt0NKauhm/S0gORmlrAYUVFLOkSc9ew7mqMkzyn5ydvoOlUo6am\nsaTepNLclziM/jUGKUe1BNB0JWVkGKaRT6Q1SZSZHkinBqMU0itEyiYHNOqFGqUHNMhoDTafTSKB\nJhT6YKdmgLDhRSClpEsUUtJRQIdSGmU6mAUUtFArhT6ZRSE0PxRSUUCDFFLSGmAlFJRmkMdmmUbq\nYWouNJjmw6FT0INUAufrVzNQkDzT6HmokjCvH3bkYFOxTsUCpOFsjK80m2pSO9JQaKTsMUsrBl6i\nlYM7bmOafxS0A6srWIdooxTzSUib3EoIopwBc4UZP8qY4pt2RHsZyFAyT0FX7eFYFODlj1NJHEsa\n5HXuT3p25V5LKPxqkrHbCmorUn3UBqrm5hXq4P05qJr5P4UY/U4p3G3Fbl7PvRurMN5IegUZ/GmG\naQ9Xb8OKXMiHUgjYLhBkkD68Uz7fBE3MgP0GaxSMnnk0m2lzEc6NeTWYV+4jsfyrIuZFnnaRU2A9\ns0zbSgUxORHim4qbbSEUhJkWKMU/bRii47kdFPxSUxjaKKKAHjmlI4pq080mBHijFFFMBcUYoAp+\nKVxkeKKfikK0AMooopiCiiigBRTt1MooAeCTTqZmnBs0mihKKKKBBRRRQIRjSd6dTe9MBKKWkoAK\nWkooAWlptLQAd6KKcFoAbRinbRT8UrgR4owakxRii5Vhm2kIxUtMbkUJisMooopiCiiigApaSigA\noopKAFooooAKSlooA6S3/wBQtSVHb/6hakqBhRRRSAfRSA0VSELRRRTAKKKKACiiigAooooAKKKK\nACiiigApaSloAKKKCcUAITxUf8WaUnNJUjCiiikAUUUUAFFFFMAqGeRYl3H73pUjSKiZY4FUCGlf\ne/5U9FqXTg92KvPJ5Jp+KbinqKzbvqdG4tJS09YmbrxU3M51IwV5MZUixM3XgVMsYXoKfRY4KuOe\n0ENSJV6Dmn4xQKRpFQcnn0o2PObnUl3Y6mOyL98A1C9wTwvAqAknrRc7qOBk9Zuw6VYZZADGu32H\nNNfS4W6MwptXYm3oD3xVXaNMVB0UnDYzH0qUdGUj1qo1pMh5Q10NIavnOaOKktzmsYHSm5xXRPEj\nDBUEVA+nQNk4IJ9DVxn3NliYvdE1pL51uje2PxqOa6wCqDLevpURg8iPCudh6igBccCpuuh30OWc\neZEWO560tKRSUkzqQtFFFABRRRTAQim0+mkU0wGdDUimmGlQ1aH0JqKQGlqjMbRTqSgBRT6jzSik\nJjqSiimAtLSCloEFLTaWgQtLTabuouOxJSZpm6kJpXBIfupN1MzSUirIfuo3UyikKyFJpKKKBhTZ\nRwD6Gn0bQwIPQ8UCkrqxEaKauSPenCszyGraAaaafTKAuJS0lKKAEpKcRTaY0NOSDinpM0Y2oqge\n/NNNMNM1hNrYe0sjHlz+HFMwKSkyaB8ze7FpKKKBCGiijFA0LRSUUDsGKKKBUiCmmn02mA2lxSUo\noAQikxUoFIRQFyHbRtqTFLimO5DT6UrUZFMpMcaQUmaWixSFFLRSVIxaKQ0maLANNGKKkC1T0JIq\nKkK5NNKmgBtFFFABRRRQA7NLTKdQAtFFFIBKMUoqTGRRcZBS0HjiimIKSlooASiiigBalqKrUKhk\npSKiRikqwEUUYHpUXHYhwad5Z9KmpaLjsQ+U1I8Pymp6KE3cVjPopWGDikrQgKKKKACiilCkjI6U\nAJRRRQAUUUUAHeijvRQB0tuP3C0+kg/1C04iosMSiiikAU4dKbS5pgKKWkpaYgooopgFFFFABRRR\nQAUUUUAFFFLQAUUUUAFMY0rGmVLYBRRRSGFFFFABRRRQAUhIC5JA+tLVG4k81/LXoOp9apIuEbsR\n385844HSnY4oC+lSrET1rOUrs0qVow+JjAM9BUqwk9eKmVFUcU6p3PPq41vSGgxIwvbmn0U1pFTr\nT0Rx3nUl3Y+ms6p1NV2nY9OKj69aVzrp4BvWbsTPOx6cCoqKKR3wpwpq0UFFFFBoIRUsDclfyqOh\nW2uDTMq9P2lNxLtJmgHpimtmqPAsGaKTNFSaWsNddyEVTxg4q7VWZcPn1qk9T0cBUtJw7kdFFFWe\noJRRRQMKKKKYCUlLRTAQ00cGnmmkZq0UOBpwNQ9KcDVCsS0lIKdQZsSilooAWlplOFAhaWkozQIW\nkzTSaTNJsaQ4tTc03NJUjSHZozSUUh2FpaZux3/KgNz90/youS5RW7H0VHvYngAUm5j/ABn8KLmb\nrwXUlpu9B/EKjxk5PJ96Wlcylil0Q7zBn7pNIXYnsP1ozSZouZPE1HsCjkk9TTwKQU8CkjlnJt3Y\n2o2qU1GxpAhmaM0lFM1sLmikpaGKw00lFFMEJRRRQWJikpaKACm06kNMoSiiikSFLikoFACmikoq\nQExQBRS0wuKOlOpBQTTJEopKWpKCmkU6k7VVwTGEUzbU2KaRQaJjCaM4o20u2grmQzOaSnsKbimJ\nO4qinZpmTRmkMfupN1MpaAYpOabilooENop1JimAlPplOWgBaKBRSAKlWmohJqyseKTZVipIu1iD\nTKtXK/LmqlUiWLRR3ooAKSlooAKs2zcEZ/Cq1SQttkFJ7DRcpKdSVnYuwUUUtIBKKKDQBVuFw+fW\noatzrlM+lVTWqIYlFFFMQVNA3O2oacjbXBoYE85AXpVanu+9s1HQAUtFFABRRSUAdPb/AOoWpait\n/wDULUtADKKWisxiUUtJQA6lpop1MAoooqhBRRRQAUUUUAFFFFABS0UUAJQWpCaYTSYwNFFFSAUU\nUUAFFFFABRTJJkhGXbb/ADqhPqeciEY9zTAuXUixLksBVKPEjZ6CqEkzyNudiatW8mcU3ewTqyjG\n0TURQOlTCqyPTjMq9ayPNlCU5WWrJ6a0ip1P4VA07N04FRUrnVSwLes2SvMx4HAqKiig74U4wVoo\ndRRRSKCiiigBKKbRVBYeKa1ANKeaBliB8oBnpU2KqW5w+PWrYoPCxcOSq7DSKTHFSU0jimYpjKhn\nXK59KmpCNwxSNqU+Sal2KNFKww2DSVZ76d1dBRRRTGFFFFAxKSlNJVAFJilooQIbTehp9IRVpjTF\nBp4NQZqVTVCaJKSgGloIG0U0mm5LA7QalsbaWrJN1NJpNrnsPxo2H1qeZGUsRTXUAaCQOpFKEX0/\nOlxikZPGx6IZn0BP1ow3oB9akpKDJ4ub2GYJPLUbR6Z+tOpKDJ1Zy3YDFLSUUEWEooopAJRRRQMQ\n0lLRimCYoqUVGOtPFJkSFNRmn5FBxiglEJpuae/FQk0G8NUSUZpgNLnimDQUUUhqgCkpaSkUFFFL\nikA2iloqiRhpKfSYoKQlFFFSMU0YzRQKQgIIptSmozQJMUGg0UYoAYaBT8UbaB3FXmhhQDilyCKB\nEJNKOtKwpFoNNx+KSjNJSJSENNIp9JVDIsUlS4ppFBVxlFO203FMBaKSlpDCiiigAp2KQc1IFobG\nIF9KkWPnmnImKkFTcoAAOwp1JS1AxHG5CKoHg1oVTnGJT781pElkNFLSVRItFJRQAtJRS0AaKHcg\nPtS1DbNlCPSpqxejLEpKdRUgJSUGm1QxXG5CKomr9U5V2ua0iQyOiiiqEFFFFABR3opKAFopabQA\ntJS0lAHT2/8AqlqWorf/AFS1LSADTacaQ0gEooopDClpKWi4BS0UVQgooooAKKKKACiiigBaCaKY\nTSbAQmkooqRhRRRQAUfnUU1zFD95ufQdazZtSduE+UeooSbA0pLiKH77c+lZ8+ps2RENvvWezMx5\nPNJWih3Fcezu/U0lAqzBZyzngYHqaLpAVasQ2s0pyq8eprVg06KHG75z+lXOnTikMyhbPEMMxz7U\n0HDYNacibhVCWI5xirSRvScVpYFNOqAEqealDVjOFjVofRRRWZA6iiikA2ilpKAEoooqxhRRRQA4\nHBBq8p3AHtVCrNu2V2+lI4MfTvBTXQlpDS0Gg8lDKSlpDQaIrTrhs+tRVakXch9aq1UWezg6nNTt\n2EpKcelMrRHYOopKKAsLSUUUAJRmiimMKKKKYIYacppKTpVpj3Jc5pC4AOetNXLdBTgm33rNysc9\nWvGnpuwAycnp2FTLjFRUoOKk8urKVR3ZMRTCKk6000GadiOm08imUFoBRRRmqAKTFGaWgY2ilpKk\nBKKMUUDEopaSgYUtJS0AJRmig0xIXNGaZRUisDmoSKkNNqjSDsNpaWkxQXuOpKM0GmSFJRS0xiUt\nGaSpFuFJRmkqrjSHCiiikOw3BpOakpKCkhKM0lFSFh2aMUg6UtMy2ExRS0tADaKWkoASgGiipKFJ\n4ptLTTQNDsUmKBS0wDFFFFArjaMUUUDG4pCKfSEUxpkWKSnkUmKZaYlFNp4GaAHotThaRFqTFZtl\nCAU7FFLUlBRRRQAVBcpkBqnpsi74yPaqW4nsZ9FFLWpAlLRSUgFpKWigCa3bEmPWrdUFOGFXgcgG\nomhodSGiioKG0UtFAxKr3A6GrFMlH7pqqL1E0U6KWkrQgKKKKAEpaKKACg0Ud6AFooopDOlt/wDU\nLUtRW/8AqF+lS0CCiiigBtFOptSwCiiigYCnU2loAWiiiqEFLSUtABRRSN92gBGNMooqGMKKrzXs\nMP8AFk+grOn1CST7p2D0FNJsDTmuooQdzc+nes2fUpJPlT5V/WqROTk0lWoLqFxSxJ5NJRViGzmn\n+6uB6mrukSVqtwWUs/QbR6mtK306GIZI3t79KvYxwKgZTt9OiiwxG5vfpVzGKKKQBRRRQAUxkDU+\nihMa0KE0NViChrVcbhVWWGqTudEKl9yBWp9QMpU8CnB6zlT7GrV9ialpoNLWTRGw6iiikIbRRRTG\nJRRRTGLUkTbXHvUdFIicFOLi+peopsTbowe9OpnzsouLaYlJTjSUxpjMVTkXa5FXarXC9GoO7B1O\nWpbuQ0h60tJVo9hMSiloqhiUlLSUxhRRRTAKKKVVLHAFJuwm1FXYoFTJbluW4FTQwBeTyan21n8R\n5eIx32af3lbYAMAUxlqyVqJhVWOGM22QEVGalNMIoNkxwNO61GKeDQhSQhFNIqQ00inYSYzFFLSU\nixtLRikoK3CkpxplAh4opO1LQDExSUtJTBDaKKKBiUuaSimAgpppM0Uh2FpD0oopjQUUUUFCCjNF\nFIAJpKU0lA0haKSlosUJmikpaYxtFLRQFwooopjEooopAAp1Np3ehETFoooxSIEopKKADFGKKKAE\npDS0h6UikFFFFBQlLmm5paBWHUlFFA0FBFA60tAiOjFOpMUDRHinxCkNSJwKb0NI6k4pRTBT6yKF\nooooGFFFLQAUtJRTuIz3GHI96ZVm5XDA+tVq1RDCiiigBaKSloAKuwNujHtxVGrNscEilJaAiwaK\nSisjQWiiigApBS0UAUSMMaSpbhcPn1qGtjMWiiigBKWiigBKOtLQopgFFO2mjbUlWOjg/wBQtS1F\nb/6paloJCiiigAppFOooAbRRSVAxaWkopgOoooqhBS0lLQAnSmE5qpc6jFHwPmPtWbNfSzcAlV9B\nRZsZpz38MPQ7m9BWZNfyy5XO1fQVUoqlTSFcXvRRVmGylmPTaPU1TaQisKsw2Usx6bR6mtOCwhhw\nSNx9TVrpWbn2HYqQ6fDDgkb29T0FXQKAKdSGFFFFMQUUUUAFFFFABRRRQAUhGaWigCtLDnpVN4iO\ngrVqN4weoq0zaFRrcywSvWpUanyQ+1QbShqZRudCakWAaWq4epQ1Yyi0S42FoooqRCGilpKpAgoo\nopDJ7dsEr61PVNW2sCO1XByMig8fHU+WfN3FpM0UGg40MprrvUipKSmaRdndFCirDQgsSDSeR70c\nx7KxVNrVkFFTeR71E67WxVJ30NKdeFR2ixlFFFWbjaKdUqQ92/KhysZ1K0aavIbHGX57VcjQKuAK\nRR7VKoqN3c8XE4mVR67EgFLRRVHE3caRTCuakpMUxoqulQkVeZeKrslBvCfcrUlSlajIpGydx4NL\nUYNPFMlqw1ulMNPPSmGgoKSlpKZQtJSiigL2GUuaWjFILiUhpcUlMENzSZpcUlA0FFJRQVYZS0lK\nKYMWkpaKQhp6UUtJQi0LTDT6bQNCU4U2nCgYUUUUAJRRSUFIWiiigAoopKYwooooAKUGk7UgqSJD\nqWm0tBAEUlLSUAFFFBoASiiikMTvRQaMUyrkfelBpSKaaQ0Popop46UC2EooooBju9FAprGmVBXd\nhoB60+m0+pbOlIcDT80wGnA1Imh9FMBp9IkWlpKWgAooopCIp13RmqJrSIyKz3G1yPQ1rHYTG0UU\nVRIUUUUALUkbYcGo6DTAv0UiHKA0tYMtBRRRQMKWkooAjuFymfSqdWrhu1Vq1iQxaKSimIWikooA\nWnqOKjqVeg+lJjiLSnGKSg1JR0Ft/qlqWooP9SKlqiAooooAKKKKAGminU2kxhRRSEgck4pAKKUs\nq8k4rPn1SNOEG8+vas6a7lm6tx6U0BrXGpRxcL8zfpWVPeyzk7m49BVYmiqUe4gooq1BYzT842r6\nmrbSAq1ag0+abkjavqa1IbGGDGBuI7mrFZufYLFaCwih5xvb1NWaKKkYUoFIBUgoSEFFFFUAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAhXNV3gB7VZoNNMqMmjMkgqEgoa1WQGoJIPaq3N4VblMSU8NQ\n8OOlR8rScL7Gmj2LG6kqINTg1ZODQnFofiiiipEJVu3bKY9KrAZOBVuKPYDk8mkzix8oezs9xaKK\nDTPJQmaSijFI2SSEJoFFFOwuYSoJxyDU/uTVWR97ewoW51YOMnUuuhHSqpY8U5Iy3J4FTqoUYFW5\n9jtr4uMNI6sEiCe59alC0KKmValI8mpUcneTEC04ClApas52wooooJEooopjuBqJlzUxphFA0U2W\nozVhhUTCkdEGQ07NBFNoNhSabTqbimAlFFJTBBmlopKEMM0tNpM0AOpDTc0ZpjSHUhozRQOw2m06\nkPWgaG0CiikwFooooEJimmn02mikwp1NHWnUikNooooKCiiigYyiiikMKWkxRQIdRRRVDGjrTqaD\nTxSJbsJRS4oNBncbRRRSASloxRQAtJS0lACUUtJSGKaSlNJTGgIppFSU2gBmKcKXFLQO4mKTFLSE\n0gVxScCmUUtB1QhZBS0lLSZYU4GmUZpBYmFLUYNO3UiWiSlpgNOBpENC0tJS0hBVO5XbJn1q5UFy\nuYwfSrgJlOiiitCQooooAWiiigCzbngj0qeqkBxIKtms5blISiiipKCg8Ciopn2pjuacVcRXY7sm\nmU6nSLjFakEdFFFAC0tJRQAualqIdRUtJjQtBopDUoZ0Fv8A6halqK3/ANQtS1RIUUUUAFFFMklj\nhB3sB+poAfTZHREyxA+tZ8+qqMiIZ/2mrMknkmOWYmkBp3GpomRCNx/vGs2S4kmJ3tmoaKpRQXEo\nFKM5471bg0+abBYbV96psCpVqCwlm5I2r6mtWGxggxhQx/vGp6hyCxVgsIYe25vUirVFFSMKKKKQ\nBR1op4FNIApaKKoQUUUUAFFFFABRRRQAUUUUAFFFFABRQKKACiiigAooooAKMUUUANZAarvBmrVF\nNMuM2jNeDFQlCvStYoDULwg1VzaNUzgxFSIxY4FTmCoG/cuD2apklbQKlRqDcdy4gCDAqTdVITVI\nstYnhyjJu7LOaQVEJKdvoM7Ml4pCaZuNGTQNXEoBozRmgBkxbAVe9NSHHLVLmikdKrSjDkjoIBTw\nKQVIoq0YOVhwFPAoApaoxbuFFFFBIU3NKajNMpDs0uaizTgaBuJKOlBFIppxpksgZaiYVZYVGRSL\njKxUYVEetWnXFV2FB0RlcbS0zNANUaNEhFMNOzxTaQIbS0lLVDGU2nU2mMKKKWpGJQKWigLiUUUU\ngEooooGJmikpaAEoPWikNNAhR1p1NHWnUihtJS0lBSCiiigoYaKXFJikwTHCikFLQD0CiiloFewz\nFOzQaQ0EN3HCg0GkoEhBS02lpjYtGKSjNAhabS0hpMYZooopAFLRRQNbjaKdSUXLsAFFGaKA5RcV\nGeaUmm0XNYU7ai0tFFFzYKKKKQwFLSUUgCnA02nUASZpQajpd1IixIKk7VCKkzQQxaRhuQj1FFFJ\naMVjPptSzLtkIqKtkQwpaSigBaKKKAFHBq8DkA+1URVqA5Q+1TIqJJRRRUFB0qpI5Zs5qaVsKRVb\nvVxRDHKMmnt90/SkQYFLRfUdiKkpabVki0UlFIBalByKiqWPkUpDQ6kNLRipGb9v/qFqWorf/ULR\nLcRQ8s34DrVEktMklSIZcgVmz6oeRCMf7R61nSSvKSWYmgDSn1TtCPxNZsszzNl2LGm9qShAFFLj\nPSrlvpss2C3yL79TRcCljsKt2+nyzcsNi+prWhsooAMDJ9T1qfFF2BVgsYIcYUM2OpqzRRUjE7Ck\npewpKGAUUUUgCiilFPqIdS0UVQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFJS0AJUVxbieIrnB7VNSUJjuZL2NxGflAcD0NQmR0OHUr9RW7SNgjBGR0osiXCLMdZ\nqkE1UJ1ME7x/3TimiU0rGLoo1BNTvOrNE1PE1RymbpGh5tBkqiZ6DNRyk+yZe8ylElUxLT1kzRYH\nCxfQ1MtVoz0qcGtEjmmiXNGaZmjNUZ8o/IoyKi3UZosFiUmmHmkzRmgdhlKDig4opWKuOBqQGoM0\n4NimS1ce1MzSscioyaBpA3Iqu4qcmom5osaQ0KxFNqUimbaZ0JjKXNBpM0h7jqKQUtNCYlJS0lMa\nCmU89KbikUgHWn00dadUiGUUtJQO4tFFFJFISiijvRYbG0UUUzMDRS96SmXESm06kqTRBRRRVDFp\nDQKDQJIMUUlOApXGxtPxQKTNSZN3EoIozikzTSGkxaKXNJSKsMpaQ0opg46BSU7FGKZFxtFLikpD\nEpaKKAFooooENGc0/tSd6XtQXF3YhFMY04mmHNBvFagKdSA4pahmwlLilpM0DDFNp1JQACiiloAS\nloooAdS02nigkM08GoqcDSE0SZpaaKWkQQXS9GqrV+Vd0ZqhWsSGFFFFMQUtFFABU0DYfHrUNOQ4\ncGhgtC7R/jRTJG2pWSRoV5W3NTUGTTalQYFaPRGaHUUtJUFkT9c+tNqSQZGajrRbEMKKKKAEqWM1\nFT160mNE2aeOlMFSDpWbKJW1N/L2p8vv3qizs5ySST3JpoorWxAUUoGelXrfTJZeX+RevvQBRAz0\n61fg0yWXl/kX9a0oLSK3A2jJ/vGrFIZDDaxQfdUZ9T1qaiigQUlLRQA00UppKkYnakpe1JQwCiiq\ndxfRRHj5z6CgC5SjgZJxWPJqcjDCKF+tV2up2GDIapRYrnQs6p94hfqcVE99bJ1mU+ynJrnnleRs\nuxJ96jpgbjatAM4Un3qtJrEh/wBWgX3PNZlFAF19TuWP3gPYCr1hfed8krfP/OsSloA6uis+x1AS\njy5jh+x9a0KQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFAC0UUUAFJS0hIGSS\nAPegDK1eEApKO/BrKrSv75ZVMSDIz941nUwCiiigQUdO9FFMY9WJNXYRxVWFMmtCNOKVjGtJIsJ2\nqXoKjSpDVHDJ3DdRupMUmKZAtFFFAwzRRRQAUuaSikDFNGaQ0zPNAKNyUHNNNANL1oFsMpMU7FLV\nDuRFabipCKQrxUstMrstR4qdhUVI1TG4paKKEVcSloxSUx7hRRRQIMUYoopDuJTqbmgdKRSQmaSl\nxSUFBTadzSYpXC4tFAoxTIENFLSGmhiUlLSCpsWmLSYFLRQHMxMUcUlLVCuNp1NzS5qQYtNJpe9G\nKY1ZDadQVpvNSXdDs0UYoxTsHOiOlFKRQKLA56C0lLSUzMKKQmjNAxaSjNFIBKXOBSUhPFA0ri96\nWkApcUraHQtBKXtRilAoE3YZj5aUU/FR8qcUNBSle46kzRR1p8psJmilpBSsMUGnU3FLmk4jClpu\naUGlZiYEUA4pc0GgQoNFM6Uu6lYLEgp2ajBp2aCWh/UVRYYYiroNVpxh81UDORBS0UVZIUUUUAFJ\nS0lAF2NtyCoZmy+PSkjfCEVH15pWHcFGTUopqDmn0mNBRRS1IxpGRUFWG+4agPQVaJYUUUUxBRRR\nQBOpyKkzxUUZ4xTzWbRVyBFLHABJ9qvwaXK+DLhB6d60bOCOOEFVGT371ZqxEMFrHAo2qMjuepqa\niigQUUUUAFFFFABRRRQAUhpaZJIkYy7BfrQAdhVee6jt/vfl3qlc6ozfLF/30etZ2c9aFG4XLVxf\nSynCkoh7A1Vooq0rCCilxRimAyiiioAKKKKBhRRRQAVsafflsQSdexz1rIpKAOrorM0/UN22GXO7\noretadIAooooAKKKKACiiigAooooAKKKKACkpaSgBaKSloASilpKAFopOtZ95qYT5Ifmbu3pQBbn\nnS3Tc5+g71i3V9LcnH3U7AVBJK8z7nOTTKLAB5pKdSHrTASlpKWgBDTgMmmmpYxk0xbK5ZgTpV+N\naghHSraCg4asrscOKKKKo5xaSlooASiiloGJRS0UCuJRRRQMaabipKTFIadhop9NAp1UD1CjFFLQ\nSNoxS0VLKTI2FQMtWTUbLSLjIrUmakZajPWg2QtJRRmmOw/tSGndqYakBKQ0UtWAnFHFJRipGJii\nilpAJRRRigAFFFFAC0hozSmgBlIKKKRoLRQKKZAUUZpaAGEU2pSKbikNMQUtGKXFMApuKXIpM0Id\nmLRmkzRQPkYGm5oIoxSK5EkLkUhpwFLinuRcipMVJtpNtFhpjRTsUoWnhadhNjMU01LtppWk0XTk\nr6iYop1LVGjYzbTguKcBTqRlOXQbimNyae5wMd6jpmlFdRcUwinZpKLHQtBtFOxTcVJVwopeaSmC\nCkooxQMM07NNoo5RCk0vSm06iwXAGnZppFJio5QJAaZJyuaQGlJyMUmrO5DiQEUmKlA4pMVqc9yL\nFFS4ppWkO4yil20UgEpy9RTaenJoY0SAYpaKKzLEoopaAI3PFR1JIecUytEQxKKKKACiiigBy8NU\np6VEOtSGpY0dBb/6palqK3/1S1LTEFFFFABRRRQAUUUUAFFU7nUYrfp87egNZM95LcE5bA/ujpQB\npXWqLHlIfmPr2FZEs8krZkck1FS0wFFLQKdVoBtFOooEFFFFADDSUtJUDCiiigAooooAKKKKACtf\nT7/O2GTOc8N1zWRRQB1dFZNhqGP3U7f7rH+ta1IAooooAKKKKAClpKWgBKKKKACiiigBKWiigApr\nyLGhZmCiobm7jthzyx6KKxLi4kuHyx+i+lAye71Fp/lTKp+pqlRRQAUlLSGmAUtJRQIQUtJ0paAF\nqzAtVhyavwrjFIyqOyLkS1OBUMdWKs8+b1G0UuKSmQFLikFOoAbRS0lAC0UUUAJRRRQAhopSKMUD\nuFFFFMBKUUUtAAaMUGkqXsMQimkVKRTCKRSZC61A64NWzULLTLiytilAp2MUlI1vcdRTaWgQUUtJ\nQIaabTyKTFBSGZo3UGkoKQ4NSg1HS5pBYkxQRQKXFMkjxRmlIptIoQ0lLSUFId2pppe1FAPcjzzT\n1NJigcUgY/NJRSUxDqOlGaSguMRmKMU+ig1G0UuKKADFGKkC8ZpMU7GUpDQKcBRilqkjO4m2jbS0\nUWFcbinUUUDEooopAMIo/GlNAHNOxop9xw6UUtNfgcUrELV2GM2TTaSlFSj0IxUVZDc0Ciincqw/\nNFNzSg0CaY6jFLSUxDabmnGm0hoWiiimAUtJS0AJSGikoEmLRmkopFAB1oxSrT6a2OOppIjIpKeR\nTSKZKY0ikxTqKLFDMUqU7FIeKlq5UXqPopKKgsWikzQaQETctTaVutJVksKKKKACiiigBetSKdwq\nIU9aTQ0dHb/6palqK3/1S1LQIKKKKACiiigArP1V2S3G04y1aFZusf6iP/eoAxqKKKYBRRRQA8Ut\nIKWrAKKKKBBRRRQAyilIpKlgJRRRSGFFFFABRRRQAUUUtACVq2Gof8spm/3WP9ayqKAOrorHsdQ2\nYhlOF7N6VsUgCiiigAooooAKKKKAEopaiuJ47dNznHoO5oAlrOu9SVMpBy3duwqjc38txnnav90H\nr9aq0AKxLncSSaSiigYUlLSUxC0UlFABRRRQAUUGkFA2TQj560IRVS3XmtKFaDkrSJFFSCk20CqO\nN6jsUmKcKMUyRppRQaKYC0lFFABS0lOFADKKUilpAJRSUtAxKSnUlADaAaWkpgOppoooYDs0pFM3\n0u6pGNYVGwqUmoWJ9KRcRjLUZWpSTTGpmiGUUmaBUl2HUlGaKoQUUmaDSCw0imEVJmmGnYpCUlFG\nKkoUU4Go6cKQNDzTaWimSFNNPoPNA0Mpc0Gk7UihCaSikplqAuaTNFGKCuRBQKKXFBTFpwpoHNOF\nVYQ/FJt5p3anDvTRnN2RHSU/bRimY3GUUpFJQAUmaWkNSUhpNPFRU5TQNodS0UlMkCKbT6Q0DCgj\nIpKKQyKinMMHFNpHoJ3QEU3pUlIRQNMjop2KMUrDuKKKTFFUIKKKBQAlKKXFJikFwooopiFooooA\nZzRzTqKYXGjjmpO2aYaeoytIwrLqFNxTqSmYDdtGKdQadh3G0mOKU0maQxnSloPWikdK2DNJ2paA\nOaAloNIpMVJimkUWMUxlFLijFIY2iiikMco5qXaMUxBVgrxTRtBG1b/6palqK3/1S1LUmIUUUUAF\nFFFABWdq/wDx7J/vf0rRrH1n/Wx/7poAzKKKKYBRRRQA4GnVHT6pMBaKKKYgooooAKZ0p9NIpAJS\nUtJSAKKKKQwooooAKKKKACiiigArTsNQMZWGXGzoCe1ZlFAHV0Vjaff+ViGQZTPDZ6f/AFq2aQBR\nRRQAUUm4AbiQB1znisq81LPyQfi3+FAFm6v0t+B80npWLJI8r7nOTTaShAFFFFMBaKSlpDCkpaKA\nEooopiCloopDCkPWlpf4hQIuwDkVoxVRhWr8VUefWZPjikIp60VRz3IxTqXFFAriUyn0tMY2m1JT\naBDafTadQMDTSKfTTQJMZRTsUYpFCUlOxTaACkpaKBBSUppKRohtFLRTHcQUjLTwKWkSV2FMIqd1\nqLFBoiAim1YdaiIoLTGUUUUFC0tFFADaQin02kBHRT8UlFy1qJSClopBcUGim0tMQtLmm0UgCkzS\nZoplJB3oooqTVMSlApcU4CrSC43FKBT6SqFcUDikIxThQaBDAaeDzUY604UMb1JqCKQNS5FK5zcr\nIyKTFOooC5HSVJimkUFJjCKaODUlIVosNMAaU00cU8c0CY2l60hFApDFIpKXNJQBGy9DSYqX+E1H\nS6nZRd42FoopM0zSwtNpaKYIKCKWkpDGUU+kxSGJmlplKKAsJRTqMVQhtFFFACUU6ikIKVDzSUg+\n9SJmrxsPNIaeaYao5EAoNJRTGNNNzT2FMxUlIUmikooNovQWlUc03pTlPJpoU9hSKaakOKYaDFEb\ndKQCnNSDg0upothlLS4pKQEkYqx/BUKdambgU0dUErGzb/6palqK3/1S1LUHMFFFFABRRRQAVjaz\n/ro/92tmsbWf9dH/ALtMDNooooAKKKKAClpKKAJKKaDTqsQUUUUAFFFFADaSnEUlSxjaKU0lIAoo\nooAKKKKACkpaSgBaKKKACtCwv/I/dyZKdj6Vn0UAdXnNQz3MVuMu3P8AdHU1iw6hNBEUU5H8Of4a\nrMzO2WJJPc0AWbm9kuW54TstVqbTqAEpaSigBaKKSgAooFFABS0UlABRRRmgBaKTNLSGFKoy1NqW\nEZamhN6GjB2q9GtU4B0q8lUzzar1H0EUtIaDAKWmU6mAUUUUCEoopaYCUtJS0gCkoJophYKKM0Zp\nDEptPNMpjEpCaXFJikAlFLijFIq4lKBRTqbC40igGnUygBTURFT0wrSGmRVGwqXFMxQWmQEU2pmW\noyKDVMbThTadSGwopTSUCQ3FJin4oIoHewzFMqXFMIoHcbSgUuKcBQxtDcUYp+2kIpCIiKbin0Yp\npFpgOaUdKQDmnVViosWilpKCriZpaTFApDFpM0tJVEhRzThS4phewgp9MxTh0qRMbSilIpB1o0FL\nVC0EUUA0zAbRSmmmkUJRSUtAwopabQAUUhpKBjqjIwalFMcUmtDehK0rCUmKKWkdWwyilop2C4UZ\nopKYgp2OKaKd2pDG4op1LTE2JiinUlIExBSEUooPSgnYZTqMUoFFh7jcUGloNMExRyKQ9aVc4oxT\nOSW5HQKWkpDHU0ilBpaYhmKWnYpCKbRcJa2ExxRilpCam5U2xuaQmlpppEoD2ooHJoIqbmyWglFK\nBS4pmT0FUVKM00EU7IqG2jppSujbt/8AVLUtRW/+qWpaZgFFFFABRRRQAVjax/ro/wDdrZrG1j/X\nR/7p/nTAzaKKKACiiigAooooABT6ZThTQh1FFFUAUUUUAFNp1FADabTjTakYUUUUgCiiigAooooA\nWkpaSgAooooAKKKKAEpSKUUUALRTaWgAooopAFFLRTAKKKKACiiigApKWkoASp4PvioKsW/36CZb\nGpF2q4lU4quLTR51TckoxSZpQaZgNxS0YopgFFJT6AGkUlPpMUANpaKKAQlJS0lBQlFLijFAhDRT\niKbQMSjFLRQAykp9JQMbRmlxSUALSUUUAApaKWgdxhFRkVNTSM0ikyIiomFTlaawxmmWmV24pBTn\nFNqS0OoxTc0uaAHYoxS0hpkjaTFOopFoZQKWkoNR4Gaa1KKXFBk1ZkVGKk20FapILiYppGKkpMU0\nWpWI8UU/FIRTLTG0mDThS0FXsNFJT6KAuA604U2nCgl6gaKKKQgqMmlJpppGsUPzxmkpqniloRhJ\nWdh1IRRRTJGUUpFFIdwFLSUZoASjFLS0DEpHGVoNLQxx0dyI0lSMBmozSR3p3Q6kozRTCwlJS0lA\nxKWjFJSGLilpM0tMhhRRRSEFApKWqGOopKM0ibD6QDJozT1GBmjcio+VDcUlKaSmcowim4p5FNpG\niYgpc0mKKYC5pDyKWkoBEXejNBpuag13HUUlFBIpFGKBS4pWLvYcKXFAp2KoybExSH8aeDSGmJM3\nLf8A1S1LUEEieSPmFSebH/fX86zNh9FN82P++v50nmx/31/OgB9FNMif3l/OkMiL1ZR+NAD6wdTJ\n+3MM5xitvzI/7w/OsLUSDeuc5Hr+FMCpRRRQAUUUUAFFFFABRRRQA8c0tMBp9WnoIKKKKACiiigB\nrUlOOKbSGJRRRUgFFFFABRRRQAtFJRQAUUtJQAUUUUALRRRQAgooFJQAtFJRQAtFJRQAtBooNACU\ntJRTAKKKKAF9Kt2/3qqDtVu3IzSIn8JpxVaWqsTAGrIYeop3PNmncfSim70/vijen98VRFmPopvm\nJ/fFJvT+8KBWY6lqPev95aXzE/vLQFmSUmaZ5if3hS+Yn95aAsxabml3p/eX86Z5i+ooCzHUtN3p\n6r+dG9P7w/OgdmLRSb0/vD86Ten94fnSFZklJSF1x98Um9P74pgkx2KSk3r/AHx+dJvX+8v50DSY\npFJSb1/vCjev94UBZjqSk3p/eFG9P7wpD1G0opNy/wB4Ub0/vD86BtMXmjmk3r/eFLuj/vUBZicU\n7iozIv8AeFPEif3h+dA7McRULCpNyf3l/Omsyf3h+dIauV2QCo2GKnLKf4hUbbfUUGiv1IKKVtvr\nTc+9BpYlBpai3e9O3UkDiPpppN3vSE+9UOKY6kxRke1LxQkWOFPApm5aeHX1FUjGYuBQwpd6e1IW\nX2/OquZq5GRTakJFMOKSNUmBpMUhb3pNwoNEmJRRke1JmgvUWikyKMj1oCw+lxTc+9LketITTFpG\nNG6o2YetA4xbFpKaWpN1BsOHBp9QGSpQwIzmkjGrF7jqKbuHrRketBlYMUuKYWHrRv8AcUDsSU2n\nZHqKTcPWgSG4pRSZH94UmR6igdh1NIoyPWjI9f1oAQjkGg04jimE0jsou8RlGabzRmi5rYXmlGaT\ncKcG4oCwUgNJminYVxaKTJozQIKKAuR1pDkdaQlJXsLSg0hxmgUrlMfRRRxVXJEHJqTtTY+uc04k\netBzVJXdhCaKOPWgUzMQ0lOJFMoKQlITSEj1puaCkhSaTNJSZpFWFpKTNKDSAMUpo4o70AOApcUU\n4EZpJhJCYp1LxTSaZFmyXFIw4oBHrQxHrSuNRP/Z\n',
u'output_type': u'pyout',
u'prompt_number': 263,
u'text': [u'<IPython.core.display.Image object at 0xa6ceb90>']}],
u'prompt_number': 263},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"Image(filename='street1715.jpg')"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'jpeg': u'/9j//gAOTGF2YzUyLjg3LjEA/9sAQwAIBgYHBgcICAgICAgJCQkKCgoJCQkJCgoKCgoKDAwMCgoK\nCgoKCgwMDAwNDg0NDQwNDg4PDw8SEhERFRUVGRkf/8QBogAAAQUBAQEBAQEAAAAAAAAAAAECAwQF\nBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+hEAAgECBAQDBAcFBAQA\nAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2\nNzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOk\npaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgC\n0AUAAwEiAAIRAAMRAP/aAAwDAQACEQMRAD8A87tok8pflX8ql8qP+4v5Cm23+qSpqgZF5Uf91fyo\n8qP+6Pyp9FADPKj/ALo/Kjyo/wC4v5U+igCPyo/7q/lR5Uf9xfyqSkpgM8pP7i/lSeUn9xfyFSUl\nAEflJ/dX8hR5Sf3V/KnmigBnlJ/dX8qPKT+6v5U+igQzyk/ur+VHlJ/dX8hTqKAGeVH/AHFo8qP+\n6v5U+igBnlR/3F/Kjyk/uL+Qp9FADPKj/uD8qPKj/uD8qfRQAzyo/wC4v5UeVH/dX8qfRQAzyk/u\nL+QpfKj/ALi/kKdRQA3yo/7o/IUeVH/dX8hT6KAGeVH/AHV/Kjyo/wC4v5U+igBnlR/3F/Kjyo/7\ni/lT6KAGeVH/AHF/KjyU/uL+Qp9FADPJT+6v5CjyU/ur+Qp9FADPKj/uL+VHlJ/dX8qfRQMj8qP+\n6v5UeVH/AHF/Kn0UDGeVH/dX8qPKT+4v5Cn0UCGeVH/dX8qPKj/uL+VPooAZ5Uf9xfyo8qP+4v5U\n+igBnlR/3V/Kjyo/7i/lT6KAGeVH/dX8qPKj/uL+VPooAZ5Uf91fyo8pP7q/98in0UAM8tP7i/8A\nfIo8tP7i/wDfIp9FADPKT+4v5UeUn9xfyp9FADPJj/ur+VHkx/3F/Kn0UAM8qP8AuD8qPKj/ALi/\nlT6KAGeVH/cX8qPKT+6v5U+igBvlJ/cX8qPKj/uL+VOpaAGeXH/cT8qPLj/uL+VPooEM8uP+4v5U\neXH/AHF/Kn0UAM8qP+4v5UeVH/cX8qfSUAM8qP8AuL+VHlR/3F/Kn0UAM8qP+6v5UeVH/dX8qfRQ\nAzyo/wC4v5UeVH/cX8qfRQAzy4/7q/lR5cf91fyp9FADPLj/ALi/lR5Mf9xfyp9FADPKT+4v6UeU\nn91fyp9FADDEn91fypvlJ/cWpDSUwGeUn9xfyo8qP+6v5U+igBnlx/3F/IUeXH/dX8qfRQAzy4/7\nq/kKPLj/ALq/kKfRQAzy4/7i/kKPKj/ur+Qp9FAEvlR4+4v5UeVF/cX8qVDxTqYDPKi/uL+VHlRf\n3F/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UAM8qL+4\nv5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL/3yKPKi/uL/wB8in0UAM8qL+4v/fIo8qL+\n4v8A3yKfRQAzyov7i/8AfIo8qL+4v/fIp9FADPKi/uL/AN8ijyov7i/98in0UAM8qL+4v/fIo8qL\n+4v/AHyKfRQAzyYv7i/kKPJi/uL+Qp9FADPJi/uL+Qo8mL+4v5Cn0UAM8mP+4v5UeTH/AHF/Kn0U\nAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPJj/uL+Qo8mP+4v5Cn0UAM8mP+4v5CjyY\n/wC4v5Cn0UAM8mP+4v5CjyY/7i/kKfRQAzyY/wC4v5CjyY/7i/kKfRQAzyY/7i/kKPJj/uL+Qp9F\nADPJj/uL+Qo8mP8AuL+Qp9FADPJj/uL+Qo8mP+4v5Cn0UAM8qP8AuL+Qo8uP+4v5Cn0UAM8qP+4v\n5UeTH/cX8qfRQAzyY/7i/lR5Mf8AcX8qfRQAzyY/7i/lR5Mf9xfyp9FADPJj/uL+VHkx/wBxfyp9\nFADPJj/uL+VHkx/3F/Kn0UAM8mP+4v5UeTH/AHF/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5\nUX9xfyp9FADPKi/uL+VQ3EUflN8q9PQVZqG5/wBU1ACW3+qWpahtv9WtTVHUYUUUUAFFFFABSUUV\nQCGkpaQ1IBRSUtMAooooEJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UlLQAUUUUAFFFFABRRRQA\nUUUUAFFFFABSUtFAxKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB\naKKKAYUUUUCCiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACkNLSGgBKKKKYBRRRQAUUU\nUAFFFFAEsfSn1HH1xUlMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqFzeuj\nFFAGO9KTsNF7IHU0KytnaQcehrFe4lk+85pLW5+yyc8o559j61KlcdjcoooqyQooooAKKKKACiim\ns6p94gfU0AOoqnLqMEeQCWPtVKXVpDwgCj/PrU3HY2CQvUio1uYnfyw4Lc8fSudkupZOrmptOR2u\n0YAsBnOeg4p6hY6GiiimIKhuf9U30qaorn/VPQAy3/1S1NUNt/qhU1SMKKKKLAJRRSUAFFFFABTa\nWigAooooEFJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRSUtABRRRQAUUUUAFFFFABR\nRRQAUUUUAFJS0UDEooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApaSloAKKKKBB\nRRRQAUUUUAFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiii\ngBydamquKsUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwpn3SN9T/Ot2sCU/\nO2P7xrOZcRKRlDAikozUIZe0y7z+4kPI+6Sf0rUrmHJUiReCpzW9a3sU0QYsAR1BPf8AnWsWQyzR\nWfLq0S/cG4/5+v8ASqUuqTv935R7cU7gbbyJH95gPqeaqSapAnT5v8/57VhtI8nVmNSxWFxN92Ns\nerHaMevOM/hU6jLUurStwnyiqUk8kh+Zifx/ya0YdF7zSD/dT/E/4VeisbeLG2ME+p+b+dHLfuBg\nxW00x+RGb3xx+dXItHkOPMcL7DJP49B/OtnFLVWQrlWLTbaLB27z6tz+nT86s7QvAGAOwpaKYgoo\nooAKhuf9U9TVDc/6p6AG23+qSpaht/8AVrU1SMKKKSgBaKSkoQCUUUtAMSloooEFJRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lFAC0UlLQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAlFLSUDCiiigAooooAKKKKACiiigAooooAKKKKACiiloAKKKKBBRRRQAUUUUAFFFFABSUtJQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaQ0AJRRRTAKKKKACiiigAooooAKnXpUFTR9KAHUUU\nUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigApaiuJfIhkkABKqTzXNTancz9ZCo9E4/Uc0AdDNeW8H35AD6d\nT+Qqquswu4RVO0kDex9/7v8AjXO5JpVOCPqKAOzHNKaztNvRIvlPgEdCT1FWJL6CLq2fYUrgTk4B\nNYEjZZie5q1Nq/ZFx7/5/wDr1ms5brUS1KRMWphcVCT70wyCjlHcmLk8Ug3Odoyx9ACf5VW3kmul\n0u18iEMfvuMk8cD078VXKIy4tNuZv4Ng9X4/Tk/pV6LRlHMrk+yjA/M5J/StSkJA6kUWQEEdnbw/\ncjUH1I3H9asVC08S85/z+OKpT6vEmcHP0+b/AAFF/IDSphkjXqwrBm1iR87Qcerf4DiqUl1NLnc5\nx6DgfpRdiOgn1OGEHGCccAnv9BU9ncG6gWQ4yeoFclz9a6PSIZIrfLDbvOR1zj8aYjRooopgFFFF\nABUNz/qnqaobn/VPQAy2/wBUtS1Dbf6palqRi5optFAC0UUUAFFFJQIWkoooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKKAFooooAKKKKACiiigAooooAKKKKACiiig\nAooooASilooASijFFAwooooAKKKKACiiigAoopaACiiigAooooEFFFFABRRRQAUUUUAFJS0lABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiiigAqSOo6evWgCWiiimAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUdPaqU2pwQ8A7yOwpASX/FrNn+4a5Ota81R542QAANWTTAKKKKAJ43x3\nqaOKSYnarPVRetX7O5NvIGycdx7fnUtDRZi0id+XZYx6dTST6RMozFIGx2IwfzyRW0jiVAyng0GR\nF6n2oWgHIzRSxNskUqfeo63NUSGdlbzghUEHOOn86z91nD0RpT/tcD/P4U7hYqpG7H5QT+FdLDdC\nK3j83htuPpWE19L0QLGP9kf1quzM5+Yk/U0ajN2XWYl+6cn2H9TiqE2rTSfd+X6/N/8AW/SqKQyS\nHEaM5/2QT/Kr8OiXUgy+2Me5yfyXP6kUWEyjJNJJ95if89u1M5JxyT9K6GHQ7dP9YzyH/vkfkOf1\nq9HBFDwkap9AB+Z6n8aegrnOw6VdzYwmwHu5K/py36Veh0FRzLIx9k4H5nJ/QVs0UAVoNPtYOViG\nfVvmP/j2f0qzjHFFFABRRRQAUUUUAFQ3P+qepqhuf9U9AEVv/qlqaorf/VLUtSAUUUlAC0lFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQA2iiimAUUUUAFFFFABRR\nRQAUo60lFAFiiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDcsUicg4\nIHBoAkkkjj+8yj8arNqUKnAy30FZMjMWJJJ57n3plZ85VjpAwcZHIorKsLsqfLY5B/StWqTuSwoo\noqgCiiopLmKH77gEdu/4gUXAlorOl1eMfcQt7nAH9c1Rm1OeT+LZ/u8VNxm/x9cUVmaT5uH3iTae\nQT0z/P0rSqgFooooEFFFFAGZrKv5alS3XBAJ/DpWbDp9xP0jIHq3FdIRn/8AVS0hHOXmnPbQeY7D\nqBtHv6ms2uk1z/jzP++tc3TQwooooAKkjYfxHAqOlAzQNGkNVMSCNAWxxljj+Wciq0l9NL3C/wC7\nRb2Nzc4MceB/eJ2j8z/StCHQTwZZBn0T/E/4UrDMdmLHJJP1pMHtXTxaXaRD/V7ie7c8/wAqw5U8\nqRlx0OKHoIrCImrVisQuYxIodWyORnntUdGSrK442kH9aSZR1SIqDCgKPQDFOpsTiREYdCKcaokK\nKKKBBRRRQAUUUUAFFFFABRRRQAVDc/6o1NUNx/qj9KAIrf8A1S1LUVv/AKpfpUtIAooopAFFFFAB\nRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFL\nSUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2iiimAUUUUAFFFFABRR\nRQAUUUUATJTqZH0p9MAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvenED+pG\nP1qxVHVP9Un+9/SplsNGVSUm6jdWZQtalheBh5ch5HQmsktTS5OOtUriZ0Ml5bxjmQfQcmqUurAf\n6tfxY/0qjFZTzfdQgercD/GrsWjgf62T8FH9T/hTuwKct9PLnLkD0Xgc/So0trif7qM3v0/U1uxW\ncEONqDP+1yfwzUzyRxLlyFHenZiMaPSJn++yoPzb8uBWhDpsEPOC59W/zioptYto/uHeR6cCs+bW\n53yEAT6dadgN8Y6fpS1zFvfzJOJSxbPXPPHpWq+rIB+7UsfU0XsBpUVlW95PJMC2dnIPHy1alv4Y\nhyw/lS5h2LdBKjqR+NY02trzsBP6f/XrPl1C4l/i2/T/ABPNGojo5LuGMcn+n86z5tajXIX5voP6\nmsJnZ+WYk+9Pit5psbI3b3xx+fSnZgWLvUWul2bcLnv1qn2rSh0S5fl2WMe/JH4D/Go7jSLmDJAE\ni+qdf++f8M0CKFFKVZSQylSOxpKYBRRRQBoJqLIYo4yRGhGfVh3zXSqcgHrkZzWBpWmediaT7nVV\n/vY9a3wMYHSmMWsDVYfLn3f3xnFb1Z2rx74A3Taf58VMgMSjGaVVY9KlELdyBUXGbGky+ZaqD/Ad\ntX656GY2KNhuGHTA/QVc0i6adZFdiWzkE/3ataks1KKKKYBRRRQAUUUUAFFFFABRRRQAVDcf6o/S\npqhuP9UfpQBFb/6palqK3/1S1LSAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUlABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUANooopgFFFFABRRRQAUUUUAFFFFAEkZ5qSoU61NTAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5LiGH77qPr1qlLrES58tSx9egpXA0aa8iRglmC/U4rDl1SeQcME/\n3eP161XVZ7g8B3z37fnTuM2JdTgTOMufb/GqF1qElwNuAq/TJp8WkTH75CA/if51bj0uBAN25z7n\nj8ql3YGJu96RpAO9aVzouAzRyHgH5W/x4NYuxskY6UcqC49pj2rS0eATMZWYNsPC+57ms3yjg1oa\nJNsnaPPDD/x4dKNAudBRRRVCK95KYbeSQdQvH1zXLzXEs5zI5b+Q+grodWmjS2dSw3MMbc81zNAB\nRRRQA4HFTRTmLkKp+vNV6f2pNXHcmkvJn/i2+y8VXJLHuT+Jq/p9tb3Mm2Ytn+Fc4De1b8Nnbwfc\njUe+AT+ZosguczFYXU33Ymx6t8v8+taMOhE4M0n4IP6n/CtvH5UUxFSHTLSHpGGPq/zH/D8qtgAd\nKKKACiimSSBKTdhpGTrkCgJKBzyCf5ZrDra1O4RoyrHLE8Adqx1id+imhSCw2irKWMrdePr1qdbO\nNOXbP5UcwWNPRpg1thiAU4/DrV1riJf4s/SsAXEEIwn5Convm/hAo1HY3H1D+6v/AH1VG4vg42u4\nx6AZrJaaR/vEmoz71Nmxl5rxR91c/pUD3Mj98fSoBS4quVE3FLE9a0tF3m4OPu7ef6VnbOM102mR\nxrbRlABuGSfU0AXKKKKYgooooAKKKKACiiigAooooAKhuP8AVH6VNUNx/qj9KAIrb/VD6VLUNt/q\nxU1IAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooo\npgFFFFABRRRQAUUUUAFFFFABViq4qcdBQAtFFFMAopKqzalbw5y24jsOeaALdFZf9ptKMoAPrzVy\n2uPOXBxupcw7FiiiimAUUUUCCiiigCG4m+zxs+N2KxZtTnm4U7B6DrW7JGsqFG6EYqOKzgh+6gz6\n9f1pMDn0trm4OQrNnuf/AK9XodGc48xwB6L/AI1sEqn3mVadmlYZTi062i/h3H/a5/SrQUL0AH0p\naKoQUUUUABG4EHuK5q4jMcrL7n8q6WsfVocSBx/EPSplsNGdTImNvcRyL2apljJp4RB15NQpFWN+\nWeOIct+FZ8+oswIT5feqYWSVu7Veg03oZT/wEU7tisjIuem4jOe+O9VK6DWIkjtFCKB+8Hb2Nc/V\nokSiiimAUopKKAJEcqQwOCPSunsrtbqMf3gMNXKirNpctayhx+I9RSQHV0UyOZJEDhhgjPNMa6hU\n/ezTuhk1FUJNQP8ACAPc1Sm1Ec7nz7LUuQWNaS4ROjAn25qlJOXz1+tZT6gf4Vx7nmq73Ej9WNLk\nkyi8UgQkuQT/ALRyfyFMe8ROEXPv2qhk0lNQsTcsveyt0wPpUDOzdST+NJSVVhC0lFdFpdvbPAr+\nWGfuTzzQBhR2003+rjdvcA4/PpV+DRLh/wDWERj0+8fy6V0OAOgxRQFzm73TlswpDl88HIFVeK6L\nU4fNtnwORyPoOtc7UtjA9K2tFm3RvESSUPHstYtXdKkMd1jOFcc+5HSmhnQ0UUUyQooooAKKKKAC\niiigAooooAKhuP8AVH6VNUNx/qj9KAIbf/VrU1Q2/wDq1qakAUUUUgCiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACl\npKKAFopKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgBtFFFMAooooAKKKKACiiigAooooAKlTpUV\nSRmgCSiiimBnazIUtwoP3ziufrd1z/Ux/wC//SsKkxli1bBx61dR2jO4dqylbBFaCtuUGspaFI24\nJhMoPfuKmrFhnaFsjn2rXSVXUMGGK0i7iaH0VFJdQx9XH6VQm1mJPujJqiTVpjyJHyzAVz02sTyc\nKdoqi80sh5Yt7f8A6qQHQzavBH0+Y1TfVZZPunaKz4bC5n+7G2PVuP51q2ujMP8AXOPov+NDQFa3\nnlNwjElzmugqOK3ihHygfXvUlCAKKKKYBRUMtzHH3yfSqEt878KcCpc0VY0JbiKIcnn0FZ1xeecC\noUYqBEkmbABJq5Fp3eTH0FS7sexnF8UwvikmUpIynnBxUeamwGrpEnzSJzk85rWrnLGXyrhDnAJw\nfpXRVrHYTMvXXHkIvcvn8ga56trXzzCPZjWLTJCiiigAooooAM1NGgbljgCoaUfWgC99qjhXanzf\noM1C99I3Tj+f51Wox+XrSsMc0rt1J/Om0H2q1Z2Ul0wABC927Y9qYirU8drcTY2Rsc+1dHBpttBg\niME+rcmrYAHQYoA56LQ7huZCsY/M1Ld6TFbWzOrMzqQc+3etyo5oxLFIn95SPzFAHHUUp449KSgA\nrd0KYlZIz2+Yfj1rCq5pcoiuk/2vl/PpQB1NFFFADXAdGU9wa5WQbXZemCePxrrK57VIfKuSePm+\nb86mQyjTlby3R/7rA/kaSkpAdcjB1DDoQD+dLVPS5vNtVydxX5T+HT9KuVQgooopgFFFFABRRRQA\nUUUUAFQ3H+qP0qaobj/VH6UARQf6sVLUNv8A6tampAFFFFIAooooAKKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKAClpKKAFopKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAoNFBoAbRRRTAKKKKACiiigAooooAKKKKACnp97FMpR1H1o\nAnopTTJJY4xlmA/GmBla6flhHuf5ViVf1W7S5kXyzlVHWs7NIB1WYJgq4Y1UzSUOKY7l5rpB05pj\nX0uNqnA+tVOfzrdsNJjMayTKSSMhc9vehKwN3MbfJKcfMx9BzVmHSrqYj5Ng9W4/SukjgiiGERV+\ngqSmIyYdBiX/AFjs/qBwP8avxWVvBjZGowMZPJ/Wp6KACiiihggpelVZb1I+nJ/SqEt3JIf6VDmV\nY0prtI/cis+W8eTpxUKRvKeBmr0OngcyH8Kj3pMeiKCJJKeAT71di07oZD+Aq+iLGMKABTuB6Voo\noVxixrGNqilp3AHP61A91EnVh9BzRoIydUj2TbuzDP41QrVv547lQBnj+Ks7MSdTUsew0A1tx3yp\nEgbczAdO/wCdYjXKj7ozUT3Mjd9v0pxTBlrVbn7Q6YzgA1nUuSepzSVRAUUUUxhRRRQAUo9KSnRs\nEOevpQBbEUMCAvy392qrvvP90dsUjuztk1oadpbXB3vkJ/OkMjsdOe7O4/Kg7+tdLHEkChE4AoSN\nY1CqMAelOoEFFFFMAooooA5fVofKum9G+YCqVbmuw5EcoHThj7dqxKAEpVYqwYdQQR+FJRQB2ULi\nWNHGDlRT6z9Hl8y2C/3Dj8OtaFABWXrMW6NZAOQcE+3b9a1KhvI/Nt5F/wBkkfUcj9aTGctS4pOn\nFSLGW7VN0M0dDkw0kZPX5gP51t1y6QujB1fa3qKsC6uU6zsfwqlJCaN+iqGmXjXKybmyVb0xxV+m\nIKKKKACiiigAooooAKhuf9S30qaobn/UtQBFb/6talqG3P7pampAFFFFIAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKAFopKKAFopKKAFopKKAFopKKAFpKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAG0UUUwCiiigAooooAKKKjmuYrdcu2\nPYcmgCSjge1ZM+sD/lkp+pqjNezTdWP4UAb8lxFH1cVTl1aNOFBJrGVZZTgKzfnVuLS7iT7wCfXr\nTAdLq1xJwDge1VGkmlPVmP4mtuDRIB/rCz+2cD9K0IraCH7kaj8OaAOWSyuJRuWJ8euMVG8TofmD\nL9RXZAAdqZLDHKpDqGyO4oA42ipbiMwzOhHRj+VRUAKpwc11tpL50Eb+q/yrka6DQ590TRk5KnIH\nsfSgDVooprusYySF+tADqCQBzxWXPrcSHEQL+/aqgv5bnJb5QO1JvQo1pr1I+F5NUJbuSTvgVHHE\n8p+UE1fi08dX59qj3mBQSOSU/KCfer0OngY8w5PpVotFbrzhR/Oq02pxr9wFvc0+WwFtUVOAP0pW\nYL1KiseXVXx94L9OtUZL7d3LfWn6Ab8l7CnGd30qpJqR/hAHuaw2uXPt9KjLFupJotcDSmvi33nJ\n57VUa7Paq9CqWOACT7UcoXHtM7dTTKtRaddS9IyB6niknsntm2OecZ45qhXK1Kil2CgZJOBQwwcU\nkbbGDDtQK5oRaNcy9cIP9r/61Rz6XcwDO0OPVf8ACulibzI1fswB/Sn0WA4tgV4Ix9aSururOKdG\nyi5wcHHeuVZSrFT1BIoASiiigAooooA2NN0ovtllGF6qDnn3rdAC8DH4VT0ybzrWP/Z46+lXDQAU\nUUUAFFFFABRRRQBXv4vOtZV9sj6iuSrtSMgg9+K5G7iMM8iejH8jQBBRRRQBq6HPsmaM/wAQ4/Dm\nuhrkLOUwzo2cfMM/TPNdcDkAjvzQAdKz7u96xr+Jq5OWWJyvUKa5d5nJOT3qHcZY+RPSkNwi9Oap\nljSZpcg7lg3DHpio2djnkmos0sbDeu7pkZ+lVawrm5otrsUzNxv4H0rWqOHb5Ue0cbV/lUlUIKKK\nKACiiigAooooAKhuf9S1TVDdf6pqAIbc/ul+lTVDb/6pamqQCiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAoNFITQAlFFFMAooooAKKKKAGyDcjL6g9K5z7JcSMRt\nY89W/wDr10tFAGLDo0h5kYL7Cr0WmW8f8O/61cooARVVOFAH0paKKAJY+lPqOOpKYBRRRQBzmtQe\nXcb+cOP1rNrpNYg8y3390IPviueCM54GfpRcdhlX9IlMVyP7pGDTY7RV5kOT6DpVjhRhQF+lTKfY\nfKaVxfbeI8Zz1rEvpJWI3SM/sTxV2KCSb7oPPerq6XEcGXLMO3alFtgzn7e1luD8ik+/YVt2ekLD\n80p3tjoOlaUaKgwoCj0FOqiRAqoOgAFZ91q8UWQnzH1q+671K+oIrj5U8uR1PZiKYy1PqDzHP5VW\nMrN3NMAzwAT7CrUOm3U3SMgep4FFgKtFbMOhMf8AWyAey/48Vfh0u1h52bz6tQK5zSQySY2IzfQG\nr0Oi3UnLYjHuefyrolRU4UBfoMUtAzLi0OBP9Yxk/QVeitYIRhI1Hvjn86mooEL6VlaxENiSAdDj\n8/8A9ValQXsXnW8i+xP5UAcm3WkAJ6UGpIhxSuB0GjyFrfYT9z+R6Vo9a5/TZxbyHd90jH61qSX0\nYGUO4nj6UuYosSTLCMsa5a+H792xjcd351oTz7iWY1lzSea2fyoUm2DRFRRRVEhRRRQBt6FNy8RP\nuo/nW2a5TTpfJuoz2Jwfoa6qgAooooAKKKKACiiigArn9ch2yrIBwwxn1Yf/AFsV0FZ2sReZalsc\nocj8eDQBzdFFFACjg11dhL51tEx4OMH8K5Ot7QpQY5I+4O78OlAGsRWHd6PMGZ4iHB5x0IrdzxRQ\nBxro8ZKuCD70ytbXYsSpJgAEYJ9//wBVZNABRRRQB1eny+bbRnvjB9sVarG0KXiSM+zZ/StmgAoo\nooAKKKKACiiigAqG5/1TVNUNz/qjQBFbf6sfSpaht/8AVrU1SAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUjHAJ9q5+fUbiUsN20cjihIDce4jj+8wqtJqCr91c+56VhBzuBJJ5q4CD+VKW\ng1qbcEyzLkVJWJDKYWBHTv8AStlHEigihO4WHUUUUwCkNL2ptMQUUUUAFFFIzqn3iB+NAC0VVk1C\nCPjO4+1WQdwBHcUALRRRQAUUUUAFFFFADk61NVcdakeaOMZJoukBJTXkRMkkVRm1DslZ8kzN1OaX\nN2KL9zfKylFAIIwaz84HHHtUZlUd6ryTk9DUpMRaaRV6mq0tyxBC8fzqDdmkqlEGzodEn8yAqeqt\n/PmtOub0ebyrkKejjH410lVoK9wooooAKpz6ZBcTGRySTjI+lXKKAIYrWCH7kaj3xzU1FFABRRRQ\nAUUUUAFFFFABSO6orFjgY60tc1qN9LO7JyiLxt9frQBTl2mR9mduflNTwoFWqyZY8Vejixy3WpkU\niREpJJFjFMlnCcA81RdixyamMQYskjSHJpYoXnbbGMnr+FOt7Z7qRY179/QV09nZR2i4Xk45PrWh\nJydJU11H5U0iYwAeB7VDQAUUUUAKDggjtXW2kvnQRv6r/LiuRroNDm3QtGTyrZ/A0wNWiiikAUUU\nUAFFFFABTZY/MjdD0ZSPzGKdRQBxjDaSPQkU2ruqwmK6f0b5h+NUqACruly+Xdx84DfKfx6frVKn\nIxRlYcYIP5UAdnS1HE4lQN64PFPoAzdbi32wcfwNn8DxXOGuxuI/NikT1Uj8a5BlKkqexxQA2inb\nKXbQBY0yYw3SZJCk4P4j/GuqrjgdhDDsQfyNddA/mRo/dlBP5UAPooooAKKKKACiiigAqG5/1TVN\nUNz/AKpqAILf/VLU9QW/+rWpaQDqKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANf7rfQ/yr\nkz3rrJDhGPop/lXJHrVIAq3C+RiqlSxNhqUlcaLWasW05gb27iq9HWs0ykb6sHG4HINLWTaXXkna\n33f5Vckv4U77vpVolosk0YrLk1Uc7QBVKXUJXPU49uKYG49xFH1YfnVWTUo1+6M/WsQzO1M5PXJo\nEaUmpyN0IH0qu0zOeWPWooreaX7qMffFakGld5Wzx0FIZmhGkOFBY+1b1ojRwqr8EfrUkUMcP3FA\np9MAooooEFFLUbzJH1NK47D6ZJKkfU1SlvWbIXiqhcseSTUuQ7F6W+OML+dUpbk/xHNVppHU4Ax7\n1WJpqN9wLL3BPSoTIT3qOiq5UhXFyaKSimIWikpaAHxSeXIjehBrr0YOoYdCK42uk0ifzbZQeWTg\n0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALWDfaS+55kddpOcHtWtdXkVom5yM9h61zl3qE10xO\nSq9lFAEkUSxDLdaZLcYBC9aql2bqaSpsMCSTSqCxpVT1qUAUxHS2KRJAhjGAR17k981YrN0ebfCY\nyeVP6GtLj2p3AwNch2TLJ/eGPxWsmul1iLzbYkdU5/DvXN8t0BpXGJRUiwu3apVtD3IobSFYritD\nR5vKucE4VwQf6UxbRB15qdUVegAqPaIrlNhryFf4s/Sq02qCMHCj8aoFgoJNZ00pkb2qotsGdVaT\nefCjnGSOcdqnrI0KUNE8f905/OteqJCiiigAooooAx9dhyscmPYn27VhV1moRCW1lX23flXJ0gCi\niimB0ujTebahT1T5efzrQrmdOvzaMVPKt+hrXGoEj7g/Ok5WDcv4rmdRh8m5fAwDyK24b9ZJRERh\nj0/CqOtRcxyDvlT+FK47GPRRRQAV0GjTeZbbecoSOfzrn60tEl2zNGTwy5A98/4UwN+iiimIKKKK\nACiiigAqG5/1Rqaobn/VNQBBb/6palqK3/1S1LSAKdTaKAHUUUUgCiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiigkDk4AoAhu3McErDgha5augvryEwSIGySMcVz9NAFFFFMC6HXGc0wzKPeq2aSp5ENMlMxPtTD\nIzdTUlvAbiQIO/f2rbi0u2TqC596pKwmznwrMeAT9AatRadcy/w7R78V0CxRp91QPoKdSAyo9GUc\nySE+y1cjsbaPpGM+p5qzRTuAgAHQAfSloopALSUtQyXCR980XGtSbFQyXMceec1RlvGfOOBVYsWP\nrUN9irFuW9Y525FVSzN1JNSxW0kvQYHqauxWUact8x/SlZhcpxW0svQYHqauxWaR9fmNWOlFUkTc\n5zUf+Pyb/eqrUty/mTSN/tGoqsQUUUUAFFFFAC0UlLQAVp6LOI5zGejjj61mVJBIYZFcHGDmgDsK\nKRWDgMDkHvS0AFFFFABRRRQAUUUUAFFFFABVK91KK1GPvPjhR/Wi7v0iykZy+Oo7VjOyglmwSf51\nPMMrzSy3TF3P/wBaoTT5JCx44FM5xVAJTlFXrKzjP7y5IC9h6/8A1qgZBuOzgE8D2pNgMApRmnha\ncBiochk+nzfZ5ssMKRg+1aMmpp/CrH6nH8qyhS0XYWLk1+8wK7QAfWqmxfSgkCmmVF70tWPQkpar\nNdKOgqNrhj0wKfIwui7nHpTTMi9W/Ks9nc9WptHs/MXMTTTtJ9KhopVUkgDnnitNhN3NDRpdlyF7\nPweO/aukrO0uwFunmSAeY3T/AGRWjQIKKKKACiiigBsjKi5bp/OuQnTy5HXtuOPpXSSP5jFj07Dt\nWLqiqJQykHI5xUqV+hTRRoooqiRatW91s+VunaqlFK1wLMM7m6Rh1L4H410WoQ+dauO4Ab8qy9Ft\nCz+ew4X7vua3SNwYHuCKdkM480VJMhjkdTxgmo6kBafaytBcRsP7wH4Hg1HSGmI7Kiq9jKJraJhn\n7oH4jr+tWKYBRRRQAUUUUAFQ3X+qapqhuf8AVNQBBb/6palqK3/1S1LSAKKKKAClFJRQA6iiikAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRTZJFjTcxAHqaAHUmcdazptWiThBvPv0rOm1GeXIJIHoKYG+88cYyzAVVk1SJOi5/SsJ5nc8k\n00ZY9CaLDNGXVpG6EL/u1TkuZH6kn6kmpI9PuJekZ/HirkWinjzHx7Lz+tAjKLs3WkxXRx6bbR/w\n7vduf/rU97K3kGDGv4DFFwOYNFad7pggQyIxI7g9h9azKYBRRRQBraMwBdT36evFbBrn7KTypEb3\n5rf6ipAKKKKACikJA5PAqvLepH05NDYyzwOtV5btI/eqE108nfFQZ9am9wsWZLx5OBwKr5J681ND\nayS84wPU1oRWccXUbj6mhJsexQitZJe2B6mr0VnHF1+Y+9WKKpKwmwooopiCiiigDlJPvt/vH+dN\np7/fb6n+dMpgFFFFABRRRQAUtJS0AFFFFAGtpWoGMiGT7h+6fQ1vVxfTmug0rUPNXyX++Oh9RQBq\nUUUUAFFFFABRTXkROWYL9TVSTVbaPOG3n/ZGf1oAu8DknFZd5fbiUjPHc+tUrnUpZ+Pur6f41T3E\nnrUyZViV229Mk1AQznJp1FJegDRHTwgH4UfnRkDvSHoL04FKKjMg7UwyGq5WwuuxYFDMFGc1ULE9\n6SjkFzFgzqOlMMzH2qKinyoVxSSepNJRRTEFFFFABRRRQAorZ0jTzxPKP90H+dYorrbGXzraNsg8\nYOOxFAFiiiigAooooAKo6q8sdsWibGDzj0NXqiuIfPhkj6blIzQBybTyyfedj9Sf5Uw1dm0q5h52\n7x6rzVIgjg8Uh3EooopiCiiigDq9OcPaxkemPxHFWxWNoUuUki6kHcPpWzQBz+sRCO43D+MZP16V\nm1v6zDvgD8fIefXn0+lc/UgLSGloNO4zb0KbMckWeVOQP9n/APXWtXOaPKY7oL2cY/LpXR0xBRRR\nQAUUUUAFQ3P+qP0qaobn/VH6UAQQf6sVLUcH+rFSUgCiiigAooooAWlptLQAtFFFIAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr30kkMJeMjI69\n65yWaWYkyMT/ACrqXQSKVPRhiq0WnW0fO3cfVuaLgc/HDJIcIjNx2FXItIuH+9hPr1reVQowAB9O\nKWncRmxaNCn32Z/0H9aux20MX3EUfhk/malopDCiiigAooooAbIu9WU9wRXKzRmN2U9iRXWVg6vF\nsmDAYDD9RTQGdRRRTAsR5AHNb9pJ5sKn8D9awBwBmpor9rdGVRknoew/CkgZvFlXqQKqy6hCvCtu\nPt0rClupZjl2J/l+nFEIy3vR0BF+S6eb1A9Kh5PqaswWUkoyflHqavxWkcXbcfU1HKMz4bWSXtge\npq/FZRxcn5j79KsdKKpKwNhRRRTEFFFFABRRRQAUhIUEnsKWo7jHkyZ6bG/lQBzD/eb6n+dNoNFM\nAooooAKKKKACiiigBaKSloAKcjtGwZTgjpTaXFAHT2F8tzF8xAZfvZ4/Gny39tDwXBPovP8AKuYB\nI70UrgbMutj/AJZxn6sf8M1Tk1S6f+IL/uj/ABzVLNG4VIxzO78sxb6kmm0m6m7qqwEvFJkCoiSa\nSiwiUvTTIaZRRYBdxNJRRTAKKKKACilCn3pdtA7DaKkC0uMUrhYWO2mlPyRsfwNXItFuX5bag9zz\n+lbVhKJbeNvbHPqO9WaYjkry2NpL5ZO7gHPsar1ta9DzHKAORtJ/lWLQAUUUUAFb2hS5SSP+6QR+\nNYNXtJl8q6T/AG/l/OgDp6KKKACiiigAooooAWsTXYB8kwGCeD/MVtVU1KMy2soHYbv++c/0oA5W\niiigAooooAvaVKIrqPJwGyv59K6iuLRtjq390g/ka7CKTzI0f+8oPHuKAG3EfmwyLjOVP51yhGMg\n9Qa7CuWvovJuZFHPOfz5qR3K9FJRQA6N9jq/90g/lXXo4dFYdwD+dcdiuk0mYS2qjJJXg5/z6UxF\n6iiimAUUUUAFQ3P+qapqhuf9U1AEFt/qlqWorf8A1S1LSYBRRRQAUUUUAFFFFADqKbS0ALRRRSAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiikoAWqWqwebblscqc57+9WmkWMZYgVRuL9CCijORyTRew0jECFjwDUnkEdWH0q\nbPoAM0mRS5hlaTrgZ/Om9adt3k08LjpTEya306ebBxtX1ata2sIbfn7zf3j/AEFPs5PMhU9xwfwq\nxTFsFFFFABRRRQAUUUUAFFFFABRRRQAUyf8A1Uv+438jT6in/wBTJ/uN/I0AcvRRRTAKKKKACiii\ngAooooAKWkooAcBThxTMmkoYDy1IWNNopDFyaSiimIKKKKACipo7S4m+5Gzc4zg4/OrseiXLfeKR\n/wC8c/8AoOaAM2jFb0OhRLgyuzewwB/U1ejsraL7sSfiN3880AcvHbTS8JGzfQGrsWi3L/e2x/U/\n4V0QAHQYpaAMqLQoV/1js/0wP8auR2FrF92Jfqef51ZooAzdZh3RK4GSp/nWFXVXMYlhkU91P6Vy\ntSxhRRRQBr6LNw0Wf9oD+dbFc1p8vk3CHIAJwc+hrpatAU9Ti862kGMkDI+tcsa7RlDKQe4xXIXE\nXkzSJ/dYgUhEVFFFABQODmiigDsopBLGjg5DDOafWfo0vm220kZjO3j860KACiiigAooooAKQjcC\nD3GPzpaKAOPuYzDM6HjDGoq0tah8qfcAcOOvv3rNoAKKKKACul0eXzLULzmM7f61zVauhzbZmQk/\nMvA9x/8AWoA6CsTW4/mjk9QV989a3Ko6pD5tqxAyV5/x/SiwHNUUUVIwrX0KX55I+Om78ayamsZf\nIuo2OcZx+dMR1dFFFMAooooAKiuf9U30qWorn/VNQBXg/wBWKlqK3/1S1LSAKKKKACiiigAooooA\nKKKKAFpabRQA6iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRRYAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5Z44vvN+ArPm1FjwgwP1oCxoyTJEMscVQn1HsnHv3rPaRn5JNNGe\nnepuytB7zPIckk00ZNWoNPlkwWG1ffrWlDZww4wuT/ePWmlcVzEnSSBVLKRu6VUZya6DU4fMtmx1\nX5s1z1UkguPRsGpqrA81OpzSkCNHTJMOY+55Falc/A/lyq/+0PyroOtCBhRRRTEFFFFABRRSEgcn\nGKAFoqrJqFtH/Fu9lGf/AK1VJNXP8Ef4sf6D/GgdjVpryIgyzKv1OKwpL64kz8+M9l4/Xr+tVyxO\nSSTn1JoA231O3XoS/wDuj/HFUrnVHdSqLtz3PJqhmmkii4hlFFFMAooooAKKKKACiiigAooooAKK\nKUDJoASlx704gL3zTKAFJzSUVpadpv2r53yIx/499PagCLT9Pe8bJDBB1b+ldBDZW8AAWNeO5GTU\n0caxKFUAAdqdQAUUUUAFFFFABRRRQAUUUUAHWub1OLyrl/8Aa+b866SsrWocoko/hOD689KTQzFo\npKWpAAcHPoc11VvL5sKPx8ygn61ylb2jS7oWj/uH+dUmDNKuf1uDZMsg6OMfiK6Cs7WIfMtiwHKc\n/h3piObooooAKKKKANXQ5ds7R/3x/wCg10FchbSeVNG/91h09K64HIz60ALRRRQAUUUUAFFFFAGZ\nrcW63D5+4fzzXO12NxH5sLrxypHNcg42nHpwaAG0UUUAFT2shinjYHHzDP0J5qCigDtsggH1pkib\n0dPVSPzqKxl8+3ic9SOfwqegDjnXY7L6Ej9aSr2rwmO6LcfP8wA/LmqNIYUA4OfSiihCOut5BLCj\n5zlRyPXHP61JWboshe3KH+A4/PmtKmAUUUUAFRXX+qb6VLUN1/qm+lAEFt/qlqWorb/VLUtIAooo\noAKKKKACiiigAooooAKKKKACnU2loAWiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRTJJUiGXYLWbPq6qdsK7jnqRxTsBq01pEHBYA+mawpLyebq5HsvFRZpMd\njpKKp2V2JlCt98frVygVgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigApKhmuo4upyfQVnT6hI/C/KP896VxmnLcRxDk/gKzp9RdsheB+tUSxY0KCTgc57ClqMV\nmZiST1oAz61bg06R8FzsU8+pP4dq0oLaKAfKOf7x60WAzINPkkwW+VffrWlDZww9FyfVuTU+aSqs\nK4UtFFAhGAYEEdRiuWnjMUroexrqqw9Yi2yK4/i4P4dKaAzKlQ1FT04pPUaJa3bGTfCvqOKwd1WL\nW9+zbvlznoM0LQLm9SEhepA+vFYkmqXL9CE/3R/jmqryvIcs5b6nNMRuyX1vF1kDH0Xk/pVR9XH8\nEZ/4EcfyrKzQTQMtyajcv0fA/wBkD+uT+tV2ld87mY/U1Hmmk0CH0ZphOaSiw7km6mbqSiiwhcmk\noopgFFFFABRRRQAUUUUAFFFFABRRRQAU4HFNooAKUUlXNPCi4jLgH5uhoAt6bpXm4knUheoX+97n\n2/Kt1VCAKoAA6AcAUv8AhRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5H5tvImAcqcfXtU9FAHH0VY\nvoTDcOuMDOR9DVepGFXtKkEd0o5w42/ielUadGzIysOqkH8qaA66myIJEZWGQwINKjCRdy8g9KWm\nI4yWMxuyHscU2r+rxeXdMQDh+cn171QoAKKKKACup02US2yc5KjafqK5atrQpjmSIsAPvAe/egDb\nooooAKKKKACiiigArltTi8m6cbcAnI+ldTWJrkP3JB9D7AUAYtFFFABRRRQBvaHKDG8eTkHd+Fa9\nc1pEvl3QG7arAg+/pXS0AZOtw7o0lC/dOGb0HasOurvYxNbyKc9MjHqK5Q8EjGKQwopKKBGnosoS\n4KEn5xgenFdDXIW0hhmjYHGGH5d664EMAR35pgFFFFABUV1/qm+lS1Dc/wCqb6UAQW3+qWpaitv9\nUtS0gCiiigAooooAKKKKACiiigAooooAKKKKAClzSUUAOooopAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFRXX+ol/3G/lUtV7w4tpv9xqAOZPPXn680KcGkoqgLXaikU5ApayZd\nxUYqQQelbNndiYbSfnA/OsWlRih3AnIppiOkoqtaXa3C+jDqP8Ks1QmFFFFAgooooAKKa8iRjLsq\n/UgfzqpJqlunQl/90f44oAu0dKx5NXkb7iKvucsf6VTlu55PvSMfYcD8hxQB0lFZOkXBbfGckjBB\nPp6VrUAFFFFABRRRQAUUUUAFFFJ0oAWjpVaa9ih4zlvQdvrWZPfSSnGcD0FIZqTXcUWecn0FZ0+o\nSycL8g9uv41SPJpVBJwBk+3WgYpZj1oAJ4AyTVyDTHfBk+QenVq0obWGD7q8+p5NFhGbb6bJLgv8\ng/8AHj+H+NaUNrFB91fxPWpqKYgooooAKKKKACiiigANUtTRWt2yQpHIzTbrU44DtX53/QfWsaa5\nkuGy7Z9B2H4VVgIgKWk6UmaVgHik4puaTNFgHE0maSimAUUUUAFFFFABRU8VpPNjZGxB6HGF/wC+\njgVbj0edsb2VPUfeP6cfrQBm0VvRaTbp9/dIfc4H5Dn9atxwRRfcjVffHP59aAOejsriX7sT/UjA\n/M4FWo9HlP33VPplj/QfrW3RSAzW0aLHyySZ9SFP6DH86py6VcJnaN49iK3qKYHJlWU4ZSD6EUld\nYyJIMOoYe4rPvdLhETPENpHOMnGP1xQBh0UUUAFFFFABRRRQAUUUUAPTrUynYQw6jkfWoV61Lmp6\njOpgk82JG9QOn61JWdpEu+Epx8p4/GtGqEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYutw/Okgzy\nMH046fzrJrpNUi822b1X5vyrmzUjEooooA6LS5jJbKDjKZGPbtmr9YeiykSvH/eXr9K3KoDK1uHd\nCsmfunH/AH1XP1193H5sEiDqV4z61yLDBI9DQISiiigAq1ps3k3UZ45YLz/tcVVoB5oA7akqlDqV\nu8ak/KcDjBP8hUn2+2/56f8Ajrf4UroZZoqt9vtuP3n/AI63+FWfTvTEFFFFABVTUk822kHTA3fl\nVukYblI9QRQBxdFTXMZimkQ9jUNABRRRQA+J/LkR+6sD+RzXYRtvRG9VBrjK6bSJvMtVGPuHb9e9\nAF89K5S8i8meVM5wev15rq+lYOuRkSpIAMEYJ46/zpAZVFFFABXUabOZrWMtjcOPy4rl609Jvo7V\nJVk3c4Ixz0HpTA6Cisl9cX+CEn3ZgP0Ab+dVJNXum6FI/wDdX/4rdSuB0NV7uaGNCHkRcjuwz+Vc\n5JczyZ3yu2eoycfl0qGi47HSW/8AqlqWorf/AFS1LQIKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACnU2igB1FJmlpAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBe/wDHtN/uN/Kp\n6r3v/HtNn+41NAcxRRRTAliPaparKcGrNRNDQUUUlQMfHIYmDLwRW3bXKTrnIB7jNYORSCQochiv\n0OKtXEzpWkRPvMq/UgfzqpLqdtH03SH/AGen5nH6VhGTPU5/P+dNL+lOwGrLq79I41X3Y5/QYx+Z\nqpJfXD9ZWH+78v8ALFU9xNFFgH7xTSxpMVZhs5rg/Kpx/ePA/wDr/hTEV+alht5Z+I0Lep7D6mte\nDSYo8GT9435L+Xf8a0FVV4UYA7DgCgDPstM8hg7ud3ovT8fWtGiikAUUUUAFFFFABRxjPaqt5d/Z\nEDbd2Tj2rGmv55jycD+6Ogpjsa82oRR5A+Y+3TNZs17LNwTgeg6flVXJI5pyqWOACT7CpYBn8aAC\nxwBk1et9MeTmT5B6d604reOAfIoB9e/5nNFhmdBpjtzIdo/u/wAVaMVvHCMIoHv3qWimK4UUUUCC\niiigAooooAKKKKAIp7iK3TdI2PbuaxLrVJZ8qnyJ7feP41p6nF5tuxGMrz+Fc7VAFFFFABRRRQAU\nUUUAFLSx7d67hlcjI9vwrpIbaCLBjjToMHGT+ZyaAMCO0uJcbI2IPfGB+ZwKtx6PM2C7onqOpH8h\n+tbdFAFCPSLdeWLv7E4H6YP61ajt4YfuRovvjn8+v61LRSAKKKKACiiigAooooAKKKKYBRRVW6vE\nt+B8z+np9aAMG5j8qaRfRjUVTTkuxYnJPJqGgAooooAKKKKACiiigBVOKl4xUNSocikBoaVL5dwq\n8fPx9K6CuTR9jK2M7TmuqR/MRX9QDSQx1FFFUIKKKKACiiigAooooAKKKKACiiigBG5BHqMfnXKT\nx+VI6ddrEV1lYWsw7Jg/GHHb1HUmkNGXRRRSAmglMMqSAfdOea6vrz2rj810unSiW1TrlflOe+O9\nMRbPIxXKahD5Fw64wM5X6GumuJxbpuIyew965u/lM8m89cYpX1Ap0UUVQBRRRQBfX7o+lLUatlRS\nswUZrOzuVcinc/dBrprKXz7aNzjJXn6iuSYkkmum0qBoLYburndj09BWhJeooooAKKKKAOe1uHZM\nJAPvjk/7VZddFrUYe3DZ5Rs/gf8A69c7QAUUUUAFa2jXSQGRJH2gjPPr9ayaUHHSgDp5NVs4/wDl\npvI7IpOfx4X9ay9R1KG6QKkT9fvNgEfgM/zrNooAKKKKQBRRRQA+iiipKCilpKAOjt/9UtS1Hbf6\npfpUlUSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOoptOpAFFFFABRRRQAUUU\nUAFFFFABRRRQAUUUUAFFBIXqcVWlv7aHO6TJ9F+b+VAFmqWq/wDHq31FQS6uv/LNPxb/AAH+NUbm\n/nnXaSAPQD+vX9aYFKiiimAVYQ8VXooeoExkFM8w0yilZDuOLk03JorRsdN+0je7FU+nJ+hNGiFc\nzqUAk4HP0FdEml2iY+TcfVyT+Y+7+lWViRBhVVR6AAfyouM52LT7qTpEQP8Aawv6Ng/pVyPRHP8A\nrJVX2QZ/U4/ka2KWi4inFplrEQdm8+r8/pwP0q4ABwOB6UUUXAKKKKQBRRRQAUUUUAFFFFAFPUoP\nOgOB8y8isOK0uJMbInI9dpA/M8V1FFO4XMiDSWPMrBf9lev/ANb9a0oreKAYRce/epaKQ7hRRRQI\nKKKKACiiigAooooAKKKKACiiigBkih1KnoRXLyRGN2THQ11NN2JnO1c+uBmmBzsVhcy9I2H+98v8\n8Z/CrkejOf8AWSBfZQT+pAH862KKYFFNKth1Bc4/ibj64XFYtxF5MrpjGD+nauorG1mLEiyDPzDB\n9OKAMulAyaSlU80AS7RW7p774FH93isMVcsZvIZsqSCPWp5irG1RUH2y3/v/AKN/hQt5bsQA/J6D\nB/wp3JJ6KKKACiiigAooooAKKKKAFopp4GTxWVdXxfKJ8q+vc0DsT3l9t+SI89CfT/69ZZJNJUTv\nngVO4xZD2qKiiqsSFFFFMAooooAKKKKACnJ1ptKKAJQa39Il8y328/If51z69K0dHl2TlDzvGKkZ\nv0UUVQgooooAKKKKACiiigAooooAKKKKACqGrweZb7gOUOc/7Per9MlQSoysMhhigDkaKUqVJB4I\n7GkqRhWxo04HmRs3+0v9eax6kjlMZzkj6UAXr66M0hwflHSs+XpQZvao2ctQlqA2iiiqEFFFFADg\n7DvSFie9JRSsBb061+1Tqp+6OW98dvxrqCyRL8zKoAxlmA/WuQjmeL7jMh77TtP6HP50O7SHLMzH\n1JJz9aYHTyajaRdZk/4Dlv8A0HNVJddgX/VxyOffCj8+T+lYHNLQBpya5cH7iIg/76I/l/Kqr6jd\nyfemf/gPyf8AoOKrUUgA02nUhoASiiimAUUUUAOopBS0gCiiigAooooActOqMdakpMoKSlpD0pAd\nHB/qxUtR2/3BUlWSFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBc0ZpKW\nkAtFFFABRRRQAUUUjEIMsdoHvigBaCR3NZlxq8aDEa7z69h7+v8AKs2a9mnPzMcf3RwPyppAbc+o\nW8GRu3t/dX+p6VmzatK/3MRj25P+fpWZS8+5p2AnkuJJfvyM3sSaiL02nRwyScKjN9BQA0sTRmrs\nelXT/wAKp/vH+gzVyLRVH+skLf7ox/PNAGNSVvS6PA/3GZP1H68/rVGXSZ0+5iQe3B/I/wCNAGfR\nTiCCQRgim0AFFFLigAFdLYzLNbpj0xgdq5wdK1NImw7Rk/eGR9aTHY2KKKKQgooooAKKKbJIkQyz\nAfWgB1MkkWIZchR71nz6mORGMH+8f6Cs6SZ5CSxyTSHY1JdVjT7ilvrxUdvqTySqrBQrfh/Wsunx\nK7ONiliDQgsdLRTUztG7g45HpTqYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkoNJ\nQAUUUUwCiiigAqtfxedbOuORyPwqwzhFLMcAVjX2p+blI+F/vdzTAzSMUoFNqQEAdqGBYRBUnA9q\nrLLigyE1DVyrkrS9hULEk+9JuFT2UBu5cfwjkmmoibNy2fzYkY+nNS0iqFAA4wKWmIKKKKACiiig\nApk0qQruY4/nTbi5S3HPXsvesWe4e4bLdOy9qlsZLc3j3HT5U9P8fWquaQkCoCxJosFxzvk0yiir\nEFPMThVcqdrZAbsSK0dP01pWDyghOoHdv/rVo6rb+ZaYRR+75XjGB3oA5qiiigAooooAKKKKACii\nigCRDU0T+W6tk8EHiq68GpTwKnqM61GDqrDoRmlqlpc3m2wycleP8Ku1QgooooAKKKKACiiigAoo\nooAKKKKACij3NRNcwITulQY7ZGfy60Ac/qkJhun/ANr5uffriqdaOq3cNz5flkkr1OMDHpzzWdUs\nYUlLRQBHRTttNpgFFFFMQUUUUAFFFFAC0tNp1ABRRRSAKKKKACkNLSUAJRRRTAKKKKAFFLTadSAK\nKKKYBRRRSAKkqOnqeKTGhaKKKkZ0Vv8A6talqK3/ANWtS1oSFFFFIAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKWkooAdRSZpaQBWJrMbCRHGdpXBI9QTW3Uc0CTrtcZHWm\ngOVxUiQSy/cRm9wDj866KOxtosYjX6kZ/WrAVR0AH0GKdwOej0m5k6gJ/vEf0zVyPRV/5aSE/wC6\nAv685rWpKLgVo9PtosYiU+7c/wA6sBQvQYpaKkAooooAKKKKAMbWYMMso6Hg/h3rJrqL2ETwOnfG\nR9RXLkbeDTTAKeKZTh0oYDqlt5TDKj+h5+neoqKQzqkYOoYdCM0tUdLm3w7c/c4/CrEl1FF95ufQ\ndaVwJqjlnjhGWYfTvWXcamz5CfL/AD/OqLSM3U9aBGhcaoxyI+Pw5qg8rPksck1HT44nlOEUsfag\nZHUiI8hwqlj7VowaUeDMf+Aj/GtKOGOIYRQo9qYGbBpXQzH/AICP8a0o4UiGEUAU+igVwooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACg0U2gAooopgFFFFABRRRQBkavNIpEY4QjP4//WrJ\nrodQs2uUGzG4evTmsV7SeP70bfXqP0pgQUUUUALTs0yikMM1taM4MbJ3U5/CsbFXdOk8mdQc4bii\n4jfooooAKKKKACqt1eLACq8v/wCg+5qG91DblIj9W/p/9eskkk9aQ7EjuzksxyajLYpGeoaFELis\nSaSij2HWqEABJwASfStiw00r+9lxnsh5/wC+u1SWOmrFh5Pmk7Dsv+JrRoAWpQN64PfNQ1Kh4oA5\nGaMxSOhGNrEVHWnrMGy4LjOJB+GR6VmUAFFFFABRRRQAUUUUAKOtSZ9ef6VFTxSA1tGm2yNGTw3I\nHvW5XKW0pilRumCK6pTuAPqAfzpgLRRTHmii+/Ii/VgP/r0APoqjJq9mnRy/+6p/rgVVk15eRHCT\n6Fmx+Y/+vQBsUVzsmtXT/d2R/wC6P6nJqpJdzy/fldh6bjj8qAOokubeLO+VAR2yM/l1/Sqr6xaI\neC7/AO6v/wAVtrm80uaANmTXDzsiHsWb+gx/Oq0mrXT5wwQeigf1yf1rP3CjdSuMleeWT70jt9WJ\n/rUefc0zcaM0AOJoFNpwoAWiiikAUzrT6FFAEdFKw5pKoAooooEFFFFABSikpRQAtFFFIAooooAK\nKKKAENJSmkpgFFFFABTqbS0AOFBGKVRSsOKkdhlFFFMQU5abSjiiwD6KWkqLFHRQf6talqOD/VrU\nlaEhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAXNL\nTaKAHUUgpaQBRRRQAUUUUAFFFFABRRRQAVzeow+TcOAMBvmH410lZesQBoxIByp5x6VSQGJSikpR\nQA+lAzTN9SCk0MkjlaHO04JprOW6mmipIoZJThFJpWAjp8cTynCKWPtWlBpPRpTn/ZH9TWjHGkY2\noAo9qAM+DSRnMrZ/2V/qa0I4kiGEUKPan0UCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiim5oAU0lFFMAooooAKKKKACiiigAooooAw9Wh8uYPjiT+YrOrf1SLfbkjqhz+HesCm\nAUCilHWgCQAUtIKWpYHRwSebGr+o/WpKz9Km3IydxyPpV2WdLddzn8PWgY5nVBuY4ArIu9QMmVj4\nX17mo7q9e5OAdqDt/jVXigBT6k1EX9KQuabTsgCiipIoJJ2CoMmmIakbyNsUbjW9ZWK26hmGZPX0\n+lPtLNbVfVj1b+n0q1QAUUUUAFPjOc0ynJw1AFXWIBLb7+8fIx6HrXNV2brvRl9QRXITR+VI6+jE\nflQBHRRRQAUUUUAFFFFABTl602lHWgCQcVdbV7kKEXy029wOenvxVIGmmpGSyXtzJndNIQe244/L\npUG4nqaSiqEFFFFABRRRQAUUUUAFFKBQaLAJRRTgKAEAp2KdRSGNpaSikAuaUU2lBoARxTKkao6p\nAFFFFAgooooAKKKKAHUUUUgCiiigAooooAKbTqSgBKKKKYBRRRQBKtO4xUYajJqR3G0tFFMQUUUU\nALmkoooA6a3/ANUtS1Fb/wCqWpaYBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig\nAooooAKKKKACiiigAooooAKKKKAClFJRQAopabSikAtFFFABRRRQAUUE4FU7jUoYc4O9h2HT86AL\nnTmqN5f26oyE7yQQQv8AjWRPfzXH3mIH90cCq1UgEooooAcopxpgNOpMB1a2kyZVkPUcjjtWRViz\nl8mZG7Hg/jQM6KlpAcjNLSEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaSi\nmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1lDqVPQg1zE0ZidkPY11NYmrxbZQ4/iH6imBm0UUUA\nSr0paYnpTjUtDJ7af7NJv68Uy5vHuDlvwHYVXJNJTWgh240maSimAUUVYtbSS5fABC/xNigBtvbP\ncPtQfU1v2tqlsmF5Pc0+C3jt0wgA9T60/cq8llH4igB1FQPeW8f3pF/A5/lVd9WgH3Vdv0oAv0Vj\nvq8hzsRR7nJNVX1C5f8A5aEf7uB/KgZ0RIQZJA+vFRG+t4T80i/hz/KubZ2flmJ+ppM0BY6CTWrd\nfuK7n8APz5rDu5lnmZ1Tywe2c8+tR5pppIQlFFFMAooooAKKKKACiiigB45pSOKatPNSBHijFLRT\nAMUYpQKdik2MjxSVJikK07gMooopiCiiigBRTt1MooAeCTTqjBxTw2akoSiiigQUUUUCBjTTS0hp\noBKKKKYBRRRQAUUUUAKKWmj+lSBaQDaMGnbRT8UrjIsGlwakxRii5Vhm2msuKmpj8ihMViKiiiqJ\nCiiigBRS02nUrAFFJmimAtFFFIApKSimB1Fv/qlqWorf/VLUtABRRRSAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkLBRknA96pz6jF\nHwnzH9KALp4GSQBVKfUY48hfnb9BWXNdyTfebNVyaQya4vZZj8zceg4FVc5oNSwWk1wfkU4/vdBV\nCIamhtprg4jUn37D8a1bbSETmY7j6DpWkiKgwoAA9KVwMV9JaOBnZsuOcDpWZXXkZ61y95CYJnXt\nuOPpQBBTxTKUUAPooopDOltJfOhRvbH4jipqyNImwzRHvyK16dhBRRRUgFFFFMAooooAKKKKACii\nigAooooAKKKKACikzSUALSUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqMXm27eq/M\nPw/+tVqkKhgQeh4oA5OipJ08qR1PYkVHTAUHFHekpaAEooooAKKKWgBybARvzj2rQGqeUu2GIAf7\nXPPrWdRSAtSajcyfx7f90YqBpXbqxP40yigAoopaACiiloGJRS02kAZpKKKoQlFFFABRRRQAUUUU\nAFFFFACjrUlRU8dKTAU0gpaMUrjQClpaSluMKKQ0madgGmjFHWpAtO4iKipCuTTSppiG0UUUAFFF\nFADs0tMp1KwC0UlLSASjFOFPxkU7jIKKUjBpKYgooooAKKKKAFFTVBVyFQy1L2KjqRiirARRRgel\nRcdiDBp3ln0qeii47EPlNSPD8pqeihN3FYzaKcwwTTa1IegUUUUAFFFOCEjNADaKKKAHUUUUgENJ\nSmkpgdRb/wCqWpait/8AVLUtIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACimvIkYy5xVCfUwvEYz7n/CgDQZlQZZsCqE+pomRH83HXtWZLcSS\nnLGoaQyxPdyTHljj0qDNJU8NrLP90HHqelICCpYraWc4RT9e1asGlxpzId59O1XgqoMKMD2pgULf\nSY05k+c/pV9VC8AAfSlopiClpKKAFzWRrEA+WUfRv6VrVDcwieF09uPrQBzFFKwwSD24pKYDxS0g\npaQySCUwyq47H9K6ZX3qGHQgGuVrd0uXzIdvdOPwoAvUUUUCCiiikAUUUUAFFFFABRRSU7AFFJRQ\nAtJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU1pY4/vOo/EZ/Kq76jbIfvFv90UAWqKzJNXU\nZ2IfbP8AhVdtUuG6YX6CgDbpjTRJ951H1P8ASufe5mk+9Ix/GoiSe9AG62pWyn7xb6Cq0mr/ANyP\n8zWVRSGPuZmuH3NjPtUFPplMQUopKBTAfto206ipGMxRSkUlNCCiiimAUtFGKQBRRS0DCiikpAIT\nSUUVQgoopaQCUlOptMAooooAKKKKACiiigAp4PamUo60rAPpaSikMcaTpQTTCc07BcCaTrSCnUAO\nUYp2aZk0maAH7qTdTaKAYpOabilooENop1JimAlOptKKTAWloFFIAqVaaiEmrKx4pNlWKcqFWplW\n7lflzVSqTuJhRRRTEFFFFABVq1bgjP4VVqWFtrik1oOJdooorKxdgoopaQCUUtIaAKlyuGz61BVy\n4XKZ9Kp1utUS0FFFFBIVYt2/hqvT4m2tmkBYnIC9KrUsr7zTaAClptOpgFJilpKAOnt/9UtS1Fb/\nAOqWpaACiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTJJ\nkhGXbb/Os641TqIhj3NFwNJ5Ei5ZgKz7jU8cRj8TWZJNJIcsxNR1IErzvKcsSetRUVYgtJp/ujj1\nPSmMr1PBaSz/AHV4/vdq1INMii5f52x+FXgAAAOKAKMGlxx4Mnzt+lXQAowMAD0paKYgooooAKKK\nKACiiigAooooA57UYPKuG44bkVTrc1eHfEJB/B1PtWHTAUU+o6eDSYxav6VN5U23s/8AMVQpVcxs\nGBwQRQB1NGajilEsauO4p9AgooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUVBJeQR5Bfn0F\nAE9FZ8mrRD7qlvrVZ9WlI+VVX9aANmms6J95lH1Irn5L24kzmRsHsOB+lQliepJ+ppDN97+2T+Pd\n7Dmq76tGPuIze5/wrHooAvyarO33Qq/Tn+dVnu53zmVsH0OP5VDRQApJPU5pKKKACiiigAooooAK\nKKKAEplPpppoQlFFFMB60/FRLUmaloYhptOPNJTQCUUtApAFFLRQAUUUmaAAmm0UUwCloooEFFFF\nABSUtFADaKKKYBRRRQAUUUUAFFFFAElB6U0UppAMpcUYpaYBiiiikAUUUUAFFFFABRRRQAUUUUAF\nOxSDmpAtJsYgX0qRY+eaciYqQVPMygAA7CnUlLUDEcblIrPIwa0apTjEh98GtIMmS0IqKKKskKKK\nKACiiigDSQ7lB9qWobZsqR6VNWEtGWFFFFIApKDSUxg43KRWeRg1o1SmXaxrSLJZFRRRVkhRRRQA\nUppKWgBKdTaWgBaSlpKAOnt/9WtS1Fb/AOrWpaQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUfnUU1zFD95ufQdazJ9TduE+UeopAaclxFD99ufSs6fVGbIiG3371nF2fkn\nOaaaBkjSPJ1NR0oqxBZSzngYHqaAK1WILOac/KOD/Ef6VqwadFDjd85/SrnTpxTAo2+mRx4Mnzt+\nlXQMcClooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkTzEZOzAiuWkQxsynqDiurrD1eDZKJB0c\nfqKYGdTgabSigB9FFFSM2NJm3I0Z6ryPoa0a56ym8mdTnAPB/GuhpiCiiigAooooAKKKKACiiigA\nooooAKKKKACmvIsakscVDc3cdsOeW7CsW4uZLg/MfoOwoAsXmotNlI/lT9TVCiikMKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACkpaSgApD0paKBDKKKKoYop9R08UmAtFFFIBKWiigAoopKAAmm\n0uKXFMBtLTsUUgG0uKWloHYbil20tLRcLDcUu2ilouBDRTm602qEFFFFAgooooAKKKKAFXrTqZTx\nQAlFKaSkAUUUUAFFFFABRRRQAUUUUAFFFKBmgB8a1OFpEWpMVm2UIBTsUUtSUFFFFABUFymQGqem\nyLvQj2q47ilsZ9FFFakBRRRSAKKKKAJ7ZsPj1q5WchwRWgDkA1nURSFpDS0lQMSiiigYVXuR0NWK\nZMMxtVQeomijRRRWpAUUUUALSUUUAFAopRQA6iiikM6W3/1S1LUVv/ql+lS0CCiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKrzXsMP8WT6Cs2fUZJPunYPQUgNSa6ihB3Nz6d6zLjU5JPl\nT5R+v51RJycmkoGKXZuSaZThViCymnOQuB6mgCtVmCyln6DaPU1qQadDEMkb29+n5VcxjgUxFO30\n6KLDEbm9+lXMYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnqMPnQH1Xkf1FXK\nMZGPXigDkqKnvIvJndegzxUFMBwNOpgp9IYZx9a6Gzm86FD3xg/UVztaekS4Z4yevIpCNeiiimAU\nUUUAFFFFABRRRQAUUVHNPHAu52/DufwoAk6VnXepBMpFgt69h/8AXqrd6i82VT5U/U1RoYxzOXJL\nGm0UUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigApKWkoAKKKKBBRRRQMaaSnmmVQgpV60lK\nOtAD6KKWpGRmloNJTAXFKBSilpNgJRS0UXGFFFFIAooooAWiiikAUUUUAI3SoqnPQ1CapCYlFFFU\nIKKKKACiiigApy02lXrQA/FNp9NpDEooooEFLSUUALSUUUALSUUUAFTRrUaKSatKuBUyY0OFKKAK\nWsygooooGFFFLQAUtJRTuIzpBtZh702rF0uCD61XrVbEsKKKKYgooooAKvwNuQe3FUKs2rdRUy1Q\n0WTSUUVkWFFFFABQKKKAKDjDEe9Nqe5XDZ9agrchhRRRQIKKKKAClApKeopAFFO2mk2UFWOkg/1S\n1LUVv/q1qWgkKKKKACiiigAooooAKKKKACiiigAooooAKWqdxqEUPH3j7VmT6hLLwCVHoKANWe/h\nh6Hc3oP61lz6hLLkZ2r6CqdFSMCSeaKAM9KtQWEs2ONo9TTAq4zVqCwlmxxtHqa1YLCGHBI3H1NW\nulAipDp8MOCRvb1PQVboopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQBlavBkLIByODWPXUXEQmidD3BrmGBUkEYIpgJT6ZThQA6pbaQwSq/vz9DUNLj+VSFjqFO4A\njvS1jw6k8UaoUBwOpzUg1Y941/OmOxqUVk/2w3/PNfzNaFrP9ojD4x7UCJqKKKACikJCjJ4FZV5q\nW7KQ/wDff+H+NAy1d36W+VX5n9Ow+tYssrzPuc5ph+uaKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABSUUUCCiiigAooooGFMp9NNNCEooopgPWnUwU6kxhRRRQAUtFFSNBRRRQA\nUUUtABRRRQAUUUUgCiiigA7VEwqQmmNVoTG0UUUxBRRRQAUUUUAFFFFADx0opFpTUgJRRRTAKKKK\nACiiigApQM0lTwp3NJ6DRIibRUlJS1m2UkFLRRSGFFFFABS0lLQAUUUUhEU67kNUa0iMis9xtYj0\nNbQ2FIbRRRVEhRRRQAU+Ftjj34plApNAaNFNQ5UGnViy0FFFFAwooooAiuFyufSqlWbhu1Va1RDC\niiiqEFFFFABU6jioKsL0H0pMqItBxiig1Azftv8AVrUtRQf6sVLVkBRRRQAUUUUAFFFFABRRSEgc\nk4oAWkLKvJOKoz6pGnCDefXtWZNdyzdW49O1IZrXGpRxcL8zfpWVPeyzE7m49B0qtS0CFyaSirdv\nYTT9ti+pH8qBlXrx1q3Bp003JGxfU1qw2MMGMDcR3NWKYirBp8MHON7epq1RRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALXP6pAYp93Z+f8a3ZJEi\nUs5wBXPX14bpxgfKvT1osBVpRSU5abAeFp4AFIOlBbFSMWmsaaTSUBcD1rU0iX76duorL5OABkmt\n6wtRbx5b7zcn2pgXKinnjgXLn6D1qvdaikIKp8z/AKCsaWV5m3McmgCe5vZLnj7q/wB3/GqtFFIA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApKKKBBRRRQAUUUUDCiiigApDRRTQ\nhtFFFMBc08VHTwaTAWiiikUhaKKKQC0UUUAFFFFABRRRQAUUUUgCiimsaYhCabRmkqgCiiimIKKK\nKACiiigAooooAVafTBT85pANopaKAEooooAKKKcq5NAx0SbjVoDHFNVcU+s2ykgpaSlqRhRRRQAU\nUUUAFLSUtABRRRSEFU7ldr59auVBdLlAfStKe4Mp0UUVoQFFFFABRRRQBatmyCPT+tWKp25w/wBa\nuGspKzLQlFFFSMKDwKKimfauO5pxVxFR33NSUoGTT5FxitiWR0UUUCCiiigBQORVioFPIqepZSCh\nqKQ1AzoLf/VLUtRW/wDqlqWtCAooooAKKKZJLHCDvYD9TQA+kd0QZYgfWs6fVVGRGM/7TVmSTyTH\nLMTSA1bjVETIiG4/3j0rMkuZJydzZ/lUFFABRSjOeO9W7fTppsFhsX36/lTAp4PvVy306abk/Ivq\na1oLGCDGFDH+8asUAVYLCGHtub1I/pVqiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigAooooAKKKKACop7mO2Ulz9B61LWXrERZUcdsg/pigDMuLh7hyzfgO\nwqGiimAUtJRQA7caXrTKXNKw7imkNJRTEXtOWHe0kpxs6DsalutSaT5Y/lX9TWf2paQwooopAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJS0lABRRRQIKKKKBhRRSUALSUUUxBR\nRRQAhFJT6ZTAKVaSlFJgPooopFIKWkp1IAopaSgAooooAKKKKACiikJxQkAhao6KBV2JClFApaAE\nNJTqbQAUUUUAFFFFABRRRQAU5abTloY0OpKWlA5pDsNoqTZ7Um2lcLEY5q1EmBmkRKlqeYLBS0Ut\nQUFFFFABRRRQAUUUUAFFFFABS0lFAC0jDcpHqKKKFoxWM08UVJMu1zUdbEsKKKKYgooooAVTgg1o\nA5APtWdVy3OU+lTNaXLiS0UUVmMOlU5ZNzdanmbapqn1q4rQlkiLzUjfdP0pEGBS0X1HYr0Up4NJ\nVEsKKKKYhR1qcHIqvU8fIqWUh1IaWlxUDN63/wBUtS1Fb/6paJbiKHlm/Ada0IJaZJKkQy5ArNn1\nQ8iIY/2j1/Ks6SV5SSzE0AaU+qdoh+J/pWbLM8xyzFjTe1NpAFFLjPSrtvpss2C3yL79T9BQBRxn\ngVdt9NlmwW+RfU9TWrDZRQAYGT6nrVimBWgsYIcYUM2OpqzRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzwieNkPepKKAMO\nbSZ1J2bXH4Zqm9vLH95GH4GuooOCMEZHSmByVFTXUXkzOno1Q0AFFFFAwpRQBThQIKWkpaQwooop\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE0ABNG6m0lMQ+iiikAUUUUAFFFFAxKSlop\niCiiigApwFIKdQygqM9akprUJgxlFFFMkctOpgp9SxoKfTKcKGMKKdSVICUUuKMUAJRS5FNLCmlc\nAJxUROaCc0uKtKwhKUU4Lml20NgNop2KUClcdhtNIqbbTHFFxWI6KKKYgooooAKKKKACiiigB+RT\nl5qMVInFSxofmnqKTFSLgVBQop1ICKWkxhS0tJSAKKKKEAUUUUAFFFFABRRRQAUUUUAFFFFAFe6X\no1VavyruQ1QraL0IYUUUUxBRRRQAVPbthsetQU+M4YGk9hpl6j/GimSNtWskiytO240yMZNNPNTo\nMCtHoiEOoooqCiGQc59aZU0gyM1DWiJYUUUUxBUsZqKnJ1pPVDRPmpB0qMVKOlYvQslbU32bU+X3\n71RZ2c5JJJ7k00UlakC0UoGelXbfS5ZeX+Revv8Al2oApAZ6davwaZLLy/yL+taUFpFbgbRk/wB4\n1YpgQw2sUH3VGfU9amoooEFFFFABRRRQAUUUUAFFFU7m/ih6fOfQf1oAuUdBknFY0urOeEUD361V\ne+uH6ucUAdCzqn3iF+px/OonvrZOsqn2Uhj+hrnZJZJDlmLH3plMDcbVoBnAJ96rSaxIfuIF9zzW\nZRQBdfU7lv4gvsB0q9YX/nfJI3z/AJZrEpKAOtorOsNREw2SnD9j/e+natGkAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBIGSSAPegDJ1iEDZIO/yn/GsitTUL5ZVMaD\nIz94/wBKy6YBRRRQMfRRRUgFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGmGn\n009aaASiiimIcKWkpaTAKKKKQwpKKKYgooopgFKBShadSbGhMUdKM0ZqRhRSZFGaqwmR0UppKYhR\nTs0ynikwFpQcUlBoHcXdRuplFFkFxd5oyaSkzSsFxSabRRVCFAqRVpAQBRvpDH0UzzBR5gpWHsPx\nRUe+k3miwXJs01+lRbqM00hXEooopiCiiigAooooAKUDJpKkjXmhgS4AFLS+tJWbepaCiimO2KEg\nED/vBz3q4Kzh1rQjbKg0TQkOooorMYUUUUwEpaKKBiUUtFACUUtFFwEooooAKKKKADqKz5BhiPet\nCqlyvOaumyWQUUUVoSFFFFABS0lFAF6NtyioJ3y2PSiJ8IRUJOTSSSKvcVRk1MKbGuKfSlYEFFFL\nUDGkZFQVYb7pqt3NaIlhRRRTEFFFFAFhTkVJnioozxinGspF3IkUscAEn2q/Bpcr4MuEHp3rRs4I\n44wVUZPfvVmtCSGC1jgA2qMjuep/GpqKKBBRRRQAUUUUAFFFFABRRTHkSMZdgv1oAfUE91Hb/e/L\nvWfcaqWysX/fZ6/hWaSWPJoAt3GoyzEhCY06Y9fqapUUUwCikzRmgBabRRQAUUUUAFFFFABWzp2o\nb8Qv17HPX6571jUUAdbRWXp2o79sMud3RW659j71qUgCiiigAooooAKKKKACiiigAooooAKKKKAC\niiigAooooAKKOtZ15qYT5Ivmbu3Yf4mgC5POluu5z9B3rFur6W5OPup2A/rUEkrzNuc5NMpDA80w\nin01qaAbRRRTEKKdTRTqljCiiigApaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKSigAphp9\nNNNCEooopgFPplOHSkwQtFFLikMbRS0tMY2gGiiggNxoyaKM0FXDNFFFAgooozTAQ0lLSUAFKOtJ\nQKAJKDRRSGNopDSUxC0lFFABRRRQAUUUUAFFOCE07y6GFiOjFTBBS49qVx2IcUbDU4prNii9waIt\nppKcTTaYgooooAKKKKACrEfSq9TRv2NJ7DRJRRRWZQVXc5NSu2Kgq4oTFFXohtQVVgTcwPYVcpTG\ngpc0lFZjFzRmkooAdRTaXNAC0UUmaBC0UUUgCiiigAopKSmMKjmXchqSg8jFVDRiZnUUrDBpK1IC\niiigAooooAKcnJptSRCk9holAxS0UVmUJRRRQAyQ4FQ1LKe1RVrFEsKKKKBBRRRQA+M81KelQpwa\nmNTJFHQW/wDq1qWorf8A1a1LTJCiiigAooooAKKKKACiqdzqMVv0+dvQH+ZrJnvZbgnLYH90dKAN\nK61RY8pF8x9ew/xrIlnklOXYsaiozTAWikpKAHUU2igAooooAKKKKACiiigAooooAKKKKAF9K19O\n1DO2GQkt2brn2NY9FAHW0VkafqP/ACzmb02sf5Mf61r0gCiiigAooooAKKKKACiiigAooooAKKKK\nACmvIsalmYKKhubuO2HPLHoo/wA8ViXFxJcNlj9F7CgZYu9Raf5Uyqfqao0UUgCiiigAooooAYeK\nSnEU2qEFOFNpRQMdRRRSAKKKKQC0UUUAFFFFABRRRQAUUUUAFFFFACUUUUAFFFFAgppp1FNbgMoo\nopgFKDSUUAO3UbqbiigB26kzSUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAPWlpgNPpANIptSGo\nzQAUUUUwCiiigApyrmgLmpQMVLkUkLRRRUjCiiigBDwKjY5oZ+1NzVpCYlFFFMkKKKKACiiigAoo\nooAmWT1p+arU/fxU2Q7iMcmkpKkhG5hmquBZhj2L7nmpaKSspO7LCiiipAKKKKACiiigAooooAKK\nKKACiiigAooooFcKKKKAKlwMNUNWrgZGfSqtbIlhRRRTEFFFFABU0fSoafGcZpS2GiaiikrIoWlp\nKDTQEMh5plOfrTa1RLCiiigQUUUUAA4qdTuFQVItJ6lLU6S3/wBWtS1Fb/6taloJCiiigAooooAK\nz9VdkhG04y1aFZusf6qP/f8A6UAYlFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigArW0/Uf+WUzf7rn+THP61k0UAdbRWNp+olcRSkBf4W9PQGtmkAUUUUAFFFFABRRRQAUUVHc\nTx267nOPQdz9KAJKzrvUlTKQ8t3bsPp6/wAqo3N/LcZ52r/dU9f971qrSAViXO4kk0lFFAwooooA\nKKKKACiiigBDTKeaaaaBiUUUUxDgaWminUgCiiigYClpBS0gCiiigAooopAFFFNpgLRRRQIKKKKA\nCiiigAooooQDaSnbaMVQDaKdtpdo9aAGUU7AoxQA2lpcUUANop2KTFIBKKdiimA2lxS4opXAbS0t\nFMBKKWigBtFFFABTxTKUUAPpNuaKUdaQxPLNGypaKVwsR+XSiOn0Umx2DGKKKKQwooooAKY54p9R\nydqa3BkdFFFWQFFFFABRRRQAUUUUAFFFFABRRRQAU5G2sDTaKANGimRNuQGpKxe5oJRRRSAKKKKA\nCiiigAooooAKKKKACiiigQUUUUAFFFFAhrjcMVQIwcVoVTmGHP8AntWkGJkdFFFWIKKKKAClHWko\noAsDpRQvSlrNosKQ8DNLTXPy0JAyCiiitCAooooAKKKKAHAVNtGKYgqwV4po3prQ27f/AFa1LUVv\n/q1qWpMAooooAKKKKACs3Wf9Qn+//StKsbWv9ZF/un+dAGXRRRTAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACtTT9QMe2KXG3oGPG369BisuigDraKxdOv/ACsQycrnhs/d\n9jk421tUgCiiigAopNwA3EgDrnPFZd5qWfkh/F//AIn/ABoAsXV+lvwPmk9P8f8ACsWSR5m3Pyab\nRSGFFFFABRRRQAUUUUAFFFFABRRRQAUjUtBpgR0UUUxCilptOpALRSUUALS0lJSC4tFJS0DCiiig\nQUUUUAFFFFABRRRQAUUUUDCnYpBTqBhSYooJpagKaZRmkqiQooooAKKKKACiiigAooooAKKKKACi\niloASg0U3NABRRRTAKKKKAH0UlLUsaJB0paYtPpMoKKKKkQUUUUxhRRRQAUhGRS0UICvRUnl/Wm7\nSK0FYbRRRQSFFFFABRRRQAUUUUAFFFFABRRRQBYtn5K1ZqjGcOp96vdRms5lR2CiiioKCiiigAoo\nooAKKKKACiiigAooooJCiiigAopM0ZphYKguFyAampsgyhqo6MGUqKKK0JCiiigAooooAljp9Qr1\nqcVMi0xKZIeKkqKQ9KSEyOiiirJFXrSuMUsfWnSClcLEVAooFMETxirH8NQR1O3AqkddOKSNm3/1\na1LUVv8A6talqDkCiiigAooooAKxda/1sX+4f51tVi61/rYv9w/zpgZlFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFaOn3/kfu5MlOx67f64rOooA63OahnuYr\ncZduf7o+8foKxINRmhjKA5/u5/g+lV2ZnJLEknuaQFm5vZLk88J2X/Gq1NzS0MApaSikMWikooEL\nRSCigYtFFJQAtFFJmgBaKTNLTAKKSikA0jFJTjTaaEFKDSUopgLRRRSAKKKKAFooopAFFFFMAooo\npAFFJRTAWikpaQBSgUmaXNAx1JSbqTNFgHE00mjNJTQmFFFFABRRRQAUUUUAFFFFABSGlptMBRS0\ngpaQADQaKbmgAzRRS4pgJRTwKGHFJO47DKKKKYhwpabTqTBAODUtRU9allIdRRRSGFFFFABRRRSE\nFFFFMYUUUUABwe1ROMVLTHGRTTYmiKiiirJCiiigAooooAKKKKACiiigBRV6Ntyg1Qq1bNnIzUTK\niT0UUVmUFFFFABRRRQAUUUUAFJS02gBaKSimAUUUUCCiiigAooo/woApONrEU2pJsF+KjrVEBRRR\nTAKKKKAFBwanFV6mjNS9hpj6gc81MTUB60RQ2JRRRVEkkY5qQ8g02MU8ipe5ZWopzCm1RBNGasE5\nFVEOKshsinc6aTVtzct/9WtS1Fb/AOrWpak5gooooAKKKKACsXWv9bF/un+dbVYutf6yL/dP86YG\nZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAO\npAaSigB9FJS0rAFFFFABRRRSAKKKKACiiigAooooAKKKKACmU+kpgNopcUYpgLRRRSAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbQAUUUUwClzSUUAFFF\nKKAClpaAKQIcBS0UVJRCeKKe4plWJhThTacKBC04Gm0VLRRIDS00UoqQFooooAKKKKACiiigYUlL\nSUALUgXFIq06k2BTYYJFJUs64aoq1IYUUUUAFFFFABRRRQAUUUUAFSwNteoqUdaBo0OtFNjO5RTq\nxluWFFFFIAooooAKKKKAEzSUUUxBRRRQAUUUUAFFFFABTZG2qadVaZ8nFVFAyGigUVoQFFFFABRR\nRQAU5G2mm0UATM3FRGlNNoAKKKKAJFbFLvptJSGITmkoopgFL+VJSikB09v/AKtalqCCRPLHzCpP\nNj/vr+dAh9FN82P++v50nmx/31/OgB9FNMif3l/OkMiL1ZR+IoAfXP6qT9qYZPAAHt9K3fMj/vD8\n6wNSObqQg5+7/KmgKlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAOFLSCikAtFJRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRRYAooooAKKK\nKACiiigAooooAKKKKACiiigAooopgFFFFIAooooAKKKKACiiigAooooAKKKKACiikoASiiimAUUU\nUAFFFFAC4paKKGAU8UgFPFQxiUUfnRQMRhkVFU1REYqkJiUopKBTsIfRQKKTGOFOpq06pGFLSUtI\nAooooAKKKKBhSgZpBzUoGKBXFpKM0nFSMbKu5aq1f25GKosMMR71pHYliUUUVQgooooAKKKKACii\nigAooooAtWz5BX05qeqcDYce9XKzmtS47BRRxRxUBcKKTI9aMigaFpDSE+9Ju96Yri0UmR6ij8aN\nQFoqNpgrYxTlcN0p2YrjqKQHikzRYY6ijNFFgGu21Sapk5NTXDdqgFaxRNxQKCMUgpxoENooooAK\nKKKACiiigAooooAKBRSigB1BpaQjikVYbSUtOC0xWGgUuKdS0yuU/9k=\n',
u'output_type': u'pyout',
u'prompt_number': 251,
u'text': [u'<IPython.core.display.Image at 0x8703d50>']}],
u'prompt_number': 251},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'%%ruby\n', u"puts 'hello from Ruby'"],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'hello from Ruby\n']}],
u'prompt_number': 254},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'SyntaxError',
u'evalue': u'invalid syntax (<ipython-input-253-3d0fcd71fcd2>, line 1)',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;36m File \x1b[0;32m"<ipython-input-253-3d0fcd71fcd2>"\x1b[0;36m, line \x1b[0;32m1\x1b[0m\n\x1b[0;31m puts \'hello from Ruby\'\x1b[0m\n\x1b[0m ^\x1b[0m\n\x1b[0;31mSyntaxError\x1b[0m\x1b[0;31m:\x1b[0m invalid syntax\n']}],
u'prompt_number': 253},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'%pylab inline'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stdout',
u'text': [u'\n',
u'Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n',
u"For more information, type 'help(pylab)'.\n"]}],
u'prompt_number': 255},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'x = linspace(0, 2*pi)'],
u'language': u'python',
u'metadata': {},
u'outputs': [],
u'prompt_number': 256},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u"plot(x, cos(x), 'ro', label=r'$\\cos(x)$')\n",
u"plot(x, sin(x), label=r'$\\sin(x)$')\n",
u'legend();'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'display_data',
u'png': u'iVBORw0KGgoAAAANSUhEUgAAAXoAAAD9CAYAAACyYrxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18zfX/+PHHYVIustFcZOszbWLTaMXX51thLqfGEBUJ\nuUpK4vPpQiSUQtdYJMovJdKFaGMhhpRWSMp1yMasXExYjHn//njha7Zx3ufq9X6f87zfbufGtvc5\n7+fOeZ/n3uf1fr6eL4dhGAZCCCH8VindAQghhPAuSfRCCOHnJNELIYSfk0QvhBB+ThK9EEL4OUn0\nQgjh59xO9H369KFatWrExsaWuM3gwYOpXbs2DRo0YMOGDe7uUgghhAluJ/revXuTlpZW4s8XLVrE\nzp072bFjB++++y4DBw50d5dCCCFMcDvRN2nShJCQkBJ/vnDhQnr16gVA48aNyc3NJScnx93dCiGE\ncJLXx+j37dtHeHj4ha/DwsLIysry9m6FEEKcE+SLnVzaZcHhcBTZprjvCSGEuLIrdbLx+hl9zZo1\nyczMvPB1VlYWNWvWLHZb49ytZ0jIhf9ffHu4Xj2GR0YW+t7wyEhWpqRgGIbW26hRo9y6/+bNBl26\nGFSvbvDCCwbp6QbHjzt//0OHDN5+26BRI4MaNQyeesrgt998E7vum8Qv8btyW5mSwvDISEZdkk+G\nxMYWm3/uLyEvPZeQoPX3cIbXE31SUhKzZs0CYO3atQQHB1OtWrUStx8eGUmFiIhif5Z74AAv/f57\noe+99PvvLJ082WPx+tquXdCrFzRrBg0bws6dMHKk+rp8eecfp3JlePRRyMiAb76BUqWgZUt45BH4\n+2/vxS+EXS2ZNKnYfLJ///5it69YqxYjIiMLfW94ZCStH3/cazF6ittDN926dWPlypUcPHiQ8PBw\nxowZw+nTpwEYMGAAd999N4sWLSIqKory5cszc+bMEh9rZEICbc89aSOeeKLQizA8MpLry5WDQ4eK\n3K/0yZPu/ho+l5MDo0fDp5/CoEGwYwdUquSZx46OhvHjYdgw+O9/ITYWZsyA1q098/hC+IOgU6eK\n/X5w9eqMCA4ukn96vPACACMnT6b0yZMUXH01bR9/nKaJiT6J1x1uJ/o5c+ZccZvk5GSnHuvFS8o0\nL31Cl0yaBJs2FblfwdVXOxesF8XHxzu97dq10KUL3HcfbN0K113nnZiCg+G99yAtDfr2hbZt4bXX\n4NprC29nJnYrkvj1smv8Z8qWBSD+ku9XDQuj9eOPl5jQ7ZDYL+UwnB3k8TKHw3HF8aZVqal8XcyZ\nftuJEwH1USzo1CnOlC1Lm8GDLfmCvP++OtN+7z1o3953+/37b3jqKZX0330XEhJ8t28hdFuVmlok\nPwAl5hMr5o6SOJM7bZXoQb1gSy/6S3t+fOzSF2xEZCQJFnrBTp+GoUNh6VJYsADq1tUTx9Kl0K8f\nPPwwDB8OUuwkdKhcuTJHjhzRHYathISEcPjw4SLf98tEX5znEhIYu2RJke+PTEgoMhykw59/wr33\nQsWKMHu258biXZWdrcbrExPVWL4ke+Fr7rzfA1VJz5kzz6VfNDUr6aKKFS7SbtgAjRpBkyawcKH+\nJA9QowasXAnLl6tKnbNndUckhPAmv0j05y+qXEr3RdrffoO77oJXX4WxY1XJo1VUqaLKMDdvhp49\n1dCSEMI/WSj1uK7N4MGWq2/dvVtVubzxhqqusaJrr4XFi1XF6r33ggU+AAkhvMAvxuih+Iu0TRMT\ni73a7u0LtAcOwJ13qouvjz3m1V15RH4+dO8OR46oC8VmJmoJ4QoZozfPnTF6v0n0xSmuHNPb1Ti5\nuWpWa5cuaoarXZw5A717w7Fj8MUX1hpmEv5HEr15AX8xtiQlTXH2VsuEvDxo1w6aN4fnnvPKLrwm\nKEjV9h8+bK8/UEJY3e7duy/78+zsbPLy8rwag18nel9W4+Tnq7P4yEg1Lm/HksWrroLPP4c5c+Dj\nj3VHI4T97dq1i7Vr1152m9DQUF555RWvxuHXid5X1TiGAf37Q5ky6qzYzsMeoaFqnP6JJ1SDNCGE\n66ZNm0a3bt0uu01QUBCJiYkXmj96g41T0pX5qhpn+nRVLz93rhoCsbvYWPUH6557YN8+3dGIQLMq\nNZXnEhIYHR/PcwkJrEpN9en9PWXjxo2EhYU5tW2jRo1YtmyZ12Lxg7RUsvMXXL3ZbW7jRhgxAr79\nFq65xmMPq11Skqqx79hRTa4qV053RCIQFFtAce7/zrxv3b2/J6WkpNCxY0entw8NDWXnzp1ERUV5\nPBa/rrrxtmPH4LbbYNQoVZ7obwwDevRQFTlz5tjzuoOwppLe7+62M/FkO5QpU6Zw4sQJypUrR9my\nZenXrx8ff/wxhw8fpmzZspQqVYq+ffuyceNGMjIyqFKlCh988AELFiwAoGPHjsyfP9/p1fNmzZpF\n2bJluf/++4v9uTtVN359Rn857tbXGwYMGADx8f6Z5EEl9hkz1O/42muq+6UQ3uRuAYWnCjBWr15N\nSkoKixYtYsOGDUyZMoW4uDhWrFjB9OnTARg6dCirVq3i008/5emnnyY8PJxDF62XkZeXVyjJL1y4\nkNKlS7N69WpiY2NJS0tjxIgR1D3X4TAkJITt27ebitNZAZnoPfHxbvp0+PVX+OEHr4RoGVdfDfPm\nqdWvEhKgfn3dEQl/5m4BhacKML744guaNGkCQFxcHNOnT+eZZ56hXr16F7aJiYlhzpw53HvvvTRs\n2JAmTZowdOjQ/9tnQcGF/+/du5eYmBiioqJ4/vnnGTZsGJUqVeKGG264sM0111xDfn6+qTid5dcX\nY0vibn39+XH5Tz/1r3H5ktxwg+rX06MHlHDCJIRHuFtA4akCDMMwOHtJt79Tp05x6qI3QH5+PqdP\nnyYiIoLNmzfToUMH+vfvT05ODqCqac674YYbiIqKIicnh4oVKxIcHEy7du0od9HFr6NHj1K5cmVT\ncTorIM/o3fl4d+yY6l3z1ltQp46nI7Ounj3hyy/V8ofjxumORvgrdwsoPFWA0aFDB8aOHcuIESMA\n+Oqrr+jcuXOh1fI2btxI586dmTp1KmPHjqVHjx7k5eVx4MABqlWrRvXq1Tl+/DgVKlRg69atnDp1\nivXr19O0aVNAXaxt167dhcfLzs4mOjraVJzOCshE787Hu4EDoWlT/x2XL4nDAdOmQYMGavbvHXfo\njkj4q6aJiW5VyLh7f4DmzZuzadMmnn/+eSIjI6lbty6NGzdmx44dJCcnc/bsWRo0aMBdd93FmjVr\nmDFjBsHBwRw/fpwGDRoA0KxZMzIyMmjRogVLlizh2LFj1KhRg5MnTzJ//nxq1qxZaJ8///wz/fr1\ncyvuEhkW4ctQVqakGMMjIw1DXVM1DDCejYw0VqakXPZ+CxYYRlSUYZw44aNALejLLw0jMtIwjh3T\nHYmwMwulHq85cuSIMWLECKe2/eeff4yhQ4dedpuSnjNnnsuAPKN35ePd33+rTpSzZgV2TXmHDmoI\n56mnYOpU3dEIYV3BwcFcd911HDx4kOuuu+6y286dO5cBAwZ4LRapo3fSoEGqX/uMGboj0e/oUTWE\nM3WqWlhFCLOs/n73FMMwmDFjBv379y9xm8zMTNavX0+HDh0u+1jSptjLvv8eOndWK0aFhOiOxhpW\nrIAHH4RfflGrVQlhhpXf71Ylid7DLp5MdapMeeZun8uEVytadqUoXYYOhYMH4cMPdUci7MZK73e7\nkJmxHnTpZKoXGEmZcj9QrdwpwLe9Mqxu7FiIjoZVq1QlkhDCmgJywtTlXDyZagt1mczjfJPXm2XJ\n3lmsxM7Kl1etEQYNUv1whBDWJIn+EucnU53FwcO8yyjGEE6WVxYr8Qf33qt62E+ZojsSIURJJNFf\n4vxkqun0p4DSDETVEHp6sRJ/4XBAcjK8+CKcm/kthLAYSfSXaDN4MEP+1YjnGMt0+lOas15ZrMSf\nREfDQw/BM8/ojkQIURypuilGx7v/IHvzOu6KmETB1VfT2sOLlfijY8dUwp83D26/XXc0wuqs9H63\nCymv9KDffoPmzWHbNqmZN2vOHHjlFfjpJyhdWnc0wsqs8n63E3cSvQzdXOLJJ+G55yTJu6JrV6hU\nSTU/E0JYhyT6i6Slwa5dqkOlMO/8hdnRo+Gvv3RHI4Reu3fvvuI22dnZ5OXleT0WSfTnnDkD//2v\nWmCjTBnd0djXzTerFs7Dh+uORAh9du3axdq1a6+4XWhoKK+88orX45FEf86MGVCtGrRvX/I2q1JT\neS4hgdHx8TyXkMCq1FTfBWgjo0fDggWwebPuSITwjLNnzxIVFeXUWTrAtGnT6Nat2xW3CwoKIjEx\nkVmzZrkb4uX349VHt4mjR1VySktTww/F8cQ6s4GiUiVVajl8uGppLITdlSpVildffZWwsLArbrtx\n40antjuvUaNGTJ48mZ49e7oT4mXJGT1qabzERLjllpK3cXed2UDz2GOwfj18953uSITwjE6dOlHG\niXHdlJQUWrRoYeqxQ0ND2blzp6uhXVHAJ/rdu9WwzYsvXn47d9aZDURXXw1jxsCwYWoJLyHsZOPG\njUyfPp0vvviCDh06sHz5curXr8+aNWsAmDVrFqGhoXzzzTfMnTuXhx56iD/++AOAH3/8kZiYGFP7\na9CgAevWrfP473FewCf6YcPgiSfg+usvv50768wGqp494dAhWLRIdyTCjhwO92+umjFjBm3btuWe\ne+6hffv2tGjRgri4OM6c697Xs2dPoqOjyc/Pp2vXrtx666189tlnAOTl5eG4ZOcLFy4kNTWVYcOG\nMXv2bHr06MHWrVsv/DwkJISsrCzXA76CgE70GRmwZo2qtrmSNoMHMyIystD3pDXC5ZUuDS+/DM8+\nCwUFuqMRdlNoUWcXb67q1KkTDRs2pEuXLkRHRwNqnP5ipUuXpm7dugBUqlSJ48ePA1BwycG+d+9e\nYmJiSExMZOnSpSQmJnL//fdzww03XNjmmmuuIT8/3/WAryCgL8Y+/7yaHOXMGrCurDMrIClJzZb9\n+GPo0UN3NEI4JyIigs2bN7No0SL69+/P8uXLAYqcqZe+aAr4+Z8FBRVOq+cTek5ODhUrViQ4OJh2\n7doV2ubo0aNUrlzZ47/HeQGb6NesUW0O+vRx/j5NExMlsZvkcMD48WoY5777oIQRMCEsZerUqYwd\nO5YePXqQl5fHgQMHAIq0Gjj/tWEYF/5fvXp1jh8/ToUKFQDYunUrp06dYv369TQ9t0JPSkpKoWSf\nnZ194ZODNwTs0M3Ikep21VW6I/F/TZpAvXrwzju6IxHCOWXLlmXGjBnMnj2b48ePc+DAAb777jve\nfvtt8vLymDt3Llu2bGH8+PH8/PPPzJkzh8WLF/Pjjz/SrFkzMjIyLjzWkiVLSElJwTAMTp48yfz5\n86latWqh/f3888/ccccdXvt9ArKp2YoV8PDDsGULBAXsZxrf2rQJWrWCHTvg2mt1RyN08+emZrm5\nubz22muMHTvWqe1PnjzJ8OHDeeONNy67nTQ1M8Ew1Jn8qFGS5H0pNhYSEuD113VHIoR3BQcHc911\n13Hw4EGntp87dy4DBgzwakwBl+iXLIHDh8GJ2clOk9YIznnhBdX07NAh3ZEIHS5+n/i7J554gvnz\n519xu8zMTEJCQqhTp45X4wmooRvDgMaNVSvi++7zzGMW2xohMpKEiRPlwm0xHn5Y9RS60gQ14V8u\nfZ84KHphU1ye1qGbtLQ06tatS+3atZkwYUKRn6enp1OpUiXi4uKIi4tzetzKG1JS4NQp6NLFc48p\nrRHMefZZmDoVjhzRHYnwpeLeJ8J33BqlLigoYNCgQSxbtoyaNWvSqFEjkpKSipQJNWvWjIULF7oV\nqLvOnlV18y+8AKU8OGAlrRHMqVVL1dZPmqSuk4jAUNL7RPiGWykvIyODqKgoIiIiKFOmDF27dmXB\nggVFtrPCR7T589XF16Qkzz6utEYwb/hwNVZ/9KjuSISvlPQ+Eb7h1hn9vn37CA8Pv/B1WFgYP/zw\nQ6FtHA4H3333HQ0aNKBmzZq89tprJTb8GT169IX/x8fHE++hizYFBers8dVX3et/UZw2gwcz4vff\nC30sHR4ZSVtpjVCiqCi46y6V7EeM0B2N8IXi3ifCNenp6aSnp5u6j1uJ/tLpwMW59dZbyczMpFy5\ncixevJiOHTuyffv2Yre9ONF70uefQ8WK0Lat5x9bWiO4ZsQINZFq8GD12gj/dun7hJUrNUdkX5ee\nBI8ZM+aK93Gr6mbt2rWMHj2atLQ0AMaNG0epUqV45plnSrxPrVq1WLduXZG+Dt6qujEMiIuDl15S\nPeeFdTzwADRooBYpEYGlcuXKHJEr8qaEhIRw+PDhIt93Jne6dUbfsGFDduzYwZ49e7j++uv55JNP\nmDNnTqFtcnJyqFq1Kg6Hg4yMDAzD8GrznkstXqyS/d13+2yXwkkjRkCLFjBoEJQvrzsa4UvFJSzh\nPW4l+qCgIJKTk0lISKCgoIC+ffsSHR3NtGnTABgwYACfffYZU6dOJSgoiHLlyjF37lyPBO4Mw1Bn\n8sOHe35sXrivXj1o1kyVWz75pO5ohPBffj1hatUq6NsXtm5VvdGF9fzyC7RpA7t2OdcuWghRWMD3\nunn5ZbWClCR566pfH26/Hd59V3ckQvgvvz2jX7cOOnaE33+XVsRWt2EDtGunXiuZfiCEOc7kTr9N\n9F26wJ13wpAhHntI01alprJk0iSCTp3iTNmytBk8WMouS3D33dCpE/TvrzsS4S457n3L61U3VrVl\nixqf/+ADfTEU2+zs3P/loC/qmWdUw7M+fWSozc7kuLcmvxyjnzBBTcTRWbInzc7MadoUgoOhmA4a\nwkbkuLcmv0v0f/wBX30Fjz2mNw5pdmaOw6HO6idMUGWxwp7kuLcmv0v0r72mxnlDQvTGIc3OzOvQ\nQbUvXr1adyTCVXLcW5NfJfqcHJg9G4YO1R3JuSZOkZGFvjc8MpLW0uysRKVLw1NPqbN6YU9y3FuT\nX1XdjBihzginTPFQUG5alZrK0ouanbWWZmdXdPKk6lm/ZIlaZ1bYjxz3vhVQ5ZUnTkBEBHz/vWqD\nK+xr3DhVOTVrlu5IhLC+gEr0ycmwYoVqSSzsLTcXbrwRfv4ZbrhBdzRCWFvAJPqCAqhdW43P/+//\nejgwocWTT6rX9c03dUcihLUFTK+b+fOhenVJ8v5kyBA14U262QrhPtsnesNQJZXS5ta/hIWpcsup\nU3VHIoT92X7oZs0a6NULtm2TqfP+ZvNmtTDJ7t1wzTW6oxHCmgJijL5TJ2jdGh591AtBeYk0fXJe\n+/aQlCTNzqxIjmNr8PumZjt2qDP62bN1R+I8afpkztChaqnBfv1klTArkePYXmw9Rv/mmzBggL1W\nJpKmT+Y0b67WE/j6a92RiIvJcWwvtk30f/0Fc+aosz07kaZP5jgc6qxeyiytRY5je7Ftop86FTp3\nhmrVdEdijjR9Mq9rV7W27K+/6o5EnCfHsb3YMtGfPKn62fznP7ojMU+aPplXtqxqO/3WW7ojEefJ\ncWwvtqy6mT5dLVCRkuLloLxEmj6Zd/Cgmv28bRtUrao7GgFyHFuFX5ZXGgbcfDNMmgQtW/ogMGEZ\nAwbA9dfDqFG6IxHCOvyyBcKyZWpiVIsWuiMRvjZkiLo2I9f7hDDHdon+rbfgiSekpjoQRUfDrbfC\nxx/rjkQIe7HV0M22bdCkiVoXVqbEB6alS9VF+F9+kT/2QoAfDt1MmqTGaSXJB65WrdS/y5bpjUMI\nO7HNGf2RIxAZqWqpr7/eh4EJy3n/ffjsM1i0SHckQujnV2f0770HiYmS5AU88ACsX6+WGxRCXJkt\nzujPnFFn859/Dg0b+jgwH5JugM4bPRpycqRfvS/IcWltftO98ssvITzc/5O8dAN03iOPQEwMvPwy\nhITojsZ/yXHpH2wxdPPWW6qG2p9JN0BzqleHdu1gxgzdkfg3OS79g+UT/U8/QWYmdOyoOxLvkm6A\n5g0eDG+/rYb2hHfIcekfLJ/oJ06Exx+HIFsMMrlOugGa17Ah1KwJCxfqjsR/yXHpHyyd6PfvV43L\n+vbVHYn3STdA1zzxhDoZEN4hx6V/sHTVzciRcPiw+ngeCKQboHmnT8ONN8JXX8Ett+iOxj/JcWlt\ntu5eefIk/OtfsHIl1K2rMTBheePGqfWD339fdyRC+J6tE/0HH6ilAtPSNAYlbOHQIYiKgu3bITRU\ndzRC+JZtZ8Yahhp3HTxYdyTCDqpUgS5dYNo03ZEIYU2WPKNfswYeekh1qyxlyT9Fwmo2bYK2bWH3\nbrjqKt3RCOE7tj2jnzRJlVRKkhfOio2FOnVUmwwhRGGWO6PPyoL69WHPHrj2Wt1RCTtZsEBdmF27\nVnckQviOLc/op06FHj0kyQvz2rWDP/+EH37QHYkQ1mKpM/q8PIN//UuN0deurTsiYUdvvAHr1sHs\n2bojEcI3bFde+f77Bp99BqmpuqOxFmkT67zcXKhVCzZvhho1dEdjL3Kc2ZPt2hRPmgTjx+uOwlqk\nTaw5wcHQrZsqtRw9Wnc09iHHmX+z1Bj9P/9A69a6o7AWaRNr3qBBKtGX0HhRFEOOM//mdqJPS0uj\nbt261K5dmwkTJhS7zeDBg6lduzYNGjRgw4YNJT6WlFQWJW1izYuJgZtvhk8/1R2Jfchx5t/cSqsF\nBQUMGjSItLQ0Nm/ezJw5c9hyyUKeixYtYufOnezYsYN3332XgQMHlvh4PXu6E41/kjaxrhk8WM2u\ntsYVKOuT48y/uZXoMzIyiIqKIiIigjJlytC1a1cWLFhQaJuFCxfSq1cvABo3bkxubi45OTnFPl7F\niu5E45+kTaxr7r5bdT6VUkvnyHHmvNxc+O473VGY49bF2H379hEeHn7h67CwMH645J1V3DZZWVlU\nq1atyOONvujqWXx8PPHx8e6E5xfOXwgbeVGb2LbSJvaKSpdWY/WTJ8O//607GuuT48x577+vSnhv\nv13P/tPT00lPTzd1H7cSvcPhcGq7S0t/SrrfaCmTKFbTxER5w7mgd2948UW1gM311+uOxvrkOLuy\nggJITladdXW59CR4zJgxV7yPW0M3NWvWJDMz88LXmZmZhIWFXXabrKwsatas6c5uhXBKcDB07Spd\nLYXnpKaqVtiNG+uOxBy3En3Dhg3ZsWMHe/bsIT8/n08++YSkpKRC2yQlJTFr1iwA1q5dS3BwcLHD\nNkJ4g5RaCk+aNMme7dPdGroJCgoiOTmZhIQECgoK6Nu3L9HR0Uw7dwo1YMAA7r77bhYtWkRUVBTl\ny5dn5syZHglcCGfExKgmeZ9+Cg8+qDsaYWe//aZu996rOxLzLNUCwSKhCD+TkgJjxkBGBjh5WUmI\nIh55RLXVGDVKdySF2a7XjUVCEX6moABuukk1OpMKHOGKI0fUIvRbtkD16rqjKcyWbYqF8LTzpZYT\nJ+qORNjVe++pNthWS/LOkjN6G5Nug847elR1tdy0CQK96EuOG3MKCiAyUl3nadRIdzRF2a57pXCe\ndBs0p1IleOABtbDN2LG6o9FHjhvzvvpKjc1bMck7S4ZubEq6DZr3+OMwfToEcp8uOW7Ms2tJ5cUk\n0duUdBs0r04duO02vbMadZPjxpxff4WtW6FzZ92RuEcSvU1Jt0HXBHpXSzluzJk8GQYOhKuu0h2J\neyTR25R0G3RNmzZq6GbVKt2R6CHHjfMOH4Z58+Dhh3VH4j6purGxVampLL2o22Br6TbolClT4Jtv\n4PPPdUeihxw3znnlFTV0c66Di2XJhCkhinH8OPzrX6rVbESE7miEFZ0+rUoqv/wSbr1VdzSXJxOm\nhChGhQrw0EPw9tu6IxFWNX++OgmwepJ3lpzRi4C0e7eqi/7jDyhfXnc0wmpuvx2efBLuuUd3JFcm\nZ/RClKBWLbjzTvjwQ92RCKvJyIDsbOjQQXckniOJXgSsJ55Qk2Hkg6S42MSJanJd6dK6I/EcSfQi\nYMXHQ1AQLF2qOxJhFfv2weLF0Lev7kg8SxK9CFgOx/9NoBICVOntgw+q3kj+RC7G+inpUOicf/5R\n1RUrV0Ldurqj8Rx5/c3Ly1PHwpo1ULu27micJ90rA5R0KHTeNdeolYPeegveeUd3NJ4hr79rZs9W\ni37bKck7S4Zu/JB0KDTn0Ufhk0/g4EHdkXiGvP7mGYb6Yz9kiO5IvEMSvR+SDoXmVKsGnTrBuTXt\nbU9ef/OWLYNSpaBFC92ReIckej8kHQrNGzpUzZQtIUfairz+5p0/m/fXxeMl0fsh6VBoXmws1Kun\nhnDsTl5/c7Ztgx9/VCuQ+SupuvFT0qHQvEWLYMQIWL/e/md28vo777HHICTEvktMSvdKIUw4e1ad\n1U+ZAs2b645G+MLBg6rKZssWqF5ddzSukV43QphQqpQap33zTd2RCF+ZOlU1LrNrkneWnNELcZHz\nk2a+/RZuukl3NMKbTp5Ur/U336hPcnYlZ/RCmFSunFo6Ttoi+L+PPlKLxds5yTtLzuiFuER2tnrz\n79wJlSvrjkZ4w/nrMW+/bf/aeTmjF8IFNWpA+/bw7ru6IxHesnixan8RKBfd5YxeiGJs3Ah33w27\ndkEJ84+EjTVvDv37+0ftvJRXiiKkq6HzEhKga1fo3Vt3JCWT19O8detUy4vff4cyZXRH4z7pXikK\nka6G5jz9NAwaBL16qdJLq5HX0zWvv65WF/OHJO8sCx6+wlukq6E5LVqohcNTUnRHUjx5Pc3buxe+\n/loN2wQSSfQBRLoamuNwqLP6CRN0R1I8eT3NmzgR+vSBa6/VHYlvSaIPINLV0LzOneHAAbXqkNXI\n62lObi7MnKmWjww0kugDiHQ1NK90aXjySWue1cvrac706aqSKjxcdyS+J1U3AUa6Gpr3zz9QqxYs\nXw4xMbqjKUxeT+ecOgU33gipqXDLLbqj8SwprxTCQ8aOVeV4M2fqjkS44t13YcEClej9jSR6ITzk\n8GGIioJffoGwMN3RCDPOnIE6dWDWLLjjDt3ReJ60QBDCQypXVvX00uzMfubNU3+c/THJO0vO6IVw\n0t69EBdwx5laAAAQ90lEQVSnhnCCg3VHI5xx9iw0aACvvgpt2+qOxjvkjF4ID7rhBkhMhHfe0R2J\ncFZKipoBm5CgOxK95IxeCBM2bYI2bVSzs2uu0R2NuBzDgH//G556Crp00R2N90ivG+E0aY7lnNhY\naNwYZswAX5ary+tj3ooVcPSoamAW6CTRC2mOZdLIkdChg+qX4otJqPL6uGbcOBg2TE16C3QyRi+k\nOZZJt92mJt34qqZeXh/zMjJg+3bo3l13JNYgiV5IcywXjBypzhjz872/L3l9zBs3TrWuCKRWxJfj\ncqI/fPgwrVu35qabbqJNmzbk5uYWu11ERAT169cnLi6O//mf/3E5UOE90hzLvMaNVTuEDz7w/r7k\n9THnt9/g+++hb1/dkViHy4l+/PjxtG7dmu3bt9OyZUvGjx9f7HYOh4P09HQ2bNhARkaGy4EK75Hm\nWK55/nl4+WU4fdq7+5HXx5zx49XCIuXK6Y7EOlwur6xbty4rV66kWrVqHDhwgPj4eLZu3Vpku1q1\navHTTz9RpUqVywci5ZVaSXMs17RqpcaBvb3coLw+ztm6FZo0gZ07oVIl3dH4hld73YSEhHDkyBEA\nDMOgcuXKF76+2I033kilSpUoXbo0AwYMoH8JS7s4HA5GjRp14ev4+Hji4+NdCU0In1m1Si1ksXUr\nBEkNm3bduqkS2OHDdUfiPenp6aSnp1/4esyYMe4l+tatW3PgwIEi33/ppZfo1atXocReuXJlDh8+\nXGTb7OxsatSowV9//UXr1q2ZPHkyTZo0KRqInNELm4qPV+PBPXrojiSw/fortGypWlRUqKA7Gt9x\ne8LU0qVLS/zZ+SGb6tWrk52dTdWqVYvdrkaNGgCEhobSqVMnMjIyik30QtjV88/DwIHwwANSs63T\nqFFqFmwgJXlnuXwxNikpiQ/OlRx88MEHdOzYscg2eXl5HDt2DIATJ06wZMkSYmNjXd2lEJbUvDlU\nraq6JAo9NmxQlTaPPqo7EmtyeYz+8OHD3Hfffezdu5eIiAjmzZtHcHAw+/fvp3///qSmprJr1y7u\nueceAM6cOUP37t159tlniw9Ehm6EjS1dqio9Nm2Ss3od2reH1q0Dcz1YWXhEuE16rDjHMODOO+GR\nR9wbq5fn27wfflBNy3bs8E1LCquRpmbCLdJjxXkOh6rf7tkT7rsPSpjjdFnyfLvm+edhxIjATPLO\nkhYIokTSY8WcJk2gXj3X+9XL823et9+qnjZ9+uiOxNok0YsSSY8V88aNU7Nl//7b/H3l+TZv5Eh1\nu+oq3ZFYmyR6USLpsWJebKxazej1183fV55vc5Yvh6wsNVwmLk8SvSiR9FhxzQsvQHIy5OSYu588\n384zDHUmP2qUzEh2hlTdiMuSHiuuGTIECgrA7PC6PN/O+eILGD1a1c8HejmrlFcKoclff0F0tFoA\n48YbdUfjX06d+r+L3q1a6Y5GP2dypwzdCOEFoaFq8s7Ikboj8T/JyVC3riR5M+SMXggvOX4cateG\nxYvV0oPCfQcPqiS/erX6xCRk6EYI7ZKTITVVJXvhvscfVxdik5N1R2IdkuiF18hUfefk56szz2nT\nCg81yPNn3vlFRbZsgeuu0x2NdUgLBOEVMlXfeVddBW+8oc5EN25UX8vz55qnnoJhwyTJu0IuxgrT\nZKq+OUlJUKsWTJyovpbnz7xly2DzZhg0SHck9iSJXpgmU/XNcThUkp8wAfbtk+fPrIIC+O9/4ZVX\nXGsWJyTRCxfIVH3zateGAQPU8IM8f+bMnKkW+j63tIVwgSR6YZpM1XfN8OGwZg2ENh8tz5+Tjh5V\nbYjfeEN9MhKukaob4RKZqu+azz9X/VkmvbSIFVMnyfN3BY8+CqdPw/TpuiOxLimvFMJiDEN1t7zr\nLhg6VHc01rZmjVrE5ddfISREdzTWJYleCAvatk0tO/jLL1Cjhu5orOnUKYiLU51Au3TRHY21Sa8b\nISyoTh3o2xeeflp3JNY1bpy6gN25s+5I/IOc0QuPkhmfhZX0fBw/rmbMfvQRNGumO0pr2bxZPScb\nNkBYmO5orE9mxgqfkhmfhV3p+ZgyBXr3VjNmK1bUFaW1nD0L/fvDmDGS5D1Jhm6Ex8iMz8Ku9Hy0\nbw/Nm6vJQEKZNk39+8gjeuPwN5LohcfIjM/CnHk+3nwTli5VHS4DXVaWqpmfPh1KSWbyKHk6hcfI\njM/CnHk+rr0W/t//g4cfVr3WA5VhqD42jz0GMTG6o/E/kuiFx8iM2cKcfT6aNYNu3WDgQJXwAtFH\nH8H27fDss7oj8U9SdSM8SmbMFubs83HyJNx2m2qT0L27hkA12rIFmjaF5cshNlZ3NPYjE6aEsJH1\n66FtW/VvoFSc5OVB48YwZIiaWyDMk0QvhM2MHQsrV8LXXwfGBcl+/dQs2FmzpGmZqyTRC8vw94lU\nnvr9zpyBO+6Arl39vxfOhx/CSy/BTz9BhQq6o7EvmTAlLMHfJ1J58vcLCoK5c+H226FePWjTxqOh\nWsaWLfCf/8A330iS94UA+HAodPP3iVSe/v1q1YJPPoEHH1QN0PxNXp7qSjluHNSvrzuawCCJXnid\nv0+k8sbv17QpvPyyWm/2yBGXH8aSBg+GBg3k4qsvydCN8Dp/n0jlrd+vXz/Vi/3++2HRIjWsY3fv\nvAPffqvG5eXiq+/IGb3wOn+fSOXN3++111RCfPJJtx9Ku3nzVH/5lBQZl/c1qboRPuHvE6m8+fvl\n5qpa8yefVJ0d7ejrr6FnT1iyRA3bCM+R8kphC3YpvdQZ5/btalWqefMgPt4nu/SY779X1xq+/FKV\njgrPkvJKYXl2Kb3UHedNN8GcOapaZc4caNnS67v0iE2boGNHNSFKkrw+MkYvtLJL6aUV4mzZEj79\nVDVA++orn+3WZbt2qZYOb72lFkMX+kiiF1rZpfTSKnE2a6Z61/fvDx9/7NNdm5KdDa1bw3PPqT9M\nQi8ZuhFa2aX00kpxNmoEy5aps+Xjx1UveytZtw7uuQcefVS1Xhb6ycVYoVVxY9/DIyNpO3EigJaL\nn8VddAVKjFPXtYSdO9VZ82OPWaf8cvZs1YnynXegc2fd0QQGqboRtlBcaSIUTawjIiNJ8HJiLfai\n67n9ApYrEc3KglatVFXL2LFw1VV64jhzBp55BhYsUNU1N9+sJ45AJIle2NZzCQmMXbKkyPdHJiTw\nYlqa3+3XHX/+Cb17w759alnCW27x7f4PHVLdNh0O1ZCtcmXf7j/QOZM75WKssCRdFz+tctHVjKpV\n1WzToUNVt8tRoyA/3zf7XrdOXTOIi1NtGiTJW5NcjBWWdLmLn56auFTc41jpoqsZDgf06qWGcR55\nRCXfmTPh1lu9s79t22D0aFixAt58UyprLM9w0bx584yYmBijVKlSxrp160rcbvHixUadOnWMqKgo\nY/z48SVu50YolrBixQrdIbjMirGvTEkxhkdGGoZaL9swwHg2MtJ4e9SoIt/vfv31xsqUFLcff3gJ\nj/9sZKTpxzfD08//2bOG8eGHhhEaahhPP20Ye/Z47rH37DGM3r0N47rrDOOllwzj2DFrHj9m2D1+\nZ3Kny2f0sbGxzJ8/nwEDBpS4TUFBAYMGDWLZsmXUrFmTRo0akZSURHR0tKu7taz09HTi7TY3/Rwr\nxn7+DH3kRRc/2z7+eLETl6L2778wcam4M/3iztxLmgA1cu1aEiZOLLJfb1509fTz73CoXvYtW6oV\nnG67TfV979VLVcK40lAsMxMmTFCzcgcOhB07IDjYO/H7mt3jd4bLib5u3bpX3CYjI4OoqCgiIiIA\n6Nq1KwsWLPDLRC88r2liYpEEu/zVV4vd9s+srGJbFPz644/s++ijIt/PK1eu2McpffJksfu1oxo1\nIDkZXn9dzaT94ANV+tihgxpqqVULqlSBkJDC69OeOaNaF3z/PXz3nfr38GF1wXfLFnVNQNiLV8fo\n9+3bR3h4+IWvw8LC+OGHH7y5S+HnShpDzz1wgGmHDhX63ku//879ycl8Utz3q1Qp9nGsPhbvirJl\noUsXdcvJUbXuY8eq2auHDsGxY+rsvEoVqFhRjb+Hh8P//i80bw7Dh0PduoGxWLnfuty4TqtWrYyb\nb765yG3hwoUXtomPjy9xjP6zzz4z+vXrd+HrDz/80Bg0aFCJ40xyk5vc5CY38ze3xuiXLl16uR9f\nUc2aNcnMzLzwdWZmJmFhYcVua0gNvRBCeIVHPoyVlKQbNmzIjh072LNnD/n5+XzyySckJSV5YpdC\nCCGc5HKinz9/PuHh4axdu5bExETuOteHdP/+/SSeu5AVFBREcnIyCQkJxMTEcP/998uFWCGE8DHt\nLRDS0tIYMmQIBQUF9OvXj2eeeUZnOKb06dOH1NRUqlatyqZNm3SHY1pmZiY9e/bkzz//xOFw8PDD\nDzP4XAMvOzh58iTNmjXj1KlT5Ofn06FDB8aNG6c7LFMKCgpo2LAhYWFhfGWHJvOXiIiI4Nprr6V0\n6dKUKVOGjIwM3SE5LTc3l379+vHbb7/hcDh4//33+fe//607LKds27aNrl27Xvh6165dvPjiiyW/\nf684iu9FZ86cMSIjI43du3cb+fn5RoMGDYzNmzfrDMmUVatWGevXrzduvvlm3aG4JDs729iwYYNh\nGIZx7Ngx46abbrLV828YhnHixAnDMAzj9OnTRuPGjY3Vq1drjsic119/3XjggQeM9u3b6w7FJRER\nEcahQ4d0h+GSnj17Gu+9955hGOr4yc3N1RyRawoKCozq1asbe/fuLXEbrQVTF9fZlylT5kKdvV00\nadKEkJAQ3WG4rHr16txyrgNWhQoViI6OZv/+/ZqjMqfcuXr4/Px8CgoKqGyjZitZWVksWrSIfv36\n2boYwY6xHz16lNWrV9OnTx9ADTNXqlRJc1SuWbZsGZGRkYVK2S+lNdEXV2e/b98+jREFrj179rBh\nwwYaN26sOxRTzp49yy233EK1atVo3rw5MTExukNy2tChQ3n11VcpZeMCdYfDQatWrWjYsCHTp0/X\nHY7Tdu/eTWhoKL179+bWW2+lf//+5OXl6Q7LJXPnzuWBBx647DZajzCHw6Fz9+Kc48eP06VLFyZO\nnEgFV+bHa1SqVCl+/vlnsrKyWLVqFenp6bpDckpKSgpVq1YlLi7OlmfE561Zs4YNGzawePFi3n77\nbVavXq07JKecOXOG9evX8+ijj7J+/XrKly/P+PHjdYdlWn5+Pl999RX33nvvZbfTmujN1NkL7zh9\n+jSdO3fmwQcfpGPHjrrDcVmlSpVITEzkp59+0h2KU7777jsWLlxIrVq16NatG8uXL6dnz566wzKt\nRo0aAISGhtKpUyfbXIwNCwsjLCyMRo0aAdClSxfWr1+vOSrzFi9ezG233UZoaOhlt9Oa6KXOXi/D\nMOjbty8xMTEMGTJEdzimHTx4kNzcXAD++ecfli5dSlxcnOaonPPyyy+TmZnJ7t27mTt3Li1atGDW\nrFm6wzIlLy+PY8eOAXDixAmWLFlCbGys5qicU716dcLDw9m+fTugxrnr1aunOSrz5syZQzcnekRr\n7Ud/cZ19QUEBffv2tVWdfbdu3Vi5ciWHDh0iPDycF154gd69e+sOy2lr1qzho48+on79+hcS5Lhx\n42jbtq3myJyTnZ1Nr169OHv2LGfPnqVHjx60bNlSd1guseMwZk5ODp06dQLUUEj37t1p06aN5qic\nN3nyZLp3705+fj6RkZHMnDlTd0imnDhxgmXLljl1bUR7Hb0QQgjvsu/lfiGEEE6RRC+EEH5OEr0Q\nQvg5SfRCCOHnJNELIYSfk0QvhBB+7v8DdGpNt9cTOxoAAAAASUVORK5CYII=\n'}],
u'prompt_number': 260},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'\n',
u'\n',
u'%load_ext sympyprinting\n',
u'import sympy as sym\n',
u'from sympy import *\n',
u'x, y, z = sym.symbols("x y z")\n',
u'\n'],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'output_type': u'stream',
u'stream': u'stderr',
u'text': [u'/usr/lib/python2.7/dist-packages/IPython/extensions/sympyprinting.py:119: UserWarning: The sympyprinting extension in IPython is deprecated, use sympy.interactive.ipythonprinting\n',
u' warnings.warn("The sympyprinting extension in IPython is deprecated, "\n']}],
u'prompt_number': 261},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [u'%load_ext rmagic '],
u'language': u'python',
u'metadata': {},
u'outputs': [{u'ename': u'ImportError',
u'evalue': u'No module named rpy2.rinterface',
u'output_type': u'pyerr',
u'traceback': [u'\x1b[0;31m---------------------------------------------------------------------------\x1b[0m\n\x1b[0;31mImportError\x1b[0m Traceback (most recent call last)',
u"\x1b[0;32m<ipython-input-262-67efefd52de2>\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[0;32m----> 1\x1b[0;31m \x1b[0mget_ipython\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmagic\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34mu'load_ext rmagic'\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m",
u"\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/interactiveshell.pyc\x1b[0m in \x1b[0;36mmagic\x1b[0;34m(self, arg_s)\x1b[0m\n\x1b[1;32m 2134\x1b[0m \x1b[0mmagic_name\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0m_\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mmagic_arg_s\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0marg_s\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mpartition\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m' '\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2135\x1b[0m \x1b[0mmagic_name\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mmagic_name\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mlstrip\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mprefilter\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mESC_MAGIC\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 2136\x1b[0;31m \x1b[0;32mreturn\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrun_line_magic\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mmagic_name\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mmagic_arg_s\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2137\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2138\x1b[0m \x1b[0;31m#-------------------------------------------------------------------------\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n",
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/interactiveshell.pyc\x1b[0m in \x1b[0;36mrun_line_magic\x1b[0;34m(self, magic_name, line)\x1b[0m\n\x1b[1;32m 2060\x1b[0m \x1b[0margs\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mappend\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0msys\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0m_getframe\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mstack_depth\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mf_locals\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2061\x1b[0m \x1b[0;32mwith\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mbuiltin_trap\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m-> 2062\x1b[0;31m \x1b[0mresult\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0mfn\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m*\x1b[0m\x1b[0margs\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 2063\x1b[0m \x1b[0;32mreturn\x1b[0m \x1b[0mresult\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 2064\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/magics/extension.pyc\x1b[0m in \x1b[0;36mload_ext\x1b[0;34m(self, module_str)\x1b[0m\n',
u"\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/magic.pyc\x1b[0m in \x1b[0;36m<lambda>\x1b[0;34m(f, *a, **k)\x1b[0m\n\x1b[1;32m 189\x1b[0m \x1b[0;31m# but it's overkill for just that one bit of state.\x1b[0m\x1b[0;34m\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 190\x1b[0m \x1b[0;32mdef\x1b[0m \x1b[0mmagic_deco\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0marg\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m--> 191\x1b[0;31m \x1b[0mcall\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0;32mlambda\x1b[0m \x1b[0mf\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m*\x1b[0m\x1b[0ma\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m**\x1b[0m\x1b[0mk\x1b[0m\x1b[0;34m:\x1b[0m \x1b[0mf\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0;34m*\x1b[0m\x1b[0ma\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0;34m**\x1b[0m\x1b[0mk\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 192\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 193\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0mcallable\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0marg\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n",
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/magics/extension.pyc\x1b[0m in \x1b[0;36mload_ext\x1b[0;34m(self, module_str)\x1b[0m\n\x1b[1;32m 57\x1b[0m \x1b[0;32mdef\x1b[0m \x1b[0mload_ext\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m,\x1b[0m \x1b[0mmodule_str\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 58\x1b[0m \x1b[0;34m"""Load an IPython extension by its module name."""\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m---> 59\x1b[0;31m \x1b[0;32mreturn\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mshell\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mextension_manager\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mload_extension\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mmodule_str\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 60\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 61\x1b[0m \x1b[0;34m@\x1b[0m\x1b[0mline_magic\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/extensions.pyc\x1b[0m in \x1b[0;36mload_extension\x1b[0;34m(self, module_str)\x1b[0m\n\x1b[1;32m 88\x1b[0m \x1b[0;32mif\x1b[0m \x1b[0mmodule_str\x1b[0m \x1b[0;32mnot\x1b[0m \x1b[0;32min\x1b[0m \x1b[0msys\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmodules\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 89\x1b[0m \x1b[0;32mwith\x1b[0m \x1b[0mprepended_to_syspath\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mipython_extension_dir\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m:\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m---> 90\x1b[0;31m \x1b[0m__import__\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mmodule_str\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 91\x1b[0m \x1b[0mmod\x1b[0m \x1b[0;34m=\x1b[0m \x1b[0msys\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mmodules\x1b[0m\x1b[0;34m[\x1b[0m\x1b[0mmodule_str\x1b[0m\x1b[0;34m]\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 92\x1b[0m \x1b[0;32mreturn\x1b[0m \x1b[0mself\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0m_call_load_ipython_extension\x1b[0m\x1b[0;34m(\x1b[0m\x1b[0mmod\x1b[0m\x1b[0;34m)\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u'\x1b[0;32m/usr/lib/python2.7/dist-packages/IPython/extensions/rmagic.py\x1b[0m in \x1b[0;36m<module>\x1b[0;34m()\x1b[0m\n\x1b[1;32m 45\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mnumpy\x1b[0m \x1b[0;32mas\x1b[0m \x1b[0mnp\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 46\x1b[0m \x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0;32m---> 47\x1b[0;31m \x1b[0;32mimport\x1b[0m \x1b[0mrpy2\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrinterface\x1b[0m \x1b[0;32mas\x1b[0m \x1b[0mri\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[0m\x1b[1;32m 48\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mrpy2\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrobjects\x1b[0m \x1b[0;32mas\x1b[0m \x1b[0mro\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n\x1b[1;32m 49\x1b[0m \x1b[0;32mfrom\x1b[0m \x1b[0mrpy2\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mrobjects\x1b[0m\x1b[0;34m.\x1b[0m\x1b[0mnumpy2ri\x1b[0m \x1b[0;32mimport\x1b[0m \x1b[0mnumpy2ri\x1b[0m\x1b[0;34m\x1b[0m\x1b[0m\n',
u'\x1b[0;31mImportError\x1b[0m: No module named rpy2.rinterface']}],
u'prompt_number': 262},
{u'cell_type': u'code',
u'collapsed': False,
u'input': [],
u'language': u'python',
u'metadata': {},
u'outputs': []}],
u'metadata': {}}]}
In [137]:
for wire in openWire():
print wire()
File "<ipython-input-137-18367800874e>", line 2
print wire()
^
SyntaxError: invalid syntax
In [139]:
print(wireInfo)
{
"metadata": {
"name": "wirePIL"
},
"nbformat": 3,
"nbformat_minor": 0,
"worksheets": [
{
"cells": [
{
"cell_type": "heading",
"level": 1,
"metadata": {},
"source": [
"WMCKEE PIL EDITZ"
]
},
{
"cell_type": "raw",
"metadata": {},
"source": [
"Opens up images and edits them"
]
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from PIL import Image\n",
"import random\n",
"import os\n",
"from IPython.display import Image as disImg\n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 277
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from wand.image import Image\n",
"from wand.display import display"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 285
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"with Image(filename='street1016.jpg') as newzImg:\n",
" print(newzImg)\n",
" for r in 1,2,3:\n",
" with newzImg.clone() as i:\n",
" i.resize(int(i.width * r * 0.25), int(i.height * r * 0.25))\n",
" i.rotate(90 * r)\n",
" i.flip()\n",
" i.sequence(\n",
" display(i)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "'str' object is not callable",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-300-469ad720021a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrotate\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m90\u001b[0m \u001b[0;34m*\u001b[0m \u001b[0mr\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0mi\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mflip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mi\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcolorspace\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0mdisplay\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mTypeError\u001b[0m: 'str' object is not callable"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
"<wand.image.Image: 88a02e1 'JPEG' (1280x720)>\n"
]
}
],
"prompt_number": 300
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img = Image.open('street1016.jpg')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "type object 'Image' has no attribute 'open'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-295-ec0059fd8676>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'street1016.jpg'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m: type object 'Image' has no attribute 'open'"
]
}
],
"prompt_number": 295
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imagRandz = random.choice(os.listdir('/home/will/Desktop/video/street'))"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 268
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [
{
"jpeg": "/9j//gAOTGF2YzUyLjg3LjEA/9sAQwAIBgYHBgcICAgICAgJCQkKCgoJCQkJCgoKCgoKDAwMCgoK\nCgoKCgwMDAwNDg0NDQwNDg4PDw8SEhERFRUVGRkf/8QBogAAAQUBAQEBAQEAAAAAAAAAAAECAwQF\nBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+hEAAgECBAQDBAcFBAQA\nAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2\nNzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOk\npaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgC\n0AUAAwEiAAIRAAMRAP/aAAwDAQACEQMRAD8A87tok8pflX8ql8qP+4v5Cm23+qSpqgZF5Uf91fyo\n8qP+6Pyp9FADPKj/ALo/Kjyo/wC4v5U+igCPyo/7q/lR5Uf9xfyqSkpgM8pP7i/lSeUn9xfyFSUl\nAEflJ/dX8hR5Sf3V/KnmigBnlJ/dX8qPKT+6v5U+igQzyk/ur+VHlJ/dX8hTqKAGeVH/AHFo8qP+\n6v5U+igBnlR/3F/Kjyk/uL+Qp9FADPKj/uD8qPKj/uD8qfRQAzyo/wC4v5UeVH/dX8qfRQAzyk/u\nL+QpfKj/ALi/kKdRQA3yo/7o/IUeVH/dX8hT6KAGeVH/AHV/Kjyo/wC4v5U+igBnlR/3F/Kjyo/7\ni/lT6KAGeVH/AHF/KjyU/uL+Qp9FADPJT+6v5CjyU/ur+Qp9FADPKj/uL+VHlJ/dX8qfRQMj8qP+\n6v5UeVH/AHF/Kn0UDGeVH/dX8qPKT+4v5Cn0UCGeVH/dX8qPKj/uL+VPooAZ5Uf9xfyo8qP+4v5U\n+igBnlR/3V/Kjyo/7i/lT6KAGeVH/dX8qPKj/uL+VPooAZ5Uf91fyo8pP7q/98in0UAM8tP7i/8A\nfIo8tP7i/wDfIp9FADPKT+4v5UeUn9xfyp9FADPJj/ur+VHkx/3F/Kn0UAM8qP8AuD8qPKj/ALi/\nlT6KAGeVH/cX8qPKT+6v5U+igBvlJ/cX8qPKj/uL+VOpaAGeXH/cT8qPLj/uL+VPooEM8uP+4v5U\neXH/AHF/Kn0UAM8qP+4v5UeVH/cX8qfSUAM8qP8AuL+VHlR/3F/Kn0UAM8qP+6v5UeVH/dX8qfRQ\nAzyo/wC4v5UeVH/cX8qfRQAzy4/7q/lR5cf91fyp9FADPLj/ALi/lR5Mf9xfyp9FADPKT+4v6UeU\nn91fyp9FADDEn91fypvlJ/cWpDSUwGeUn9xfyo8qP+6v5U+igBnlx/3F/IUeXH/dX8qfRQAzy4/7\nq/kKPLj/ALq/kKfRQAzy4/7i/kKPKj/ur+Qp9FAEvlR4+4v5UeVF/cX8qVDxTqYDPKi/uL+VHlRf\n3F/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UAM8qL+4\nv5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL/3yKPKi/uL/wB8in0UAM8qL+4v/fIo8qL+\n4v8A3yKfRQAzyov7i/8AfIo8qL+4v/fIp9FADPKi/uL/AN8ijyov7i/98in0UAM8qL+4v/fIo8qL\n+4v/AHyKfRQAzyYv7i/kKPJi/uL+Qp9FADPJi/uL+Qo8mL+4v5Cn0UAM8mP+4v5UeTH/AHF/Kn0U\nAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPJj/uL+Qo8mP+4v5Cn0UAM8mP+4v5CjyY\n/wC4v5Cn0UAM8mP+4v5CjyY/7i/kKfRQAzyY/wC4v5CjyY/7i/kKfRQAzyY/7i/kKPJj/uL+Qp9F\nADPJj/uL+Qo8mP8AuL+Qp9FADPJj/uL+Qo8mP+4v5Cn0UAM8qP8AuL+Qo8uP+4v5Cn0UAM8qP+4v\n5UeTH/cX8qfRQAzyY/7i/lR5Mf8AcX8qfRQAzyY/7i/lR5Mf9xfyp9FADPJj/uL+VHkx/wBxfyp9\nFADPJj/uL+VHkx/3F/Kn0UAM8mP+4v5UeTH/AHF/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5\nUX9xfyp9FADPKi/uL+VQ3EUflN8q9PQVZqG5/wBU1ACW3+qWpahtv9WtTVHUYUUUUAFFFFABSUUV\nQCGkpaQ1IBRSUtMAooooEJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UlLQAUUUUAFFFFABRRRQA\nUUUUAFFFFABSUtFAxKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB\naKKKAYUUUUCCiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACkNLSGgBKKKKYBRRRQAUUU\nUAFFFFAEsfSn1HH1xUlMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqFzeuj\nFFAGO9KTsNF7IHU0KytnaQcehrFe4lk+85pLW5+yyc8o559j61KlcdjcoooqyQooooAKKKKACiim\ns6p94gfU0AOoqnLqMEeQCWPtVKXVpDwgCj/PrU3HY2CQvUio1uYnfyw4Lc8fSudkupZOrmptOR2u\n0YAsBnOeg4p6hY6GiiimIKhuf9U30qaorn/VPQAy3/1S1NUNt/qhU1SMKKKKLAJRRSUAFFFFABTa\nWigAooooEFJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRSUtABRRRQAUUUUAFFFFABR\nRRQAUUUUAFJS0UDEooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApaSloAKKKKBB\nRRRQAUUUUAFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiii\ngBydamquKsUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwpn3SN9T/Ot2sCU/\nO2P7xrOZcRKRlDAikozUIZe0y7z+4kPI+6Sf0rUrmHJUiReCpzW9a3sU0QYsAR1BPf8AnWsWQyzR\nWfLq0S/cG4/5+v8ASqUuqTv935R7cU7gbbyJH95gPqeaqSapAnT5v8/57VhtI8nVmNSxWFxN92Ns\nerHaMevOM/hU6jLUurStwnyiqUk8kh+Zifx/ya0YdF7zSD/dT/E/4VeisbeLG2ME+p+b+dHLfuBg\nxW00x+RGb3xx+dXItHkOPMcL7DJP49B/OtnFLVWQrlWLTbaLB27z6tz+nT86s7QvAGAOwpaKYgoo\nooAKhuf9U9TVDc/6p6AG23+qSpaht/8AVrU1SMKKKSgBaKSkoQCUUUtAMSloooEFJRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lFAC0UlLQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAlFLSUDCiiigAooooAKKKKACiiigAooooAKKKKACiiloAKKKKBBRRRQAUUUUAFFFFABSUtJQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaQ0AJRRRTAKKKKACiiigAooooAKnXpUFTR9KAHUUU\nUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigApaiuJfIhkkABKqTzXNTancz9ZCo9E4/Uc0AdDNeW8H35AD6d\nT+Qqquswu4RVO0kDex9/7v8AjXO5JpVOCPqKAOzHNKaztNvRIvlPgEdCT1FWJL6CLq2fYUrgTk4B\nNYEjZZie5q1Nq/ZFx7/5/wDr1ms5brUS1KRMWphcVCT70wyCjlHcmLk8Ug3Odoyx9ACf5VW3kmul\n0u18iEMfvuMk8cD078VXKIy4tNuZv4Ng9X4/Tk/pV6LRlHMrk+yjA/M5J/StSkJA6kUWQEEdnbw/\ncjUH1I3H9asVC08S85/z+OKpT6vEmcHP0+b/AAFF/IDSphkjXqwrBm1iR87Qcerf4DiqUl1NLnc5\nx6DgfpRdiOgn1OGEHGCccAnv9BU9ncG6gWQ4yeoFclz9a6PSIZIrfLDbvOR1zj8aYjRooopgFFFF\nABUNz/qnqaobn/VPQAy2/wBUtS1Dbf6palqRi5optFAC0UUUAFFFJQIWkoooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKKAFooooAKKKKACiiigAooooAKKKKACiiig\nAooooASilooASijFFAwooooAKKKKACiiigAoopaACiiigAooooEFFFFABRRRQAUUUUAFJS0lABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiiigAqSOo6evWgCWiiimAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUdPaqU2pwQ8A7yOwpASX/FrNn+4a5Ota81R542QAANWTTAKKKKAJ43x3\nqaOKSYnarPVRetX7O5NvIGycdx7fnUtDRZi0id+XZYx6dTST6RMozFIGx2IwfzyRW0jiVAyng0GR\nF6n2oWgHIzRSxNskUqfeo63NUSGdlbzghUEHOOn86z91nD0RpT/tcD/P4U7hYqpG7H5QT+FdLDdC\nK3j83htuPpWE19L0QLGP9kf1quzM5+Yk/U0ajN2XWYl+6cn2H9TiqE2rTSfd+X6/N/8AW/SqKQyS\nHEaM5/2QT/Kr8OiXUgy+2Me5yfyXP6kUWEyjJNJJ95if89u1M5JxyT9K6GHQ7dP9YzyH/vkfkOf1\nq9HBFDwkap9AB+Z6n8aegrnOw6VdzYwmwHu5K/py36Veh0FRzLIx9k4H5nJ/QVs0UAVoNPtYOViG\nfVvmP/j2f0qzjHFFFABRRRQAUUUUAFQ3P+qepqhuf9U9AEVv/qlqaorf/VLUtSAUUUlAC0lFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQA2iiimAUUUUAFFFFABRR\nRQAUo60lFAFiiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDcsUicg4\nIHBoAkkkjj+8yj8arNqUKnAy30FZMjMWJJJ57n3plZ85VjpAwcZHIorKsLsqfLY5B/StWqTuSwoo\noqgCiiopLmKH77gEdu/4gUXAlorOl1eMfcQt7nAH9c1Rm1OeT+LZ/u8VNxm/x9cUVmaT5uH3iTae\nQT0z/P0rSqgFooooEFFFFAGZrKv5alS3XBAJ/DpWbDp9xP0jIHq3FdIRn/8AVS0hHOXmnPbQeY7D\nqBtHv6ms2uk1z/jzP++tc3TQwooooAKkjYfxHAqOlAzQNGkNVMSCNAWxxljj+Wciq0l9NL3C/wC7\nRb2Nzc4MceB/eJ2j8z/StCHQTwZZBn0T/E/4UrDMdmLHJJP1pMHtXTxaXaRD/V7ie7c8/wAqw5U8\nqRlx0OKHoIrCImrVisQuYxIodWyORnntUdGSrK442kH9aSZR1SIqDCgKPQDFOpsTiREYdCKcaokK\nKKKBBRRRQAUUUUAFFFFABRRRQAVDc/6o1NUNx/qj9KAIrf8A1S1LUVv/AKpfpUtIAooopAFFFFAB\nRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFL\nSUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2iiimAUUUUAFFFFABRR\nRQAUUUUATJTqZH0p9MAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvenED+pG\nP1qxVHVP9Un+9/SplsNGVSUm6jdWZQtalheBh5ch5HQmsktTS5OOtUriZ0Ml5bxjmQfQcmqUurAf\n6tfxY/0qjFZTzfdQgercD/GrsWjgf62T8FH9T/hTuwKct9PLnLkD0Xgc/So0trif7qM3v0/U1uxW\ncEONqDP+1yfwzUzyRxLlyFHenZiMaPSJn++yoPzb8uBWhDpsEPOC59W/zioptYto/uHeR6cCs+bW\n53yEAT6dadgN8Y6fpS1zFvfzJOJSxbPXPPHpWq+rIB+7UsfU0XsBpUVlW95PJMC2dnIPHy1alv4Y\nhyw/lS5h2LdBKjqR+NY02trzsBP6f/XrPl1C4l/i2/T/ABPNGojo5LuGMcn+n86z5tajXIX5voP6\nmsJnZ+WYk+9Pit5psbI3b3xx+fSnZgWLvUWul2bcLnv1qn2rSh0S5fl2WMe/JH4D/Go7jSLmDJAE\ni+qdf++f8M0CKFFKVZSQylSOxpKYBRRRQBoJqLIYo4yRGhGfVh3zXSqcgHrkZzWBpWmediaT7nVV\n/vY9a3wMYHSmMWsDVYfLn3f3xnFb1Z2rx74A3Taf58VMgMSjGaVVY9KlELdyBUXGbGky+ZaqD/Ad\ntX656GY2KNhuGHTA/QVc0i6adZFdiWzkE/3ataks1KKKKYBRRRQAUUUUAFFFFABRRRQAVDcf6o/S\npqhuP9UfpQBFb/6palqK3/1S1LSAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUlABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUANooopgFFFFABRRRQAUUUUAFFFFAEkZ5qSoU61NTAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5LiGH77qPr1qlLrES58tSx9egpXA0aa8iRglmC/U4rDl1SeQcME/\n3eP161XVZ7g8B3z37fnTuM2JdTgTOMufb/GqF1qElwNuAq/TJp8WkTH75CA/if51bj0uBAN25z7n\nj8ql3YGJu96RpAO9aVzouAzRyHgH5W/x4NYuxskY6UcqC49pj2rS0eATMZWYNsPC+57ms3yjg1oa\nJNsnaPPDD/x4dKNAudBRRRVCK95KYbeSQdQvH1zXLzXEs5zI5b+Q+grodWmjS2dSw3MMbc81zNAB\nRRRQA4HFTRTmLkKp+vNV6f2pNXHcmkvJn/i2+y8VXJLHuT+Jq/p9tb3Mm2Ytn+Fc4De1b8Nnbwfc\njUe+AT+ZosguczFYXU33Ymx6t8v8+taMOhE4M0n4IP6n/CtvH5UUxFSHTLSHpGGPq/zH/D8qtgAd\nKKKACiimSSBKTdhpGTrkCgJKBzyCf5ZrDra1O4RoyrHLE8Adqx1id+imhSCw2irKWMrdePr1qdbO\nNOXbP5UcwWNPRpg1thiAU4/DrV1riJf4s/SsAXEEIwn5Convm/hAo1HY3H1D+6v/AH1VG4vg42u4\nx6AZrJaaR/vEmoz71Nmxl5rxR91c/pUD3Mj98fSoBS4quVE3FLE9a0tF3m4OPu7ef6VnbOM102mR\nxrbRlABuGSfU0AXKKKKYgooooAKKKKACiiigAooooAKhuP8AVH6VNUNx/qj9KAIrb/VD6VLUNt/q\nxU1IAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooo\npgFFFFABRRRQAUUUUAFFFFABViq4qcdBQAtFFFMAopKqzalbw5y24jsOeaALdFZf9ptKMoAPrzVy\n2uPOXBxupcw7FiiiimAUUUUCCiiigCG4m+zxs+N2KxZtTnm4U7B6DrW7JGsqFG6EYqOKzgh+6gz6\n9f1pMDn0trm4OQrNnuf/AK9XodGc48xwB6L/AI1sEqn3mVadmlYZTi062i/h3H/a5/SrQUL0AH0p\naKoQUUUUABG4EHuK5q4jMcrL7n8q6WsfVocSBx/EPSplsNGdTImNvcRyL2apljJp4RB15NQpFWN+\nWeOIct+FZ8+oswIT5feqYWSVu7Veg03oZT/wEU7tisjIuem4jOe+O9VK6DWIkjtFCKB+8Hb2Nc/V\nokSiiimAUopKKAJEcqQwOCPSunsrtbqMf3gMNXKirNpctayhx+I9RSQHV0UyOZJEDhhgjPNMa6hU\n/ezTuhk1FUJNQP8ACAPc1Sm1Ec7nz7LUuQWNaS4ROjAn25qlJOXz1+tZT6gf4Vx7nmq73Ej9WNLk\nkyi8UgQkuQT/ALRyfyFMe8ROEXPv2qhk0lNQsTcsveyt0wPpUDOzdST+NJSVVhC0lFdFpdvbPAr+\nWGfuTzzQBhR2003+rjdvcA4/PpV+DRLh/wDWERj0+8fy6V0OAOgxRQFzm73TlswpDl88HIFVeK6L\nU4fNtnwORyPoOtc7UtjA9K2tFm3RvESSUPHstYtXdKkMd1jOFcc+5HSmhnQ0UUUyQooooAKKKKAC\niiigAooooAKhuP8AVH6VNUNx/qj9KAIbf/VrU1Q2/wDq1qakAUUUUgCiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACl\npKKAFopKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgBtFFFMAooooAKKKKACiiigAooooAKlTpUV\nSRmgCSiiimBnazIUtwoP3ziufrd1z/Ux/wC//SsKkxli1bBx61dR2jO4dqylbBFaCtuUGspaFI24\nJhMoPfuKmrFhnaFsjn2rXSVXUMGGK0i7iaH0VFJdQx9XH6VQm1mJPujJqiTVpjyJHyzAVz02sTyc\nKdoqi80sh5Yt7f8A6qQHQzavBH0+Y1TfVZZPunaKz4bC5n+7G2PVuP51q2ujMP8AXOPov+NDQFa3\nnlNwjElzmugqOK3ihHygfXvUlCAKKKKYBRUMtzHH3yfSqEt878KcCpc0VY0JbiKIcnn0FZ1xeecC\noUYqBEkmbABJq5Fp3eTH0FS7sexnF8UwvikmUpIynnBxUeamwGrpEnzSJzk85rWrnLGXyrhDnAJw\nfpXRVrHYTMvXXHkIvcvn8ga56trXzzCPZjWLTJCiiigAooooAM1NGgbljgCoaUfWgC99qjhXanzf\noM1C99I3Tj+f51Wox+XrSsMc0rt1J/Om0H2q1Z2Ul0wABC927Y9qYirU8drcTY2Rsc+1dHBpttBg\niME+rcmrYAHQYoA56LQ7huZCsY/M1Ld6TFbWzOrMzqQc+3etyo5oxLFIn95SPzFAHHUUp449KSgA\nrd0KYlZIz2+Yfj1rCq5pcoiuk/2vl/PpQB1NFFFADXAdGU9wa5WQbXZemCePxrrK57VIfKuSePm+\nb86mQyjTlby3R/7rA/kaSkpAdcjB1DDoQD+dLVPS5vNtVydxX5T+HT9KuVQgooopgFFFFABRRRQA\nUUUUAFQ3H+qP0qaobj/VH6UARQf6sVLUNv8A6tampAFFFFIAooooAKKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKAClpKKAFopKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAoNFBoAbRRRTAKKKKACiiigAooooAKKKKACnp97FMpR1H1o\nAnopTTJJY4xlmA/GmBla6flhHuf5ViVf1W7S5kXyzlVHWs7NIB1WYJgq4Y1UzSUOKY7l5rpB05pj\nX0uNqnA+tVOfzrdsNJjMayTKSSMhc9vehKwN3MbfJKcfMx9BzVmHSrqYj5Ng9W4/SukjgiiGERV+\ngqSmIyYdBiX/AFjs/qBwP8avxWVvBjZGowMZPJ/Wp6KACiiihggpelVZb1I+nJ/SqEt3JIf6VDmV\nY0prtI/cis+W8eTpxUKRvKeBmr0OngcyH8Kj3pMeiKCJJKeAT71di07oZD+Aq+iLGMKABTuB6Voo\noVxixrGNqilp3AHP61A91EnVh9BzRoIydUj2TbuzDP41QrVv547lQBnj+Ks7MSdTUsew0A1tx3yp\nEgbczAdO/wCdYjXKj7ozUT3Mjd9v0pxTBlrVbn7Q6YzgA1nUuSepzSVRAUUUUxhRRRQAUo9KSnRs\nEOevpQBbEUMCAvy392qrvvP90dsUjuztk1oadpbXB3vkJ/OkMjsdOe7O4/Kg7+tdLHEkChE4AoSN\nY1CqMAelOoEFFFFMAooooA5fVofKum9G+YCqVbmuw5EcoHThj7dqxKAEpVYqwYdQQR+FJRQB2ULi\nWNHGDlRT6z9Hl8y2C/3Dj8OtaFABWXrMW6NZAOQcE+3b9a1KhvI/Nt5F/wBkkfUcj9aTGctS4pOn\nFSLGW7VN0M0dDkw0kZPX5gP51t1y6QujB1fa3qKsC6uU6zsfwqlJCaN+iqGmXjXKybmyVb0xxV+m\nIKKKKACiiigAooooAKhuf9S30qaobn/UtQBFb/6talqG3P7pampAFFFFIAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKAFopKKAFopKKAFopKKAFopKKAFpKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAG0UUUwCiiigAooooAKKKjmuYrdcu2\nPYcmgCSjge1ZM+sD/lkp+pqjNezTdWP4UAb8lxFH1cVTl1aNOFBJrGVZZTgKzfnVuLS7iT7wCfXr\nTAdLq1xJwDge1VGkmlPVmP4mtuDRIB/rCz+2cD9K0IraCH7kaj8OaAOWSyuJRuWJ8euMVG8TofmD\nL9RXZAAdqZLDHKpDqGyO4oA42ipbiMwzOhHRj+VRUAKpwc11tpL50Eb+q/yrka6DQ590TRk5KnIH\nsfSgDVooprusYySF+tADqCQBzxWXPrcSHEQL+/aqgv5bnJb5QO1JvQo1pr1I+F5NUJbuSTvgVHHE\n8p+UE1fi08dX59qj3mBQSOSU/KCfer0OngY8w5PpVotFbrzhR/Oq02pxr9wFvc0+WwFtUVOAP0pW\nYL1KiseXVXx94L9OtUZL7d3LfWn6Ab8l7CnGd30qpJqR/hAHuaw2uXPt9KjLFupJotcDSmvi33nJ\n57VUa7Paq9CqWOACT7UcoXHtM7dTTKtRaddS9IyB6niknsntm2OecZ45qhXK1Kil2CgZJOBQwwcU\nkbbGDDtQK5oRaNcy9cIP9r/61Rz6XcwDO0OPVf8ACulibzI1fswB/Sn0WA4tgV4Ix9aSururOKdG\nyi5wcHHeuVZSrFT1BIoASiiigAooooA2NN0ovtllGF6qDnn3rdAC8DH4VT0ybzrWP/Z46+lXDQAU\nUUUAFFFFABRRRQBXv4vOtZV9sj6iuSrtSMgg9+K5G7iMM8iejH8jQBBRRRQBq6HPsmaM/wAQ4/Dm\nuhrkLOUwzo2cfMM/TPNdcDkAjvzQAdKz7u96xr+Jq5OWWJyvUKa5d5nJOT3qHcZY+RPSkNwi9Oap\nljSZpcg7lg3DHpio2djnkmos0sbDeu7pkZ+lVawrm5otrsUzNxv4H0rWqOHb5Ue0cbV/lUlUIKKK\nKACiiigAooooAKhuf9S1TVDdf6pqAIbc/ul+lTVDb/6pamqQCiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAoNFITQAlFFFMAooooAKKKKAGyDcjL6g9K5z7JcSMRt\nY89W/wDr10tFAGLDo0h5kYL7Cr0WmW8f8O/61cooARVVOFAH0paKKAJY+lPqOOpKYBRRRQBzmtQe\nXcb+cOP1rNrpNYg8y3390IPviueCM54GfpRcdhlX9IlMVyP7pGDTY7RV5kOT6DpVjhRhQF+lTKfY\nfKaVxfbeI8Zz1rEvpJWI3SM/sTxV2KCSb7oPPerq6XEcGXLMO3alFtgzn7e1luD8ik+/YVt2ekLD\n80p3tjoOlaUaKgwoCj0FOqiRAqoOgAFZ91q8UWQnzH1q+671K+oIrj5U8uR1PZiKYy1PqDzHP5VW\nMrN3NMAzwAT7CrUOm3U3SMgep4FFgKtFbMOhMf8AWyAey/48Vfh0u1h52bz6tQK5zSQySY2IzfQG\nr0Oi3UnLYjHuefyrolRU4UBfoMUtAzLi0OBP9Yxk/QVeitYIRhI1Hvjn86mooEL6VlaxENiSAdDj\n8/8A9ValQXsXnW8i+xP5UAcm3WkAJ6UGpIhxSuB0GjyFrfYT9z+R6Vo9a5/TZxbyHd90jH61qSX0\nYGUO4nj6UuYosSTLCMsa5a+H792xjcd351oTz7iWY1lzSea2fyoUm2DRFRRRVEhRRRQBt6FNy8RP\nuo/nW2a5TTpfJuoz2Jwfoa6qgAooooAKKKKACiiigArn9ch2yrIBwwxn1Yf/AFsV0FZ2sReZalsc\nocj8eDQBzdFFFACjg11dhL51tEx4OMH8K5Ot7QpQY5I+4O78OlAGsRWHd6PMGZ4iHB5x0IrdzxRQ\nBxro8ZKuCD70ytbXYsSpJgAEYJ9//wBVZNABRRRQB1eny+bbRnvjB9sVarG0KXiSM+zZ/StmgAoo\nooAKKKKACiiigAqG5/1TVNUNz/qjQBFbf6sfSpaht/8AVrU1SAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUjHAJ9q5+fUbiUsN20cjihIDce4jj+8wqtJqCr91c+56VhBzuBJJ5q4CD+VKW\ng1qbcEyzLkVJWJDKYWBHTv8AStlHEigihO4WHUUUUwCkNL2ptMQUUUUAFFFIzqn3iB+NAC0VVk1C\nCPjO4+1WQdwBHcUALRRRQAUUUUAFFFFADk61NVcdakeaOMZJoukBJTXkRMkkVRm1DslZ8kzN1OaX\nN2KL9zfKylFAIIwaz84HHHtUZlUd6ryTk9DUpMRaaRV6mq0tyxBC8fzqDdmkqlEGzodEn8yAqeqt\n/PmtOub0ebyrkKejjH410lVoK9wooooAKpz6ZBcTGRySTjI+lXKKAIYrWCH7kaj3xzU1FFABRRRQ\nAUUUUAFFFFABSO6orFjgY60tc1qN9LO7JyiLxt9frQBTl2mR9mduflNTwoFWqyZY8Vejixy3WpkU\niREpJJFjFMlnCcA81RdixyamMQYskjSHJpYoXnbbGMnr+FOt7Z7qRY179/QV09nZR2i4Xk45PrWh\nJydJU11H5U0iYwAeB7VDQAUUUUAKDggjtXW2kvnQRv6r/LiuRroNDm3QtGTyrZ/A0wNWiiikAUUU\nUAFFFFABTZY/MjdD0ZSPzGKdRQBxjDaSPQkU2ruqwmK6f0b5h+NUqACruly+Xdx84DfKfx6frVKn\nIxRlYcYIP5UAdnS1HE4lQN64PFPoAzdbi32wcfwNn8DxXOGuxuI/NikT1Uj8a5BlKkqexxQA2inb\nKXbQBY0yYw3SZJCk4P4j/GuqrjgdhDDsQfyNddA/mRo/dlBP5UAPooooAKKKKACiiigAqG5/1TVN\nUNz/AKpqAILf/VLU9QW/+rWpaQDqKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANf7rfQ/yr\nkz3rrJDhGPop/lXJHrVIAq3C+RiqlSxNhqUlcaLWasW05gb27iq9HWs0ykb6sHG4HINLWTaXXkna\n33f5Vckv4U77vpVolosk0YrLk1Uc7QBVKXUJXPU49uKYG49xFH1YfnVWTUo1+6M/WsQzO1M5PXJo\nEaUmpyN0IH0qu0zOeWPWooreaX7qMffFakGld5Wzx0FIZmhGkOFBY+1b1ojRwqr8EfrUkUMcP3FA\np9MAooooEFFLUbzJH1NK47D6ZJKkfU1SlvWbIXiqhcseSTUuQ7F6W+OML+dUpbk/xHNVppHU4Ax7\n1WJpqN9wLL3BPSoTIT3qOiq5UhXFyaKSimIWikpaAHxSeXIjehBrr0YOoYdCK42uk0ifzbZQeWTg\n0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALWDfaS+55kddpOcHtWtdXkVom5yM9h61zl3qE10xO\nSq9lFAEkUSxDLdaZLcYBC9aql2bqaSpsMCSTSqCxpVT1qUAUxHS2KRJAhjGAR17k981YrN0ebfCY\nyeVP6GtLj2p3AwNch2TLJ/eGPxWsmul1iLzbYkdU5/DvXN8t0BpXGJRUiwu3apVtD3IobSFYritD\nR5vKucE4VwQf6UxbRB15qdUVegAqPaIrlNhryFf4s/Sq02qCMHCj8aoFgoJNZ00pkb2qotsGdVaT\nefCjnGSOcdqnrI0KUNE8f905/OteqJCiiigAooooAx9dhyscmPYn27VhV1moRCW1lX23flXJ0gCi\niimB0ujTebahT1T5efzrQrmdOvzaMVPKt+hrXGoEj7g/Ok5WDcv4rmdRh8m5fAwDyK24b9ZJRERh\nj0/CqOtRcxyDvlT+FK47GPRRRQAV0GjTeZbbecoSOfzrn60tEl2zNGTwy5A98/4UwN+iiimIKKKK\nACiiigAqG5/1Rqaobn/VNQBBb/6palqK3/1S1LSAKdTaKAHUUUUgCiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiigkDk4AoAhu3McErDgha5augvryEwSIGySMcVz9NAFFFFMC6HXGc0wzKPeq2aSp5ENMlMxPtTD\nIzdTUlvAbiQIO/f2rbi0u2TqC596pKwmznwrMeAT9AatRadcy/w7R78V0CxRp91QPoKdSAyo9GUc\nySE+y1cjsbaPpGM+p5qzRTuAgAHQAfSloopALSUtQyXCR980XGtSbFQyXMceec1RlvGfOOBVYsWP\nrUN9irFuW9Y525FVSzN1JNSxW0kvQYHqauxWUact8x/SlZhcpxW0svQYHqauxWaR9fmNWOlFUkTc\n5zUf+Pyb/eqrUty/mTSN/tGoqsQUUUUAFFFFAC0UlLQAVp6LOI5zGejjj61mVJBIYZFcHGDmgDsK\nKRWDgMDkHvS0AFFFFABRRRQAUUUUAFFFFABVK91KK1GPvPjhR/Wi7v0iykZy+Oo7VjOyglmwSf51\nPMMrzSy3TF3P/wBaoTT5JCx44FM5xVAJTlFXrKzjP7y5IC9h6/8A1qgZBuOzgE8D2pNgMApRmnha\ncBiochk+nzfZ5ssMKRg+1aMmpp/CrH6nH8qyhS0XYWLk1+8wK7QAfWqmxfSgkCmmVF70tWPQkpar\nNdKOgqNrhj0wKfIwui7nHpTTMi9W/Ks9nc9WptHs/MXMTTTtJ9KhopVUkgDnnitNhN3NDRpdlyF7\nPweO/aukrO0uwFunmSAeY3T/AGRWjQIKKKKACiiigBsjKi5bp/OuQnTy5HXtuOPpXSSP5jFj07Dt\nWLqiqJQykHI5xUqV+hTRRoooqiRatW91s+VunaqlFK1wLMM7m6Rh1L4H410WoQ+dauO4Ab8qy9Ft\nCz+ew4X7vua3SNwYHuCKdkM480VJMhjkdTxgmo6kBafaytBcRsP7wH4Hg1HSGmI7Kiq9jKJraJhn\n7oH4jr+tWKYBRRRQAUUUUAFQ3X+qapqhuf8AVNQBBb/6palqK3/1S1LSAKKKKAClFJRQA6iiikAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRTZJFjTcxAHqaAHUmcdazptWiThBvPv0rOm1GeXIJIHoKYG+88cYyzAVVk1SJOi5/SsJ5nc8k\n00ZY9CaLDNGXVpG6EL/u1TkuZH6kn6kmpI9PuJekZ/HirkWinjzHx7Lz+tAjKLs3WkxXRx6bbR/w\n7vduf/rU97K3kGDGv4DFFwOYNFad7pggQyIxI7g9h9azKYBRRRQBraMwBdT36evFbBrn7KTypEb3\n5rf6ipAKKKKACikJA5PAqvLepH05NDYyzwOtV5btI/eqE108nfFQZ9am9wsWZLx5OBwKr5J681ND\nayS84wPU1oRWccXUbj6mhJsexQitZJe2B6mr0VnHF1+Y+9WKKpKwmwooopiCiiigDlJPvt/vH+dN\np7/fb6n+dMpgFFFFABRRRQAUtJS0AFFFFAGtpWoGMiGT7h+6fQ1vVxfTmug0rUPNXyX++Oh9RQBq\nUUUUAFFFFABRTXkROWYL9TVSTVbaPOG3n/ZGf1oAu8DknFZd5fbiUjPHc+tUrnUpZ+Pur6f41T3E\nnrUyZViV229Mk1AQznJp1FJegDRHTwgH4UfnRkDvSHoL04FKKjMg7UwyGq5WwuuxYFDMFGc1ULE9\n6SjkFzFgzqOlMMzH2qKinyoVxSSepNJRRTEFFFFABRRRQAorZ0jTzxPKP90H+dYorrbGXzraNsg8\nYOOxFAFiiiigAooooAKo6q8sdsWibGDzj0NXqiuIfPhkj6blIzQBybTyyfedj9Sf5Uw1dm0q5h52\n7x6rzVIgjg8Uh3EooopiCiiigDq9OcPaxkemPxHFWxWNoUuUki6kHcPpWzQBz+sRCO43D+MZP16V\nm1v6zDvgD8fIefXn0+lc/UgLSGloNO4zb0KbMckWeVOQP9n/APXWtXOaPKY7oL2cY/LpXR0xBRRR\nQAUUUUAFQ3P+qP0qaobn/VH6UAQQf6sVLUcH+rFSUgCiiigAooooAWlptLQAtFFFIAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr30kkMJeMjI69\n65yWaWYkyMT/ACrqXQSKVPRhiq0WnW0fO3cfVuaLgc/HDJIcIjNx2FXItIuH+9hPr1reVQowAB9O\nKWncRmxaNCn32Z/0H9aux20MX3EUfhk/malopDCiiigAooooAbIu9WU9wRXKzRmN2U9iRXWVg6vF\nsmDAYDD9RTQGdRRRTAsR5AHNb9pJ5sKn8D9awBwBmpor9rdGVRknoew/CkgZvFlXqQKqy6hCvCtu\nPt0rClupZjl2J/l+nFEIy3vR0BF+S6eb1A9Kh5PqaswWUkoyflHqavxWkcXbcfU1HKMz4bWSXtge\npq/FZRxcn5j79KsdKKpKwNhRRRTEFFFFABRRRQAUhIUEnsKWo7jHkyZ6bG/lQBzD/eb6n+dNoNFM\nAooooAKKKKACiiigBaKSloAKcjtGwZTgjpTaXFAHT2F8tzF8xAZfvZ4/Gny39tDwXBPovP8AKuYB\nI70UrgbMutj/AJZxn6sf8M1Tk1S6f+IL/uj/ABzVLNG4VIxzO78sxb6kmm0m6m7qqwEvFJkCoiSa\nSiwiUvTTIaZRRYBdxNJRRTAKKKKACilCn3pdtA7DaKkC0uMUrhYWO2mlPyRsfwNXItFuX5bag9zz\n+lbVhKJbeNvbHPqO9WaYjkry2NpL5ZO7gHPsar1ta9DzHKAORtJ/lWLQAUUUUAFb2hS5SSP+6QR+\nNYNXtJl8q6T/AG/l/OgDp6KKKACiiigAooooAWsTXYB8kwGCeD/MVtVU1KMy2soHYbv++c/0oA5W\niiigAooooAvaVKIrqPJwGyv59K6iuLRtjq390g/ka7CKTzI0f+8oPHuKAG3EfmwyLjOVP51yhGMg\n9Qa7CuWvovJuZFHPOfz5qR3K9FJRQA6N9jq/90g/lXXo4dFYdwD+dcdiuk0mYS2qjJJXg5/z6UxF\n6iiimAUUUUAFQ3P+qapqhuf9U1AEFt/qlqWorf8A1S1LSYBRRRQAUUUUAFFFFADqKbS0ALRRRSAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiikoAWqWqwebblscqc57+9WmkWMZYgVRuL9CCijORyTRew0jECFjwDUnkEdWH0q\nbPoAM0mRS5hlaTrgZ/Om9adt3k08LjpTEya306ebBxtX1ata2sIbfn7zf3j/AEFPs5PMhU9xwfwq\nxTFsFFFFABRRRQAUUUUAFFFFABRRRQAUyf8A1Uv+438jT6in/wBTJ/uN/I0AcvRRRTAKKKKACiii\ngAooooAKWkooAcBThxTMmkoYDy1IWNNopDFyaSiimIKKKKACipo7S4m+5Gzc4zg4/OrseiXLfeKR\n/wC8c/8AoOaAM2jFb0OhRLgyuzewwB/U1ejsraL7sSfiN3880AcvHbTS8JGzfQGrsWi3L/e2x/U/\n4V0QAHQYpaAMqLQoV/1js/0wP8auR2FrF92Jfqef51ZooAzdZh3RK4GSp/nWFXVXMYlhkU91P6Vy\ntSxhRRRQBr6LNw0Wf9oD+dbFc1p8vk3CHIAJwc+hrpatAU9Ti862kGMkDI+tcsa7RlDKQe4xXIXE\nXkzSJ/dYgUhEVFFFABQODmiigDsopBLGjg5DDOafWfo0vm220kZjO3j860KACiiigAooooAKQjcC\nD3GPzpaKAOPuYzDM6HjDGoq0tah8qfcAcOOvv3rNoAKKKKACul0eXzLULzmM7f61zVauhzbZmQk/\nMvA9x/8AWoA6CsTW4/mjk9QV989a3Ko6pD5tqxAyV5/x/SiwHNUUUVIwrX0KX55I+Om78ayamsZf\nIuo2OcZx+dMR1dFFFMAooooAKiuf9U30qWorn/VNQBXg/wBWKlqK3/1S1LSAKKKKACiiigAooooA\nKKKKAFpabRQA6iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRRYAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5Z44vvN+ArPm1FjwgwP1oCxoyTJEMscVQn1HsnHv3rPaRn5JNNGe\nnepuytB7zPIckk00ZNWoNPlkwWG1ffrWlDZww4wuT/ePWmlcVzEnSSBVLKRu6VUZya6DU4fMtmx1\nX5s1z1UkguPRsGpqrA81OpzSkCNHTJMOY+55Falc/A/lyq/+0PyroOtCBhRRRTEFFFFABRRSEgcn\nGKAFoqrJqFtH/Fu9lGf/AK1VJNXP8Ef4sf6D/GgdjVpryIgyzKv1OKwpL64kz8+M9l4/Xr+tVyxO\nSSTn1JoA231O3XoS/wDuj/HFUrnVHdSqLtz3PJqhmmkii4hlFFFMAooooAKKKKACiiigAooooAKK\nKUDJoASlx704gL3zTKAFJzSUVpadpv2r53yIx/499PagCLT9Pe8bJDBB1b+ldBDZW8AAWNeO5GTU\n0caxKFUAAdqdQAUUUUAFFFFABRRRQAUUUUAHWub1OLyrl/8Aa+b866SsrWocoko/hOD689KTQzFo\npKWpAAcHPoc11VvL5sKPx8ygn61ylb2jS7oWj/uH+dUmDNKuf1uDZMsg6OMfiK6Cs7WIfMtiwHKc\n/h3piObooooAKKKKANXQ5ds7R/3x/wCg10FchbSeVNG/91h09K64HIz60ALRRRQAUUUUAFFFFAGZ\nrcW63D5+4fzzXO12NxH5sLrxypHNcg42nHpwaAG0UUUAFT2shinjYHHzDP0J5qCigDtsggH1pkib\n0dPVSPzqKxl8+3ic9SOfwqegDjnXY7L6Ej9aSr2rwmO6LcfP8wA/LmqNIYUA4OfSiihCOut5BLCj\n5zlRyPXHP61JWboshe3KH+A4/PmtKmAUUUUAFRXX+qb6VLUN1/qm+lAEFt/qlqWorb/VLUtIAooo\noAKKKKACiiigAooooAKKKKACnU2loAWiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRTJJUiGXYLWbPq6qdsK7jnqRxTsBq01pEHBYA+mawpLyebq5HsvFRZpMd\njpKKp2V2JlCt98frVygVgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigApKhmuo4upyfQVnT6hI/C/KP896VxmnLcRxDk/gKzp9RdsheB+tUSxY0KCTgc57ClqMV\nmZiST1oAz61bg06R8FzsU8+pP4dq0oLaKAfKOf7x60WAzINPkkwW+VffrWlDZww9FyfVuTU+aSqs\nK4UtFFAhGAYEEdRiuWnjMUroexrqqw9Yi2yK4/i4P4dKaAzKlQ1FT04pPUaJa3bGTfCvqOKwd1WL\nW9+zbvlznoM0LQLm9SEhepA+vFYkmqXL9CE/3R/jmqryvIcs5b6nNMRuyX1vF1kDH0Xk/pVR9XH8\nEZ/4EcfyrKzQTQMtyajcv0fA/wBkD+uT+tV2ld87mY/U1Hmmk0CH0ZphOaSiw7km6mbqSiiwhcmk\noopgFFFFABRRRQAUUUUAFFFFABRRRQAU4HFNooAKUUlXNPCi4jLgH5uhoAt6bpXm4knUheoX+97n\n2/Kt1VCAKoAA6AcAUv8AhRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5H5tvImAcqcfXtU9FAHH0VY\nvoTDcOuMDOR9DVepGFXtKkEd0o5w42/ielUadGzIysOqkH8qaA66myIJEZWGQwINKjCRdy8g9KWm\nI4yWMxuyHscU2r+rxeXdMQDh+cn171QoAKKKKACup02US2yc5KjafqK5atrQpjmSIsAPvAe/egDb\nooooAKKKKACiiigArltTi8m6cbcAnI+ldTWJrkP3JB9D7AUAYtFFFABRRRQBvaHKDG8eTkHd+Fa9\nc1pEvl3QG7arAg+/pXS0AZOtw7o0lC/dOGb0HasOurvYxNbyKc9MjHqK5Q8EjGKQwopKKBGnosoS\n4KEn5xgenFdDXIW0hhmjYHGGH5d664EMAR35pgFFFFABUV1/qm+lS1Dc/wCqb6UAQW3+qWpaitv9\nUtS0gCiiigAooooAKKKKACiiigAooooAKKKKAClzSUUAOooopAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFRXX+ol/3G/lUtV7w4tpv9xqAOZPPXn680KcGkoqgLXaikU5ApayZd\nxUYqQQelbNndiYbSfnA/OsWlRih3AnIppiOkoqtaXa3C+jDqP8Ks1QmFFFFAgooooAKKa8iRjLsq\n/UgfzqpJqlunQl/90f44oAu0dKx5NXkb7iKvucsf6VTlu55PvSMfYcD8hxQB0lFZOkXBbfGckjBB\nPp6VrUAFFFFABRRRQAUUUUAFFFJ0oAWjpVaa9ih4zlvQdvrWZPfSSnGcD0FIZqTXcUWecn0FZ0+o\nSycL8g9uv41SPJpVBJwBk+3WgYpZj1oAJ4AyTVyDTHfBk+QenVq0obWGD7q8+p5NFhGbb6bJLgv8\ng/8AHj+H+NaUNrFB91fxPWpqKYgooooAKKKKACiiigANUtTRWt2yQpHIzTbrU44DtX53/QfWsaa5\nkuGy7Z9B2H4VVgIgKWk6UmaVgHik4puaTNFgHE0maSimAUUUUAFFFFABRU8VpPNjZGxB6HGF/wC+\njgVbj0edsb2VPUfeP6cfrQBm0VvRaTbp9/dIfc4H5Dn9atxwRRfcjVffHP59aAOejsriX7sT/UjA\n/M4FWo9HlP33VPplj/QfrW3RSAzW0aLHyySZ9SFP6DH86py6VcJnaN49iK3qKYHJlWU4ZSD6EUld\nYyJIMOoYe4rPvdLhETPENpHOMnGP1xQBh0UUUAFFFFABRRRQAUUUUAPTrUynYQw6jkfWoV61Lmp6\njOpgk82JG9QOn61JWdpEu+Epx8p4/GtGqEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYutw/Okgzy\nMH046fzrJrpNUi822b1X5vyrmzUjEooooA6LS5jJbKDjKZGPbtmr9YeiykSvH/eXr9K3KoDK1uHd\nCsmfunH/AH1XP1193H5sEiDqV4z61yLDBI9DQISiiigAq1ps3k3UZ45YLz/tcVVoB5oA7akqlDqV\nu8ak/KcDjBP8hUn2+2/56f8Ajrf4UroZZoqt9vtuP3n/AI63+FWfTvTEFFFFABVTUk822kHTA3fl\nVukYblI9QRQBxdFTXMZimkQ9jUNABRRRQA+J/LkR+6sD+RzXYRtvRG9VBrjK6bSJvMtVGPuHb9e9\nAF89K5S8i8meVM5wev15rq+lYOuRkSpIAMEYJ46/zpAZVFFFABXUabOZrWMtjcOPy4rl609Jvo7V\nJVk3c4Ixz0HpTA6Cisl9cX+CEn3ZgP0Ab+dVJNXum6FI/wDdX/4rdSuB0NV7uaGNCHkRcjuwz+Vc\n5JczyZ3yu2eoycfl0qGi47HSW/8AqlqWorf/AFS1LQIKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACnU2igB1FJmlpAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBe/wDHtN/uN/Kp\n6r3v/HtNn+41NAcxRRRTAliPaparKcGrNRNDQUUUlQMfHIYmDLwRW3bXKTrnIB7jNYORSCQochiv\n0OKtXEzpWkRPvMq/UgfzqpLqdtH03SH/AGen5nH6VhGTPU5/P+dNL+lOwGrLq79I41X3Y5/QYx+Z\nqpJfXD9ZWH+78v8ALFU9xNFFgH7xTSxpMVZhs5rg/Kpx/ePA/wDr/hTEV+alht5Z+I0Lep7D6mte\nDSYo8GT9435L+Xf8a0FVV4UYA7DgCgDPstM8hg7ud3ovT8fWtGiikAUUUUAFFFFABRxjPaqt5d/Z\nEDbd2Tj2rGmv55jycD+6Ogpjsa82oRR5A+Y+3TNZs17LNwTgeg6flVXJI5pyqWOACT7CpYBn8aAC\nxwBk1et9MeTmT5B6d604reOAfIoB9e/5nNFhmdBpjtzIdo/u/wAVaMVvHCMIoHv3qWimK4UUUUCC\niiigAooooAKKKKAIp7iK3TdI2PbuaxLrVJZ8qnyJ7feP41p6nF5tuxGMrz+Fc7VAFFFFABRRRQAU\nUUUAFLSx7d67hlcjI9vwrpIbaCLBjjToMHGT+ZyaAMCO0uJcbI2IPfGB+ZwKtx6PM2C7onqOpH8h\n+tbdFAFCPSLdeWLv7E4H6YP61ajt4YfuRovvjn8+v61LRSAKKKKACiiigAooooAKKKKYBRRVW6vE\nt+B8z+np9aAMG5j8qaRfRjUVTTkuxYnJPJqGgAooooAKKKKACiiigBVOKl4xUNSocikBoaVL5dwq\n8fPx9K6CuTR9jK2M7TmuqR/MRX9QDSQx1FFFUIKKKKACiiigAooooAKKKKACiiigBG5BHqMfnXKT\nx+VI6ddrEV1lYWsw7Jg/GHHb1HUmkNGXRRRSAmglMMqSAfdOea6vrz2rj810unSiW1TrlflOe+O9\nMRbPIxXKahD5Fw64wM5X6GumuJxbpuIyew965u/lM8m89cYpX1Ap0UUVQBRRRQBfX7o+lLUatlRS\nswUZrOzuVcinc/dBrprKXz7aNzjJXn6iuSYkkmum0qBoLYburndj09BWhJeooooAKKKKAOe1uHZM\nJAPvjk/7VZddFrUYe3DZ5Rs/gf8A69c7QAUUUUAFa2jXSQGRJH2gjPPr9ayaUHHSgDp5NVs4/wDl\npvI7IpOfx4X9ay9R1KG6QKkT9fvNgEfgM/zrNooAKKKKQBRRRQA+iiipKCilpKAOjt/9UtS1Hbf6\npfpUlUSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOoptOpAFFFFABRRRQAUUU\nUAFFFFABRRRQAUUUUAFFBIXqcVWlv7aHO6TJ9F+b+VAFmqWq/wDHq31FQS6uv/LNPxb/AAH+NUbm\n/nnXaSAPQD+vX9aYFKiiimAVYQ8VXooeoExkFM8w0yilZDuOLk03JorRsdN+0je7FU+nJ+hNGiFc\nzqUAk4HP0FdEml2iY+TcfVyT+Y+7+lWViRBhVVR6AAfyouM52LT7qTpEQP8Aawv6Ng/pVyPRHP8A\nrJVX2QZ/U4/ka2KWi4inFplrEQdm8+r8/pwP0q4ABwOB6UUUXAKKKKQBRRRQAUUUUAFFFFAFPUoP\nOgOB8y8isOK0uJMbInI9dpA/M8V1FFO4XMiDSWPMrBf9lev/ANb9a0oreKAYRce/epaKQ7hRRRQI\nKKKKACiiigAooooAKKKKACiiigBkih1KnoRXLyRGN2THQ11NN2JnO1c+uBmmBzsVhcy9I2H+98v8\n8Z/CrkejOf8AWSBfZQT+pAH862KKYFFNKth1Bc4/ibj64XFYtxF5MrpjGD+nauorG1mLEiyDPzDB\n9OKAMulAyaSlU80AS7RW7p774FH93isMVcsZvIZsqSCPWp5irG1RUH2y3/v/AKN/hQt5bsQA/J6D\nB/wp3JJ6KKKACiiigAooooAKKKKAFopp4GTxWVdXxfKJ8q+vc0DsT3l9t+SI89CfT/69ZZJNJUTv\nngVO4xZD2qKiiqsSFFFFMAooooAKKKKACnJ1ptKKAJQa39Il8y328/If51z69K0dHl2TlDzvGKkZ\nv0UUVQgooooAKKKKACiiigAooooAKKKKACqGrweZb7gOUOc/7Per9MlQSoysMhhigDkaKUqVJB4I\n7GkqRhWxo04HmRs3+0v9eax6kjlMZzkj6UAXr66M0hwflHSs+XpQZvao2ctQlqA2iiiqEFFFFADg\n7DvSFie9JRSsBb061+1Tqp+6OW98dvxrqCyRL8zKoAxlmA/WuQjmeL7jMh77TtP6HP50O7SHLMzH\n1JJz9aYHTyajaRdZk/4Dlv8A0HNVJddgX/VxyOffCj8+T+lYHNLQBpya5cH7iIg/76I/l/Kqr6jd\nyfemf/gPyf8AoOKrUUgA02nUhoASiiimAUUUUAOopBS0gCiiigAooooActOqMdakpMoKSlpD0pAd\nHB/qxUtR2/3BUlWSFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBc0ZpKW\nkAtFFFABRRRQAUUUjEIMsdoHvigBaCR3NZlxq8aDEa7z69h7+v8AKs2a9mnPzMcf3RwPyppAbc+o\nW8GRu3t/dX+p6VmzatK/3MRj25P+fpWZS8+5p2AnkuJJfvyM3sSaiL02nRwyScKjN9BQA0sTRmrs\nelXT/wAKp/vH+gzVyLRVH+skLf7ox/PNAGNSVvS6PA/3GZP1H68/rVGXSZ0+5iQe3B/I/wCNAGfR\nTiCCQRgim0AFFFLigAFdLYzLNbpj0xgdq5wdK1NImw7Rk/eGR9aTHY2KKKKQgooooAKKKbJIkQyz\nAfWgB1MkkWIZchR71nz6mORGMH+8f6Cs6SZ5CSxyTSHY1JdVjT7ilvrxUdvqTySqrBQrfh/Wsunx\nK7ONiliDQgsdLRTUztG7g45HpTqYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkoNJ\nQAUUUUwCiiigAqtfxedbOuORyPwqwzhFLMcAVjX2p+blI+F/vdzTAzSMUoFNqQEAdqGBYRBUnA9q\nrLLigyE1DVyrkrS9hULEk+9JuFT2UBu5cfwjkmmoibNy2fzYkY+nNS0iqFAA4wKWmIKKKKACiiig\nApk0qQruY4/nTbi5S3HPXsvesWe4e4bLdOy9qlsZLc3j3HT5U9P8fWquaQkCoCxJosFxzvk0yiir\nEFPMThVcqdrZAbsSK0dP01pWDyghOoHdv/rVo6rb+ZaYRR+75XjGB3oA5qiiigAooooAKKKKACii\nigCRDU0T+W6tk8EHiq68GpTwKnqM61GDqrDoRmlqlpc3m2wycleP8Ku1QgooooAKKKKACiiigAoo\nooAKKKKACij3NRNcwITulQY7ZGfy60Ac/qkJhun/ANr5uffriqdaOq3cNz5flkkr1OMDHpzzWdUs\nYUlLRQBHRTttNpgFFFFMQUUUUAFFFFAC0tNp1ABRRRSAKKKKACkNLSUAJRRRTAKKKKAFFLTadSAK\nKKKYBRRRSAKkqOnqeKTGhaKKKkZ0Vv8A6talqK3/ANWtS1oSFFFFIAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKWkooAdRSZpaQBWJrMbCRHGdpXBI9QTW3Uc0CTrtcZHWm\ngOVxUiQSy/cRm9wDj866KOxtosYjX6kZ/WrAVR0AH0GKdwOej0m5k6gJ/vEf0zVyPRV/5aSE/wC6\nAv685rWpKLgVo9PtosYiU+7c/wA6sBQvQYpaKkAooooAKKKKAMbWYMMso6Hg/h3rJrqL2ETwOnfG\nR9RXLkbeDTTAKeKZTh0oYDqlt5TDKj+h5+neoqKQzqkYOoYdCM0tUdLm3w7c/c4/CrEl1FF95ufQ\ndaVwJqjlnjhGWYfTvWXcamz5CfL/AD/OqLSM3U9aBGhcaoxyI+Pw5qg8rPksck1HT44nlOEUsfag\nZHUiI8hwqlj7VowaUeDMf+Aj/GtKOGOIYRQo9qYGbBpXQzH/AICP8a0o4UiGEUAU+igVwooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACg0U2gAooopgFFFFABRRRQBkavNIpEY4QjP4//WrJ\nrodQs2uUGzG4evTmsV7SeP70bfXqP0pgQUUUUALTs0yikMM1taM4MbJ3U5/CsbFXdOk8mdQc4bii\n4jfooooAKKKKACqt1eLACq8v/wCg+5qG91DblIj9W/p/9eskkk9aQ7EjuzksxyajLYpGeoaFELis\nSaSij2HWqEABJwASfStiw00r+9lxnsh5/wC+u1SWOmrFh5Pmk7Dsv+JrRoAWpQN64PfNQ1Kh4oA5\nGaMxSOhGNrEVHWnrMGy4LjOJB+GR6VmUAFFFFABRRRQAUUUUAKOtSZ9ef6VFTxSA1tGm2yNGTw3I\nHvW5XKW0pilRumCK6pTuAPqAfzpgLRRTHmii+/Ii/VgP/r0APoqjJq9mnRy/+6p/rgVVk15eRHCT\n6Fmx+Y/+vQBsUVzsmtXT/d2R/wC6P6nJqpJdzy/fldh6bjj8qAOokubeLO+VAR2yM/l1/Sqr6xaI\neC7/AO6v/wAVtrm80uaANmTXDzsiHsWb+gx/Oq0mrXT5wwQeigf1yf1rP3CjdSuMleeWT70jt9WJ\n/rUefc0zcaM0AOJoFNpwoAWiiikAUzrT6FFAEdFKw5pKoAooooEFFFFABSikpRQAtFFFIAooooAK\nKKKAENJSmkpgFFFFABTqbS0AOFBGKVRSsOKkdhlFFFMQU5abSjiiwD6KWkqLFHRQf6talqOD/VrU\nlaEhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAXNL\nTaKAHUUgpaQBRRRQAUUUUAFFFFABRRRQAVzeow+TcOAMBvmH410lZesQBoxIByp5x6VSQGJSikpR\nQA+lAzTN9SCk0MkjlaHO04JprOW6mmipIoZJThFJpWAjp8cTynCKWPtWlBpPRpTn/ZH9TWjHGkY2\noAo9qAM+DSRnMrZ/2V/qa0I4kiGEUKPan0UCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiim5oAU0lFFMAooooAKKKKACiiigAooooAw9Wh8uYPjiT+YrOrf1SLfbkjqhz+HesCm\nAUCilHWgCQAUtIKWpYHRwSebGr+o/WpKz9Km3IydxyPpV2WdLddzn8PWgY5nVBuY4ArIu9QMmVj4\nX17mo7q9e5OAdqDt/jVXigBT6k1EX9KQuabTsgCiipIoJJ2CoMmmIakbyNsUbjW9ZWK26hmGZPX0\n+lPtLNbVfVj1b+n0q1QAUUUUAFPjOc0ynJw1AFXWIBLb7+8fIx6HrXNV2brvRl9QRXITR+VI6+jE\nflQBHRRRQAUUUUAFFFFABTl602lHWgCQcVdbV7kKEXy029wOenvxVIGmmpGSyXtzJndNIQe244/L\npUG4nqaSiqEFFFFABRRRQAUUUUAFFKBQaLAJRRTgKAEAp2KdRSGNpaSikAuaUU2lBoARxTKkao6p\nAFFFFAgooooAKKKKAHUUUUgCiiigAooooAKbTqSgBKKKKYBRRRQBKtO4xUYajJqR3G0tFFMQUUUU\nALmkoooA6a3/ANUtS1Fb/wCqWpaYBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig\nAooooAKKKKACiiigAooooAKKKKAClFJRQAopabSikAtFFFABRRRQAUUE4FU7jUoYc4O9h2HT86AL\nnTmqN5f26oyE7yQQQv8AjWRPfzXH3mIH90cCq1UgEooooAcopxpgNOpMB1a2kyZVkPUcjjtWRViz\nl8mZG7Hg/jQM6KlpAcjNLSEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaSi\nmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1lDqVPQg1zE0ZidkPY11NYmrxbZQ4/iH6imBm0UUUA\nSr0paYnpTjUtDJ7af7NJv68Uy5vHuDlvwHYVXJNJTWgh240maSimAUUVYtbSS5fABC/xNigBtvbP\ncPtQfU1v2tqlsmF5Pc0+C3jt0wgA9T60/cq8llH4igB1FQPeW8f3pF/A5/lVd9WgH3Vdv0oAv0Vj\nvq8hzsRR7nJNVX1C5f8A5aEf7uB/KgZ0RIQZJA+vFRG+t4T80i/hz/KubZ2flmJ+ppM0BY6CTWrd\nfuK7n8APz5rDu5lnmZ1Tywe2c8+tR5pppIQlFFFMAooooAKKKKACiiigB45pSOKatPNSBHijFLRT\nAMUYpQKdik2MjxSVJikK07gMooopiCiiigBRTt1MooAeCTTqjBxTw2akoSiiigQUUUUCBjTTS0hp\noBKKKKYBRRRQAUUUUAKKWmj+lSBaQDaMGnbRT8UrjIsGlwakxRii5Vhm2msuKmpj8ihMViKiiiqJ\nCiiigBRS02nUrAFFJmimAtFFFIApKSimB1Fv/qlqWorf/VLUtABRRRSAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkLBRknA96pz6jF\nHwnzH9KALp4GSQBVKfUY48hfnb9BWXNdyTfebNVyaQya4vZZj8zceg4FVc5oNSwWk1wfkU4/vdBV\nCIamhtprg4jUn37D8a1bbSETmY7j6DpWkiKgwoAA9KVwMV9JaOBnZsuOcDpWZXXkZ61y95CYJnXt\nuOPpQBBTxTKUUAPooopDOltJfOhRvbH4jipqyNImwzRHvyK16dhBRRRUgFFFFMAooooAKKKKACii\nigAooooAKKKKACikzSUALSUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqMXm27eq/M\nPw/+tVqkKhgQeh4oA5OipJ08qR1PYkVHTAUHFHekpaAEooooAKKKWgBybARvzj2rQGqeUu2GIAf7\nXPPrWdRSAtSajcyfx7f90YqBpXbqxP40yigAoopaACiiloGJRS02kAZpKKKoQlFFFABRRRQAUUUU\nAFFFFACjrUlRU8dKTAU0gpaMUrjQClpaSluMKKQ0madgGmjFHWpAtO4iKipCuTTSppiG0UUUAFFF\nFADs0tMp1KwC0UlLSASjFOFPxkU7jIKKUjBpKYgooooAKKKKAFFTVBVyFQy1L2KjqRiirARRRgel\nRcdiDBp3ln0qeii47EPlNSPD8pqeihN3FYzaKcwwTTa1IegUUUUAFFFOCEjNADaKKKAHUUUUgENJ\nSmkpgdRb/wCqWpait/8AVLUtIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACimvIkYy5xVCfUwvEYz7n/CgDQZlQZZsCqE+pomRH83HXtWZLcSS\nnLGoaQyxPdyTHljj0qDNJU8NrLP90HHqelICCpYraWc4RT9e1asGlxpzId59O1XgqoMKMD2pgULf\nSY05k+c/pV9VC8AAfSlopiClpKKAFzWRrEA+WUfRv6VrVDcwieF09uPrQBzFFKwwSD24pKYDxS0g\npaQySCUwyq47H9K6ZX3qGHQgGuVrd0uXzIdvdOPwoAvUUUUCCiiikAUUUUAFFFFABRRSU7AFFJRQ\nAtJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU1pY4/vOo/EZ/Kq76jbIfvFv90UAWqKzJNXU\nZ2IfbP8AhVdtUuG6YX6CgDbpjTRJ951H1P8ASufe5mk+9Ix/GoiSe9AG62pWyn7xb6Cq0mr/ANyP\n8zWVRSGPuZmuH3NjPtUFPplMQUopKBTAfto206ipGMxRSkUlNCCiiimAUtFGKQBRRS0DCiikpAIT\nSUUVQgoopaQCUlOptMAooooAKKKKACiiigAp4PamUo60rAPpaSikMcaTpQTTCc07BcCaTrSCnUAO\nUYp2aZk0maAH7qTdTaKAYpOabilooENop1JimAlOptKKTAWloFFIAqVaaiEmrKx4pNlWKcqFWplW\n7lflzVSqTuJhRRRTEFFFFABVq1bgjP4VVqWFtrik1oOJdooorKxdgoopaQCUUtIaAKlyuGz61BVy\n4XKZ9Kp1utUS0FFFFBIVYt2/hqvT4m2tmkBYnIC9KrUsr7zTaAClptOpgFJilpKAOnt/9UtS1Fb/\nAOqWpaACiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTJJ\nkhGXbb/Os641TqIhj3NFwNJ5Ei5ZgKz7jU8cRj8TWZJNJIcsxNR1IErzvKcsSetRUVYgtJp/ujj1\nPSmMr1PBaSz/AHV4/vdq1INMii5f52x+FXgAAAOKAKMGlxx4Mnzt+lXQAowMAD0paKYgooooAKKK\nKACiiigAooooA57UYPKuG44bkVTrc1eHfEJB/B1PtWHTAUU+o6eDSYxav6VN5U23s/8AMVQpVcxs\nGBwQRQB1NGajilEsauO4p9AgooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUVBJeQR5Bfn0F\nAE9FZ8mrRD7qlvrVZ9WlI+VVX9aANmms6J95lH1Irn5L24kzmRsHsOB+lQliepJ+ppDN97+2T+Pd\n7Dmq76tGPuIze5/wrHooAvyarO33Qq/Tn+dVnu53zmVsH0OP5VDRQApJPU5pKKKACiiigAooooAK\nKKKAEplPpppoQlFFFMB60/FRLUmaloYhptOPNJTQCUUtApAFFLRQAUUUmaAAmm0UUwCloooEFFFF\nABSUtFADaKKKYBRRRQAUUUUAFFFFAElB6U0UppAMpcUYpaYBiiiikAUUUUAFFFFABRRRQAUUUUAF\nOxSDmpAtJsYgX0qRY+eaciYqQVPMygAA7CnUlLUDEcblIrPIwa0apTjEh98GtIMmS0IqKKKskKKK\nKACiiigDSQ7lB9qWobZsqR6VNWEtGWFFFFIApKDSUxg43KRWeRg1o1SmXaxrSLJZFRRRVkhRRRQA\nUppKWgBKdTaWgBaSlpKAOnt/9WtS1Fb/AOrWpaQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUfnUU1zFD95ufQdazJ9TduE+UeopAaclxFD99ufSs6fVGbIiG3371nF2fkn\nOaaaBkjSPJ1NR0oqxBZSzngYHqaAK1WILOac/KOD/Ef6VqwadFDjd85/SrnTpxTAo2+mRx4Mnzt+\nlXQMcClooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkTzEZOzAiuWkQxsynqDiurrD1eDZKJB0c\nfqKYGdTgabSigB9FFFSM2NJm3I0Z6ryPoa0a56ym8mdTnAPB/GuhpiCiiigAooooAKKKKACiiigA\nooooAKKKKACmvIsakscVDc3cdsOeW7CsW4uZLg/MfoOwoAsXmotNlI/lT9TVCiikMKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACkpaSgApD0paKBDKKKKoYop9R08UmAtFFFIBKWiigAoopKAAmm\n0uKXFMBtLTsUUgG0uKWloHYbil20tLRcLDcUu2ilouBDRTm602qEFFFFAgooooAKKKKAFXrTqZTx\nQAlFKaSkAUUUUAFFFFABRRRQAUUUUAFFFKBmgB8a1OFpEWpMVm2UIBTsUUtSUFFFFABUFymQGqem\nyLvQj2q47ilsZ9FFFakBRRRSAKKKKAJ7ZsPj1q5WchwRWgDkA1nURSFpDS0lQMSiiigYVXuR0NWK\nZMMxtVQeomijRRRWpAUUUUALSUUUAFAopRQA6iiikM6W3/1S1LUVv/ql+lS0CCiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKrzXsMP8WT6Cs2fUZJPunYPQUgNSa6ihB3Nz6d6zLjU5JPl\nT5R+v51RJycmkoGKXZuSaZThViCymnOQuB6mgCtVmCyln6DaPU1qQadDEMkb29+n5VcxjgUxFO30\n6KLDEbm9+lXMYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnqMPnQH1Xkf1FXK\nMZGPXigDkqKnvIvJndegzxUFMBwNOpgp9IYZx9a6Gzm86FD3xg/UVztaekS4Z4yevIpCNeiiimAU\nUUUAFFFFABRRRQAUUVHNPHAu52/DufwoAk6VnXepBMpFgt69h/8AXqrd6i82VT5U/U1RoYxzOXJL\nGm0UUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigApKWkoAKKKKBBRRRQMaaSnmmVQgpV60lK\nOtAD6KKWpGRmloNJTAXFKBSilpNgJRS0UXGFFFFIAooooAWiiikAUUUUAI3SoqnPQ1CapCYlFFFU\nIKKKKACiiigApy02lXrQA/FNp9NpDEooooEFLSUUALSUUUALSUUUAFTRrUaKSatKuBUyY0OFKKAK\nWsygooooGFFFLQAUtJRTuIzpBtZh702rF0uCD61XrVbEsKKKKYgooooAKvwNuQe3FUKs2rdRUy1Q\n0WTSUUVkWFFFFABQKKKAKDjDEe9Nqe5XDZ9agrchhRRRQIKKKKAClApKeopAFFO2mk2UFWOkg/1S\n1LUVv/q1qWgkKKKKACiiigAooooAKKKKACiiigAooooAKWqdxqEUPH3j7VmT6hLLwCVHoKANWe/h\nh6Hc3oP61lz6hLLkZ2r6CqdFSMCSeaKAM9KtQWEs2ONo9TTAq4zVqCwlmxxtHqa1YLCGHBI3H1NW\nulAipDp8MOCRvb1PQVboopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQBlavBkLIByODWPXUXEQmidD3BrmGBUkEYIpgJT6ZThQA6pbaQwSq/vz9DUNLj+VSFjqFO4A\njvS1jw6k8UaoUBwOpzUg1Y941/OmOxqUVk/2w3/PNfzNaFrP9ojD4x7UCJqKKKACikJCjJ4FZV5q\nW7KQ/wDff+H+NAy1d36W+VX5n9Ow+tYssrzPuc5ph+uaKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABSUUUCCiiigAooooGFMp9NNNCEooopgPWnUwU6kxhRRRQAUtFFSNBRRRQA\nUUUtABRRRQAUUUUgCiiigA7VEwqQmmNVoTG0UUUxBRRRQAUUUUAFFFFADx0opFpTUgJRRRTAKKKK\nACiiigApQM0lTwp3NJ6DRIibRUlJS1m2UkFLRRSGFFFFABS0lLQAUUUUhEU67kNUa0iMis9xtYj0\nNbQ2FIbRRRVEhRRRQAU+Ftjj34plApNAaNFNQ5UGnViy0FFFFAwooooAiuFyufSqlWbhu1Va1RDC\niiiqEFFFFABU6jioKsL0H0pMqItBxiig1Azftv8AVrUtRQf6sVLVkBRRRQAUUUUAFFFFABRRSEgc\nk4oAWkLKvJOKoz6pGnCDefXtWZNdyzdW49O1IZrXGpRxcL8zfpWVPeyzE7m49B0qtS0CFyaSirdv\nYTT9ti+pH8qBlXrx1q3Bp003JGxfU1qw2MMGMDcR3NWKYirBp8MHON7epq1RRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALXP6pAYp93Z+f8a3ZJEi\nUs5wBXPX14bpxgfKvT1osBVpRSU5abAeFp4AFIOlBbFSMWmsaaTSUBcD1rU0iX76duorL5OABkmt\n6wtRbx5b7zcn2pgXKinnjgXLn6D1qvdaikIKp8z/AKCsaWV5m3McmgCe5vZLnj7q/wB3/GqtFFIA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApKKKBBRRRQAUUUUDCiiigApDRRTQ\nhtFFFMBc08VHTwaTAWiiikUhaKKKQC0UUUAFFFFABRRRQAUUUUgCiimsaYhCabRmkqgCiiimIKKK\nKACiiigAooooAVafTBT85pANopaKAEooooAKKKcq5NAx0SbjVoDHFNVcU+s2ykgpaSlqRhRRRQAU\nUUUAFLSUtABRRRSEFU7ldr59auVBdLlAfStKe4Mp0UUVoQFFFFABRRRQBatmyCPT+tWKp25w/wBa\nuGspKzLQlFFFSMKDwKKimfauO5pxVxFR33NSUoGTT5FxitiWR0UUUCCiiigBQORVioFPIqepZSCh\nqKQ1AzoLf/VLUtRW/wDqlqWtCAooooAKKKZJLHCDvYD9TQA+kd0QZYgfWs6fVVGRGM/7TVmSTyTH\nLMTSA1bjVETIiG4/3j0rMkuZJydzZ/lUFFABRSjOeO9W7fTppsFhsX36/lTAp4PvVy306abk/Ivq\na1oLGCDGFDH+8asUAVYLCGHtub1I/pVqiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigAooooAKKKKACop7mO2Ulz9B61LWXrERZUcdsg/pigDMuLh7hyzfgO\nwqGiimAUtJRQA7caXrTKXNKw7imkNJRTEXtOWHe0kpxs6DsalutSaT5Y/lX9TWf2paQwooopAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJS0lABRRRQIKKKKBhRRSUALSUUUxBR\nRRQAhFJT6ZTAKVaSlFJgPooopFIKWkp1IAopaSgAooooAKKKKACiikJxQkAhao6KBV2JClFApaAE\nNJTqbQAUUUUAFFFFABRRRQAU5abTloY0OpKWlA5pDsNoqTZ7Um2lcLEY5q1EmBmkRKlqeYLBS0Ut\nQUFFFFABRRRQAUUUUAFFFFABS0lFAC0jDcpHqKKKFoxWM08UVJMu1zUdbEsKKKKYgooooAVTgg1o\nA5APtWdVy3OU+lTNaXLiS0UUVmMOlU5ZNzdanmbapqn1q4rQlkiLzUjfdP0pEGBS0X1HYr0Up4NJ\nVEsKKKKYhR1qcHIqvU8fIqWUh1IaWlxUDN63/wBUtS1Fb/6paJbiKHlm/Ada0IJaZJKkQy5ArNn1\nQ8iIY/2j1/Ks6SV5SSzE0AaU+qdoh+J/pWbLM8xyzFjTe1NpAFFLjPSrtvpss2C3yL79T9BQBRxn\ngVdt9NlmwW+RfU9TWrDZRQAYGT6nrVimBWgsYIcYUM2OpqzRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzwieNkPepKKAMO\nbSZ1J2bXH4Zqm9vLH95GH4GuooOCMEZHSmByVFTXUXkzOno1Q0AFFFFAwpRQBThQIKWkpaQwooop\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE0ABNG6m0lMQ+iiikAUUUUAFFFFAxKSlop\niCiiigApwFIKdQygqM9akprUJgxlFFFMkctOpgp9SxoKfTKcKGMKKdSVICUUuKMUAJRS5FNLCmlc\nAJxUROaCc0uKtKwhKUU4Lml20NgNop2KUClcdhtNIqbbTHFFxWI6KKKYgooooAKKKKACiiigB+RT\nl5qMVInFSxofmnqKTFSLgVBQop1ICKWkxhS0tJSAKKKKEAUUUUAFFFFABRRRQAUUUUAFFFFAFe6X\no1VavyruQ1QraL0IYUUUUxBRRRQAVPbthsetQU+M4YGk9hpl6j/GimSNtWskiytO240yMZNNPNTo\nMCtHoiEOoooqCiGQc59aZU0gyM1DWiJYUUUUxBUsZqKnJ1pPVDRPmpB0qMVKOlYvQslbU32bU+X3\n71RZ2c5JJJ7k00UlakC0UoGelXbfS5ZeX+Revv8Al2oApAZ6davwaZLLy/yL+taUFpFbgbRk/wB4\n1YpgQw2sUH3VGfU9amoooEFFFFABRRRQAUUUUAFFFU7m/ih6fOfQf1oAuUdBknFY0urOeEUD361V\ne+uH6ucUAdCzqn3iF+px/OonvrZOsqn2Uhj+hrnZJZJDlmLH3plMDcbVoBnAJ96rSaxIfuIF9zzW\nZRQBdfU7lv4gvsB0q9YX/nfJI3z/AJZrEpKAOtorOsNREw2SnD9j/e+natGkAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBIGSSAPegDJ1iEDZIO/yn/GsitTUL5ZVMaD\nIz94/wBKy6YBRRRQMfRRRUgFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGmGn\n009aaASiiimIcKWkpaTAKKKKQwpKKKYgooopgFKBShadSbGhMUdKM0ZqRhRSZFGaqwmR0UppKYhR\nTs0ynikwFpQcUlBoHcXdRuplFFkFxd5oyaSkzSsFxSabRRVCFAqRVpAQBRvpDH0UzzBR5gpWHsPx\nRUe+k3miwXJs01+lRbqM00hXEooopiCiiigAooooAKUDJpKkjXmhgS4AFLS+tJWbepaCiimO2KEg\nED/vBz3q4Kzh1rQjbKg0TQkOooorMYUUUUwEpaKKBiUUtFACUUtFFwEooooAKKKKADqKz5BhiPet\nCqlyvOaumyWQUUUVoSFFFFABS0lFAF6NtyioJ3y2PSiJ8IRUJOTSSSKvcVRk1MKbGuKfSlYEFFFL\nUDGkZFQVYb7pqt3NaIlhRRRTEFFFFAFhTkVJnioozxinGspF3IkUscAEn2q/Bpcr4MuEHp3rRs4I\n44wVUZPfvVmtCSGC1jgA2qMjuep/GpqKKBBRRRQAUUUUAFFFFABRRTHkSMZdgv1oAfUE91Hb/e/L\nvWfcaqWysX/fZ6/hWaSWPJoAt3GoyzEhCY06Y9fqapUUUwCikzRmgBabRRQAUUUUAFFFFABWzp2o\nb8Qv17HPX6571jUUAdbRWXp2o79sMud3RW659j71qUgCiiigAooooAKKKKACiiigAooooAKKKKAC\niiigAooooAKKOtZ15qYT5Ivmbu3Yf4mgC5POluu5z9B3rFur6W5OPup2A/rUEkrzNuc5NMpDA80w\nin01qaAbRRRTEKKdTRTqljCiiigApaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKSigAphp9\nNNNCEooopgFPplOHSkwQtFFLikMbRS0tMY2gGiiggNxoyaKM0FXDNFFFAgooozTAQ0lLSUAFKOtJ\nQKAJKDRRSGNopDSUxC0lFFABRRRQAUUUUAFFOCE07y6GFiOjFTBBS49qVx2IcUbDU4prNii9waIt\nppKcTTaYgooooAKKKKACrEfSq9TRv2NJ7DRJRRRWZQVXc5NSu2Kgq4oTFFXohtQVVgTcwPYVcpTG\ngpc0lFZjFzRmkooAdRTaXNAC0UUmaBC0UUUgCiiigAopKSmMKjmXchqSg8jFVDRiZnUUrDBpK1IC\niiigAooooAKcnJptSRCk9holAxS0UVmUJRRRQAyQ4FQ1LKe1RVrFEsKKKKBBRRRQA+M81KelQpwa\nmNTJFHQW/wDq1qWorf8A1a1LTJCiiigAooooAKKKKACiqdzqMVv0+dvQH+ZrJnvZbgnLYH90dKAN\nK61RY8pF8x9ew/xrIlnklOXYsaiozTAWikpKAHUU2igAooooAKKKKACiiigAooooAKKKKAF9K19O\n1DO2GQkt2brn2NY9FAHW0VkafqP/ACzmb02sf5Mf61r0gCiiigAooooAKKKKACiiigAooooAKKKK\nACmvIsalmYKKhubuO2HPLHoo/wA8ViXFxJcNlj9F7CgZYu9Raf5Uyqfqao0UUgCiiigAooooAYeK\nSnEU2qEFOFNpRQMdRRRSAKKKKQC0UUUAFFFFABRRRQAUUUUAFFFFACUUUUAFFFFAgppp1FNbgMoo\nopgFKDSUUAO3UbqbiigB26kzSUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAPWlpgNPpANIptSGo\nzQAUUUUwCiiigApyrmgLmpQMVLkUkLRRRUjCiiigBDwKjY5oZ+1NzVpCYlFFFMkKKKKACiiigAoo\nooAmWT1p+arU/fxU2Q7iMcmkpKkhG5hmquBZhj2L7nmpaKSspO7LCiiipAKKKKACiiigAooooAKK\nKKACiiigAooooFcKKKKAKlwMNUNWrgZGfSqtbIlhRRRTEFFFFABU0fSoafGcZpS2GiaiikrIoWlp\nKDTQEMh5plOfrTa1RLCiiigQUUUUAA4qdTuFQVItJ6lLU6S3/wBWtS1Fb/6taloJCiiigAooooAK\nz9VdkhG04y1aFZusf6qP/f8A6UAYlFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigArW0/Uf+WUzf7rn+THP61k0UAdbRWNp+olcRSkBf4W9PQGtmkAUUUUAFFFFABRRRQAUUVHc\nTx267nOPQdz9KAJKzrvUlTKQ8t3bsPp6/wAqo3N/LcZ52r/dU9f971qrSAViXO4kk0lFFAwooooA\nKKKKACiiigBDTKeaaaaBiUUUUxDgaWminUgCiiigYClpBS0gCiiigAooopAFFFNpgLRRRQIKKKKA\nCiiigAooooQDaSnbaMVQDaKdtpdo9aAGUU7AoxQA2lpcUUANop2KTFIBKKdiimA2lxS4opXAbS0t\nFMBKKWigBtFFFABTxTKUUAPpNuaKUdaQxPLNGypaKVwsR+XSiOn0Umx2DGKKKKQwooooAKY54p9R\nydqa3BkdFFFWQFFFFABRRRQAUUUUAFFFFABRRRQAU5G2sDTaKANGimRNuQGpKxe5oJRRRSAKKKKA\nCiiigAooooAKKKKACiiigQUUUUAFFFFAhrjcMVQIwcVoVTmGHP8AntWkGJkdFFFWIKKKKAClHWko\noAsDpRQvSlrNosKQ8DNLTXPy0JAyCiiitCAooooAKKKKAHAVNtGKYgqwV4po3prQ27f/AFa1LUVv\n/q1qWpMAooooAKKKKACs3Wf9Qn+//StKsbWv9ZF/un+dAGXRRRTAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACtTT9QMe2KXG3oGPG369BisuigDraKxdOv/ACsQycrnhs/d\n9jk421tUgCiiigAopNwA3EgDrnPFZd5qWfkh/F//AIn/ABoAsXV+lvwPmk9P8f8ACsWSR5m3Pyab\nRSGFFFFABRRRQAUUUUAFFFFABRRRQAUjUtBpgR0UUUxCilptOpALRSUUALS0lJSC4tFJS0DCiiig\nQUUUUAFFFFABRRRQAUUUUDCnYpBTqBhSYooJpagKaZRmkqiQooooAKKKKACiiigAooooAKKKKACi\niloASg0U3NABRRRTAKKKKAH0UlLUsaJB0paYtPpMoKKKKkQUUUUxhRRRQAUhGRS0UICvRUnl/Wm7\nSK0FYbRRRQSFFFFABRRRQAUUUUAFFFFABRRRQBYtn5K1ZqjGcOp96vdRms5lR2CiiioKCiiigAoo\nooAKKKKACiiigAooooJCiiigAopM0ZphYKguFyAampsgyhqo6MGUqKKK0JCiiigAooooAljp9Qr1\nqcVMi0xKZIeKkqKQ9KSEyOiiirJFXrSuMUsfWnSClcLEVAooFMETxirH8NQR1O3AqkddOKSNm3/1\na1LUVv8A6talqDkCiiigAooooAKxda/1sX+4f51tVi61/rYv9w/zpgZlFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFaOn3/kfu5MlOx67f64rOooA63OahnuYr\ncZduf7o+8foKxINRmhjKA5/u5/g+lV2ZnJLEknuaQFm5vZLk88J2X/Gq1NzS0MApaSikMWikooEL\nRSCigYtFFJQAtFFJmgBaKTNLTAKKSikA0jFJTjTaaEFKDSUopgLRRRSAKKKKAFooopAFFFFMAooo\npAFFJRTAWikpaQBSgUmaXNAx1JSbqTNFgHE00mjNJTQmFFFFABRRRQAUUUUAFFFFABSGlptMBRS0\ngpaQADQaKbmgAzRRS4pgJRTwKGHFJO47DKKKKYhwpabTqTBAODUtRU9allIdRRRSGFFFFABRRRSE\nFFFFMYUUUUABwe1ROMVLTHGRTTYmiKiiirJCiiigAooooAKKKKACiiigBRV6Ntyg1Qq1bNnIzUTK\niT0UUVmUFFFFABRRRQAUUUUAFJS02gBaKSimAUUUUCCiiigAooo/woApONrEU2pJsF+KjrVEBRRR\nTAKKKKAFBwanFV6mjNS9hpj6gc81MTUB60RQ2JRRRVEkkY5qQ8g02MU8ipe5ZWopzCm1RBNGasE5\nFVEOKshsinc6aTVtzct/9WtS1Fb/AOrWpak5gooooAKKKKACsXWv9bF/un+dbVYutf6yL/dP86YG\nZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAO\npAaSigB9FJS0rAFFFFABRRRSAKKKKACiiigAooooAKKKKACmU+kpgNopcUYpgLRRRSAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbQAUUUUwClzSUUAFFF\nKKAClpaAKQIcBS0UVJRCeKKe4plWJhThTacKBC04Gm0VLRRIDS00UoqQFooooAKKKKACiiigYUlL\nSUALUgXFIq06k2BTYYJFJUs64aoq1IYUUUUAFFFFABRRRQAUUUUAFSwNteoqUdaBo0OtFNjO5RTq\nxluWFFFFIAooooAKKKKAEzSUUUxBRRRQAUUUUAFFFFABTZG2qadVaZ8nFVFAyGigUVoQFFFFABRR\nRQAU5G2mm0UATM3FRGlNNoAKKKKAJFbFLvptJSGITmkoopgFL+VJSikB09v/AKtalqCCRPLHzCpP\nNj/vr+dAh9FN82P++v50nmx/31/OgB9FNMif3l/OkMiL1ZR+IoAfXP6qT9qYZPAAHt9K3fMj/vD8\n6wNSObqQg5+7/KmgKlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAOFLSCikAtFJRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRRYAooooAKKK\nKACiiigAooooAKKKKACiiigAooopgFFFFIAooooAKKKKACiiigAooooAKKKKACiikoASiiimAUUU\nUAFFFFAC4paKKGAU8UgFPFQxiUUfnRQMRhkVFU1REYqkJiUopKBTsIfRQKKTGOFOpq06pGFLSUtI\nAooooAKKKKBhSgZpBzUoGKBXFpKM0nFSMbKu5aq1f25GKosMMR71pHYliUUUVQgooooAKKKKACii\nigAooooAtWz5BX05qeqcDYce9XKzmtS47BRRxRxUBcKKTI9aMigaFpDSE+9Ju96Yri0UmR6ij8aN\nQFoqNpgrYxTlcN0p2YrjqKQHikzRYY6ijNFFgGu21Sapk5NTXDdqgFaxRNxQKCMUgpxoENooooAK\nKKKACiiigAooooAKBRSigB1BpaQjikVYbSUtOC0xWGgUuKdS0yuU/9k=\n",
"output_type": "pyout",
"prompt_number": 278,
"text": [
"<IPython.core.display.Image object at 0xa2c42d0>"
]
}
],
"prompt_number": 278
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 271
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 271
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"def imgOpen(object):\n",
" img "
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 272
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imagRandz.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'str' object has no attribute 'show'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-273-145edbdcb3a0>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimagRandz\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m: 'str' object has no attribute 'show'"
]
}
],
"prompt_number": 273
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 273
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img2 = Image.open('street1715.jpg')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 274
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 275
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img2.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 81
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgAgain = img2.rotate(180)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 82
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgAgain.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 83
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 83
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgLower = ImageChops.constant(imgAgain, 2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'ImageChops' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-84-02f8b06c2543>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgLower\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageChops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconstant\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimgAgain\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'ImageChops' is not defined"
]
}
],
"prompt_number": 84
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgOver = ImageEnhance.Brightness(imgLower, 3)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'imgLower' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-85-0ff9e4822fa9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgOver\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageEnhance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mBrightness\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimgLower\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m3\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'imgLower' is not defined"
]
}
],
"prompt_number": 85
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgLaw = enchane.enchancer(imgOver)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'enchane' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-86-b3d275ea4a7a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgLaw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menchane\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menchancer\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimgOver\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'enchane' is not defined"
]
}
],
"prompt_number": 86
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgLower.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'imgLower' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-87-f45aaf132dd9>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgLower\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'imgLower' is not defined"
]
}
],
"prompt_number": 87
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img4 = Image.open('edit.jpg')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 88
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img4.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 89
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from "
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (<ipython-input-90-b812af2a111f>, line 1)",
"output_type": "pyerr",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-90-b812af2a111f>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m from\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"prompt_number": 90
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgNever = ImageChops.blend(img4, imgAgain, .5)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'ImageChops' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-91-aa706f946102>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgNever\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageChops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mblend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg4\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimgAgain\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'ImageChops' is not defined"
]
}
],
"prompt_number": 91
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 91
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgTitle = Image.open('street0276.jpg')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 92
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgTitle.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 93
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgComt = ImageChops.blend(imgTitle, imgNever, .5)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'ImageChops' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-94-afe2112b29e2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgComt\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageChops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mblend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimgTitle\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimgNever\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m.5\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'ImageChops' is not defined"
]
}
],
"prompt_number": 94
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgComt.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'imgComt' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-95-0d98e3d93c85>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgComt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'imgComt' is not defined"
]
}
],
"prompt_number": 95
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgConvertz = ImageEnhance.Color(imgComt)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'imgComt' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-96-7c27bff797eb>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgConvertz\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageEnhance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mColor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimgComt\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'imgComt' is not defined"
]
}
],
"prompt_number": 96
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgNever.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'imgNever' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-97-d984b3647799>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgNever\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'imgNever' is not defined"
]
}
],
"prompt_number": 97
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img3 = ImageChops.composite(img, img2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'ImageChops' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-98-d324501a7059>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimg3\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageChops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcomposite\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimg2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'ImageChops' is not defined"
]
}
],
"prompt_number": 98
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"bighImg = ImageChops.darker(img, imgNever)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'ImageChops' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-99-56e9844e5ec6>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mbighImg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageChops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdarker\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimgNever\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'ImageChops' is not defined"
]
}
],
"prompt_number": 99
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"bighImg.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'bighImg' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-100-e14f7a6ba4e5>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mbighImg\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'bighImg' is not defined"
]
}
],
"prompt_number": 100
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import random"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 101
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"randomNumbz = random.randint(0,20)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 102
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lizt = []"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 103
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lizt.append(randomNumbz)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 104
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"hello = 'hello there. i am going'"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 105
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print hello"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"hello there. i am going\n"
]
}
],
"prompt_number": 106
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"revHello = string(hello)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'string' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-107-71f4a7bc2988>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mrevHello\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mstring\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhello\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'string' is not defined"
]
}
],
"prompt_number": 107
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print lizt"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[18]\n"
]
}
],
"prompt_number": 108
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 108
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 108
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lizt.append(hellothere)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'hellothere' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-109-c782da6e04dc>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlizt\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mhellothere\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'hellothere' is not defined"
]
}
],
"prompt_number": 109
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 109
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from PIL import ImageEnhance"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 110
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"enchan = ImageEnhance.Brightness(img)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 111
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"chanEnv = enhancer.enhance(9)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'enhancer' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-112-b8eb66ca3f31>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mchanEnv\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0menhancer\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0menhance\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m9\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'enhancer' is not defined"
]
}
],
"prompt_number": 112
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"chanEnv.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'chanEnv' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-113-3a5f90d5fb40>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mchanEnv\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'chanEnv' is not defined"
]
}
],
"prompt_number": 113
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import cocos"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 114
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"cocos."
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (<ipython-input-115-cf7488254da9>, line 1)",
"output_type": "pyerr",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-115-cf7488254da9>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m cocos.\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"prompt_number": 115
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# PIL_ImageEnhance_bright1.py\n",
"# darken and lighten an image using PIL\n",
" \n",
"from PIL import Image\n",
"from PIL import ImageEnhance\n",
" \n",
"# pick an image file you have in the working directory\n",
"img2 = Image.open(img2)\n",
" \n",
"# factor 1.0 always returns a copy of the original image\n",
"# lower factors mean darker, and higher values brighter\n",
"for k in range(0, 9):\n",
" factor = k * 4.0\n",
" print(factor), # 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0\n",
" img_enhanced = enhancer.enhance(factor)\n",
" \n",
" # safe images as Audi_bright025.jpg to Audi_bright200.jpg\n",
" # to the working directory\n",
" img_enhanced.save(\"twar_color%03d.jpg\" % (int(factor*100)) )"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "read",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-116-85cf29b63596>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# pick an image file you have in the working directory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mimg2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg2\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;31m# factor 1.0 always returns a copy of the original image\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\u001b[0m in \u001b[0;36mopen\u001b[0;34m(fp, mode)\u001b[0m\n\u001b[1;32m 1990\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1991\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1992\u001b[0;31m \u001b[0mprefix\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mread\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m16\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1993\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1994\u001b[0m \u001b[0mpreinit\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\u001b[0m in \u001b[0;36m__getattr__\u001b[0;34m(self, name)\u001b[0m\n\u001b[1;32m 512\u001b[0m \u001b[0mnew\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'data'\u001b[0m\u001b[0;34m]\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtobytes\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 513\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mnew\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 514\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mname\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 515\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 516\u001b[0m \u001b[0;31m##\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: read"
]
}
],
"prompt_number": 116
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import ImageChops\n",
"import random"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 117
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"wireNum = random.randint(1000, 6000)\n",
"\n",
"wireDub = wireNum + 50"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 118
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print wireNum, wireDub"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"3872 3922\n"
]
}
],
"prompt_number": 119
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgName = 'wire'\n",
"imgTwo = 'wire'"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 120
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img = Image.open(\"wire3000.jpg\")\n",
"img2 = Image.open(\"wire2000.jpg\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "IOError",
"evalue": "[Errno 2] No such file or directory: 'wire3000.jpg'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-121-b4d3201bba56>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"wire3000.jpg\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mimg2\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"wire2000.jpg\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\u001b[0m in \u001b[0;36mopen\u001b[0;34m(fp, mode)\u001b[0m\n\u001b[1;32m 1986\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misStringType\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1987\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1988\u001b[0;31m \u001b[0mfp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuiltins\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1989\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1990\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: 'wire3000.jpg'"
]
}
],
"prompt_number": 121
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img.show(img)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 122
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import random\n",
"ranz = random.choice(['constant','invert','lighter','darker', 'difference', 'multiply',\n",
" 'screen'])"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 123
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print ranz"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"screen\n"
]
}
],
"prompt_number": 124
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"screen = ImageChops.difference(img,img2)\n",
"screen.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 125
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"screen.save('edit.jpg')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 126
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"brightLight = ImageEnhance.Brightness(screen)\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 127
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img3 = 'ImageChops.' + ranz + '(img, img2)'"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 128
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"openFilz = Image.open('edit.jpg')\n",
"openFilz.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 129
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightFilz = ImageChops.lighter(screen, img)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 130
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightFilz.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 131
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"party = Image.open('33561.jpg')"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 132
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 132
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgSwap = ImageChops.difference(party, img2)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 133
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgSwap.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 134
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imgBlack = ImageOps.col(imgSwap, 50, 100)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'ImageOps' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-135-386d9f1b8114>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimgBlack\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageOps\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mcol\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimgSwap\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m50\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;36m100\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'ImageOps' is not defined"
]
}
],
"prompt_number": 135
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print imgWhite"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'imgWhite' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-136-21c051a20798>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mimgWhite\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'imgWhite' is not defined"
]
}
],
"prompt_number": 136
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 136
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightXus = ImageChops.darker(img2, img)\n",
"lightXus.show()\n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 137
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightFilz.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 138
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightNope = ImageChops.multiply(img, lightFilz)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 139
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightNope.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 140
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightGone = ImageChops.invert(lightNope)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 141
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightGone.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 142
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightCheck = ImageEnhance.Sharpness(lightGone)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 143
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lightCheck.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "Sharpness instance has no attribute 'show'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-144-15ea9899b633>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlightCheck\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m: Sharpness instance has no attribute 'show'"
]
}
],
"prompt_number": 144
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from ftplib import ftp"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "ImportError",
"evalue": "cannot import name ftp",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-145-78a382fad531>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfrom\u001b[0m \u001b[0mftplib\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mftp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mImportError\u001b[0m: cannot import name ftp"
]
}
],
"prompt_number": 145
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print img3"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"ImageChops.screen(img, img2)\n"
]
}
],
"prompt_number": 146
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import ImageOps"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 147
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 147
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img5.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'img5' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-148-92af25d77188>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimg5\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'img5' is not defined"
]
}
],
"prompt_number": 148
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"#!/usr/bin/env python\n",
"# Batch thumbnail generation script using PIL\n",
"\n",
"import sys\n",
"import os.path\n",
"import Image\n",
"\n",
"thumbnail_size = (28, 28)\n",
"\n",
"# Loop through all provided arguments\n",
"for i in range(1, len(sys.argv)):\n",
" try:\n",
" # Attempt to open an image file\n",
" filepath = sys.argv[i]\n",
" image = Image.open(filepath)\n",
" except IOError, e:\n",
" # Report error, and then skip to the next argument\n",
" print \"Problem opening\", filepath, \":\", e\n",
" continue\n",
"\n",
" # Resize the image\n",
" image = image.resize(thumbnail_size, Image.ANTIALIAS)\n",
" \n",
" # Split our original filename into name and extension\n",
" (name, extension) = os.path.splitext(filepath)\n",
" \n",
" # Save the thumbnail as \"(original_name)_thumb.png\"\n",
" image.save(name + '_thumb.png')\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"Problem opening -f : [Errno 2] No such file or directory: '-f'\n",
"Problem opening"
]
},
{
"output_type": "stream",
"stream": "stdout",
"text": [
" /home/will/.config/ipython/profile_default/security/kernel-5361de15-41f5-4815-877b-800068dbe0b1.json : cannot identify image file\n",
"Problem opening --KernelApp.parent_appname='ipython-notebook' : [Errno 2] No such file or directory: \"--KernelApp.parent_appname='ipython-notebook'\"\n",
"Problem opening --parent=1 : [Errno 2] No such file or directory: '--parent=1'\n"
]
}
],
"prompt_number": 149
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print img3"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"ImageChops.screen(img, img2)\n"
]
}
],
"prompt_number": 150
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"showImg()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'showImg' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-151-23b4cba0268d>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mshowImg\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'showImg' is not defined"
]
}
],
"prompt_number": 151
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"doeRung = os.uname()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 152
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"lenNumbz = len.doeRung()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'builtin_function_or_method' object has no attribute 'doeRung'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-153-5ad541b89365>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mlenNumbz\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdoeRung\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mAttributeError\u001b[0m: 'builtin_function_or_method' object has no attribute 'doeRung'"
]
}
],
"prompt_number": 153
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"class WireLoad(object):\n",
" def showImg():\n",
" return('hello there')\n",
" \n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 154
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"ranNumbz = random.randint(0,50)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 155
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print ranNumbz"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0\n"
]
}
],
"prompt_number": 156
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for data in range(ranNumbz,100):\n",
" print data"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0\n",
"1\n",
"2\n",
"3\n",
"4\n",
"5\n",
"6\n",
"7\n",
"8\n",
"9\n",
"10\n",
"11\n",
"12\n",
"13\n",
"14\n",
"15\n",
"16\n",
"17\n",
"18\n",
"19\n",
"20\n",
"21\n",
"22\n",
"23\n",
"24\n",
"25\n",
"26\n",
"27\n",
"28\n",
"29\n",
"30\n",
"31\n",
"32\n",
"33\n",
"34\n",
"35\n",
"36\n",
"37\n",
"38\n",
"39\n",
"40\n",
"41\n",
"42\n",
"43\n",
"44\n",
"45\n",
"46\n",
"47\n",
"48\n",
"49\n",
"50\n",
"51\n",
"52\n",
"53\n",
"54\n",
"55\n",
"56\n",
"57\n",
"58\n",
"59\n",
"60\n",
"61\n",
"62\n",
"63\n",
"64\n",
"65\n",
"66\n",
"67\n",
"68\n",
"69\n",
"70\n",
"71\n",
"72\n",
"73\n",
"74\n",
"75\n",
"76\n",
"77\n",
"78\n",
"79\n",
"80\n",
"81\n",
"82\n",
"83\n",
"84\n",
"85\n",
"86\n",
"87\n",
"88\n",
"89\n",
"90\n",
"91\n",
"92\n",
"93\n",
"94\n",
"95\n",
"96\n",
"97\n",
"98\n",
"99\n"
]
}
],
"prompt_number": 157
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 157
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 157
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"# PIL_ImageEnhance_bright1.py\n",
"# darken and lighten an image using PIL\n",
" \n",
"from PIL import Image\n",
"from PIL import ImageEnhance\n",
" \n",
"# pick an image file you have in the working directory\n",
"img = Image.open(\"wire1337.jpg\")\n",
"enhancer = ImageEnhance.Color(img)\n",
" \n",
"# factor 1.0 always returns a copy of the original image\n",
"# lower factors mean darker, and higher values brighter\n",
"for k in range(0, 9):\n",
" factor = k * 4.0\n",
" print(factor), # 0.0 0.25 0.5 0.75 1.0 1.25 1.5 1.75 2.0\n",
" img_blend = enhancer.enhance(factor)\n",
" \n",
" # safe images as Audi_bright025.jpg to Audi_bright200.jpg\n",
" # to the working directory\n",
" img_enhanced.save(\"twar_color%03d.jpg\" % (int(factor*100)) )"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "IOError",
"evalue": "[Errno 2] No such file or directory: 'wire1337.jpg'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-158-56827c5a5194>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 6\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 7\u001b[0m \u001b[0;31m# pick an image file you have in the working directory\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 8\u001b[0;31m \u001b[0mimg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"wire1337.jpg\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 9\u001b[0m \u001b[0menhancer\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageEnhance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mColor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 10\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\u001b[0m in \u001b[0;36mopen\u001b[0;34m(fp, mode)\u001b[0m\n\u001b[1;32m 1986\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misStringType\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1987\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1988\u001b[0;31m \u001b[0mfp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuiltins\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1989\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1990\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: 'wire1337.jpg'"
]
}
],
"prompt_number": 158
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"colorSwap = ImageEnhance.Color(0)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'int' object has no attribute 'convert'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-159-e7bdce99b631>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mcolorSwap\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageEnhance\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mColor\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/PIL/ImageEnhance.pyc\u001b[0m in \u001b[0;36m__init__\u001b[0;34m(self, image)\u001b[0m\n\u001b[1;32m 48\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0m__init__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mimage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mimage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimage\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 50\u001b[0;31m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdegenerate\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"L\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 51\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 52\u001b[0m \u001b[0;31m##\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: 'int' object has no attribute 'convert'"
]
}
],
"prompt_number": 159
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import os"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 160
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"x = os.chdir\n",
"print x()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "TypeError",
"evalue": "chdir() takes exactly 1 argument (0 given)",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mTypeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-161-a19011a11b63>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mx\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mos\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mchdir\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0mx\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mTypeError\u001b[0m: chdir() takes exactly 1 argument (0 given)"
]
}
],
"prompt_number": 161
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"swapImg = pn.Image.convert('p', colors=8)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'pn' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-162-37883efbb6ea>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mswapImg\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mpn\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mconvert\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'p'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mcolors\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;36m8\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'pn' is not defined"
]
}
],
"prompt_number": 162
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from PIL import ImageFont, ImageDraw"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 163
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"draw = ImageDraw.Draw(img2)\n",
"\n",
"font = ImageFont.ImageFont()\n",
"\n",
"draw.text((10,10), \"Hello World\", font='love.ttf')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "AttributeError",
"evalue": "'str' object has no attribute 'getmask'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mAttributeError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-164-95255cd68980>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0mfont\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageFont\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mImageFont\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 5\u001b[0;31m \u001b[0mdraw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;36m10\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"Hello World\"\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mfont\u001b[0m\u001b[0;34m=\u001b[0m\u001b[0;34m'love.ttf'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/PIL/ImageDraw.pyc\u001b[0m in \u001b[0;36mtext\u001b[0;34m(self, xy, text, fill, font, anchor)\u001b[0m\n\u001b[1;32m 265\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mAttributeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 266\u001b[0m \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 267\u001b[0;31m \u001b[0mmask\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfont\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetmask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mfontmode\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 268\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mTypeError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 269\u001b[0m \u001b[0mmask\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfont\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetmask\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mtext\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mAttributeError\u001b[0m: 'str' object has no attribute 'getmask'"
]
}
],
"prompt_number": 164
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"randnum = random.randint(1000, 6667)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 165
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print randnum"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"5831\n"
]
}
],
"prompt_number": 166
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"doubNum = randnum / 2"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 167
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"nameNow = ('wire' + doubNum"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "unexpected EOF while parsing (<ipython-input-168-5eab49ae8019>, line 1)",
"output_type": "pyerr",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-168-5eab49ae8019>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m nameNow = ('wire' + doubNum\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m unexpected EOF while parsing\n"
]
}
],
"prompt_number": 168
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"daStrng = []"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 169
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"daStrng.append(doubNum)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 170
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print doubNum"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"2915\n"
]
}
],
"prompt_number": 171
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print daStrng"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[2915]\n"
]
}
],
"prompt_number": 172
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"daStrng.append(randnum)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 173
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for numz in range(0,8):\n",
" daStrng.append(randnum)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 174
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print daStrng"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"[2915, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831]\n"
]
}
],
"prompt_number": 175
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"str(daStrng)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 176,
"text": [
"'[2915, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831, 5831]'"
]
}
],
"prompt_number": 176
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"strngNum = str(randnum)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 177
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print strngNum"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"5831\n"
]
}
],
"prompt_number": 178
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import os"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 179
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"os.curdir"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 180,
"text": [
"'.'"
]
}
],
"prompt_number": 180
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print os.chdir"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"<built-in function chdir>\n"
]
}
],
"prompt_number": 181
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"ImageChops.difference(img, img2)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 182,
"text": [
"<PIL.Image.Image image mode=RGB size=1280x720 at 0x8539830>"
]
}
],
"prompt_number": 182
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imagRandz"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "pyout",
"prompt_number": 183,
"text": [
"'street2877.jpg'"
]
}
],
"prompt_number": 183
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"fileSwap = ImageChops.lighter(img, img2)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 184
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"fileSwap.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 185
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 185
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"filzSwao.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'filzSwao' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-186-ad01e1fb8daa>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mfilzSwao\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'filzSwao' is not defined"
]
}
],
"prompt_number": 186
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import ImageDraw"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"draw = ImageDraw.Draw(img)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 187
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"draw.line((50, 100) + img.size, fill=1)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 188
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"draw.polygon((100, 1000) + img.size, fill=1)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 189
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"draw.line((0, img.size[1], img.size[1], 3), fill=128)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 190
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"del draw "
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 191
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img.save(\"hello.PNG\")"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 192
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"helloz = Image.open(\"hello.PNG\")"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 193
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"helloz.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 194
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import Image, ImageDraw\n",
"\n",
"im = Image.open(\"wire1232.jpg\")\n",
"\n",
"draw = ImageDraw.Draw(im)\n",
"draw.line((0, 0) + im.size, fill=128)\n",
"draw.line((0, im.size[1], im.size[0], 0), fill=128)\n",
"del draw \n",
"\n",
"# write to stdout\n",
"im.save(\"hello.PNG\")"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "IOError",
"evalue": "[Errno 2] No such file or directory: 'wire1232.jpg'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-195-7eacd8267433>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mImageDraw\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 3\u001b[0;31m \u001b[0mim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"wire1232.jpg\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 4\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0mdraw\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageDraw\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mDraw\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mim\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\u001b[0m in \u001b[0;36mopen\u001b[0;34m(fp, mode)\u001b[0m\n\u001b[1;32m 1986\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misStringType\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1987\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1988\u001b[0;31m \u001b[0mfp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuiltins\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1989\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1990\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: 'wire1232.jpg'"
]
}
],
"prompt_number": 195
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import feedparser\n",
"\n",
"compLink = ('http://compohub.net/feed/13/28')"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"dafeed = feedparser.parse(compLink)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'feedparser' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-196-ba3be5bf02c8>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdafeed\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfeedparser\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mparse\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mcompLink\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'feedparser' is not defined"
]
}
],
"prompt_number": 196
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for info in dafeed:\n",
" print info"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'dafeed' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-197-cb873d03631c>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0minfo\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mdafeed\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0;32mprint\u001b[0m \u001b[0minfo\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'dafeed' is not defined"
]
}
],
"prompt_number": 197
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"title = dafeed['entries'][1].title\n",
"description = dafeed['entries'][1].summary\n",
"url = dafeed['entries'][1].link"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'dafeed' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-198-5a3b086da897>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mtitle\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdafeed\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'entries'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2\u001b[0m \u001b[0mdescription\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdafeed\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'entries'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msummary\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 3\u001b[0m \u001b[0murl\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mdafeed\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'entries'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlink\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'dafeed' is not defined"
]
}
],
"prompt_number": 198
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"posts = []\n",
"for i in range(0,len(dafeed['entries'])):\n",
" posts.append({\n",
" 'title': dafeed['entries'][i].title,\n",
" 'description': feed['entries'][i].summary,\n",
" 'url': dafeed['entries'][i].link,\n",
" })"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'dafeed' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-199-f5ae7c7b5cd4>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 1\u001b[0m \u001b[0mposts\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m----> 2\u001b[0;31m \u001b[0;32mfor\u001b[0m \u001b[0mi\u001b[0m \u001b[0;32min\u001b[0m \u001b[0mrange\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mdafeed\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'entries'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 3\u001b[0m posts.append({\n\u001b[1;32m 4\u001b[0m \u001b[0;34m'title'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mdafeed\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'entries'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtitle\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 5\u001b[0m \u001b[0;34m'description'\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mfeed\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'entries'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mi\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msummary\u001b[0m\u001b[0;34m,\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mNameError\u001b[0m: name 'dafeed' is not defined"
]
}
],
"prompt_number": 199
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"urlGetz = posts[0]"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "IndexError",
"evalue": "list index out of range",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIndexError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-200-3efaf7f7f3f2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0murlGetz\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mposts\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mIndexError\u001b[0m: list index out of range"
]
}
],
"prompt_number": 200
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 200
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"urlGetz['description']"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'urlGetz' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-201-44441cf6c790>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0murlGetz\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m'description'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'urlGetz' is not defined"
]
}
],
"prompt_number": 201
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print os.getcwd()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"/home/will/Desktop/wirepil\n"
]
}
],
"prompt_number": 202
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print urlGetz"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'urlGetz' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-203-34fc76a8aa11>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;32mprint\u001b[0m \u001b[0murlGetz\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'urlGetz' is not defined"
]
}
],
"prompt_number": 203
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"imagRandz = random.choice(os.listdir('/home/will/Desktop/video'))"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 204
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"newImage = Image.open(imagRandz)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "IOError",
"evalue": "[Errno 2] No such file or directory: 'wire1398.jpg'",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mIOError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-205-100f1bcda21e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnewImage\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimagRandz\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\u001b[0m in \u001b[0;36mopen\u001b[0;34m(fp, mode)\u001b[0m\n\u001b[1;32m 1986\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0misStringType\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1987\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1988\u001b[0;31m \u001b[0mfp\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mbuiltins\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mopen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mfp\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m\"rb\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1989\u001b[0m \u001b[0;32melse\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1990\u001b[0m \u001b[0mfilename\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;34m\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mIOError\u001b[0m: [Errno 2] No such file or directory: 'wire1398.jpg'"
]
}
],
"prompt_number": 205
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"newImage.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'newImage' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-206-d1e66199b3e7>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mnewImage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'newImage' is not defined"
]
}
],
"prompt_number": 206
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 206
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import ImageFont, ImageDraw\n",
"\n",
"draw = ImageDraw.Draw(img2)\n",
"\n",
"# use a truetype font\n",
"font = ImageFont.truetype(\"love.ttf\", 42)\n",
"\n",
"draw.text((400, 25), \"a film by William Mckee\", font=font)\n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 207
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img2.show()"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 208
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"ranNumz = random.randint(2, 22)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 209
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import ImageEnhance\n",
"\n",
"enhancer = ImageEnhance.Brightness(img2)\n",
"\n",
"enhancer.enhance(show()\n",
"\n",
"'''\n",
"for i in range(2):\n",
" factor = i / 0.5\n",
" enhancer.enhance(factor).show(\"Sharpness %f\" % factor)\n",
"'''"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (<ipython-input-210-5706a6b018a4>, line 11)",
"output_type": "pyerr",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-210-5706a6b018a4>\"\u001b[0;36m, line \u001b[0;32m11\u001b[0m\n\u001b[0;31m '''\nfor i in range(2):\n factor = i / 0.5\n enhancer.enhance(factor).show(\"Sharpness %f\" % factor)\n'''\u001b[0m\n\u001b[0m \n \n \n \n ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"prompt_number": 210
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahNow = ImageChops.darker(newImage, img)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahNow.show()"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahChange = ImageChops.darker(blahNow, newImage)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'blahNow' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-211-feb65a09a084>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mblahChange\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageChops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdarker\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mblahNow\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnewImage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'blahNow' is not defined"
]
}
],
"prompt_number": 211
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 211
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"import random"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 212
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"randz = random.randint(0,20)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 213
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"print randz"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"12\n"
]
}
],
"prompt_number": 214
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"for numz in range(0,20):\n",
" print numz"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"0\n",
"1\n",
"2\n",
"3\n",
"4\n",
"5\n",
"6\n",
"7\n",
"8\n",
"9\n",
"10\n",
"11\n",
"12\n",
"13\n",
"14\n",
"15\n",
"16\n",
"17\n",
"18\n",
"19\n"
]
}
],
"prompt_number": 215
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahChange.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'blahChange' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-216-8f39e5ca4d2a>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mblahChange\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'blahChange' is not defined"
]
}
],
"prompt_number": 216
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahNope = ImageChops.invert(blahChange)"
],
"language": "python",
"metadata": {},
"outputs": []
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahNope.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'blahNope' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-217-1cc8142a657b>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mblahNope\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'blahNope' is not defined"
]
}
],
"prompt_number": 217
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahWhite = ImageChops.difference(blahNope, blahChange)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'blahNope' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-218-3d4b6b97ec22>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mblahWhite\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageChops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mdifference\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mblahNope\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mblahChange\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'blahNope' is not defined"
]
}
],
"prompt_number": 218
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahWhite.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'blahWhite' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-219-3377270a1f8f>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mblahWhite\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'blahWhite' is not defined"
]
}
],
"prompt_number": 219
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahBlack = ImageChops.subtract(blahWhite, newImage)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'blahWhite' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-248-ba3101d68696>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mblahBlack\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageChops\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msubtract\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mblahWhite\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mnewImage\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'blahWhite' is not defined"
]
}
],
"prompt_number": 248
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahBlack.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'blahBlack' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-249-e17cc0b165de>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mblahBlack\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'blahBlack' is not defined"
]
}
],
"prompt_number": 249
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahGray = ImageOps.grayscale(blahBlack)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'blahBlack' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-220-875b1ce42ff3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mblahGray\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mImageOps\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgrayscale\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mblahBlack\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'blahBlack' is not defined"
]
}
],
"prompt_number": 220
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"blahGray.show()"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "NameError",
"evalue": "name 'blahGray' is not defined",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mNameError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-221-b0ad072c27a0>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mblahGray\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshow\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;31mNameError\u001b[0m: name 'blahGray' is not defined"
]
}
],
"prompt_number": 221
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"ls"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"33561.jpg hello.PNG README.md street1016.jpg wirePIL.ipynb\r\n",
"artcontrol.ipynb LICENSE smerk-color.png street1715.jpg\r\n",
"edit.jpg love.ttf street0276.jpg Untitled0.ipynb\r\n"
]
}
],
"prompt_number": 226
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from wand.image import Image"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 223
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from wand.display import display"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 224
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"img2.transform('300x300', '200%')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "ValueError",
"evalue": "missing method data",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-247-711ded140086>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mimg2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mtransform\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m'300x300'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'200%'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/PIL/Image.pyc\u001b[0m in \u001b[0;36mtransform\u001b[0;34m(self, size, method, data, resample, fill)\u001b[0m\n\u001b[1;32m 1634\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmethod\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mgetdata\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1635\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mdata\u001b[0m \u001b[0;32mis\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 1636\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m\"missing method data\"\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 1637\u001b[0m \u001b[0mim\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mnew\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmode\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0msize\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mNone\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 1638\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmethod\u001b[0m \u001b[0;34m==\u001b[0m \u001b[0mMESH\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mValueError\u001b[0m: missing method data"
]
}
],
"prompt_number": 247
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"display(newzImg)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "ClosedImageError",
"evalue": "<wand.image.Image: (closed)> is closed already",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mClosedImageError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-244-71e5fc9139b3>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mdisplay\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mnewzImg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/wand/display.pyc\u001b[0m in \u001b[0;36mdisplay\u001b[0;34m(image, server_name)\u001b[0m\n\u001b[1;32m 64\u001b[0m library.MagickDisplayImage.argtypes = [ctypes.c_void_p,\n\u001b[1;32m 65\u001b[0m ctypes.c_char_p]\n\u001b[0;32m---> 66\u001b[0;31m \u001b[0mlibrary\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mMagickDisplayImage\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mimage\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mwand\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mstr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mserver_name\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mencode\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 67\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 68\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/local/lib/python2.7/dist-packages/wand/image.pyc\u001b[0m in \u001b[0;36mwand\u001b[0;34m(self)\u001b[0m\n\u001b[1;32m 459\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mresource\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 460\u001b[0m \u001b[0;32mexcept\u001b[0m \u001b[0mDestroyedResourceError\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 461\u001b[0;31m \u001b[0;32mraise\u001b[0m \u001b[0mClosedImageError\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mrepr\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m+\u001b[0m \u001b[0;34m' is closed already'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 462\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 463\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mwand\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0msetter\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mClosedImageError\u001b[0m: <wand.image.Image: (closed)> is closed already"
]
}
],
"prompt_number": 244
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"from __future__ import print_function\n",
"from wand.image import Image"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 230
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"with Image(filename='hello.PNG') as derbNow:\n",
" print('width =', derbNow.width)\n",
" print('height =', derbNow.height)"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"width = 1280\n",
"height = 720\n"
]
}
],
"prompt_number": 233
},
{
"cell_type": "code",
"collapsed": false,
"input": [
" derbNow.size"
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "IndentationError",
"evalue": "unexpected indent (<ipython-input-237-a67f999b541a>, line 1)",
"output_type": "pyerr",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-237-a67f999b541a>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m derbNow.size\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mIndentationError\u001b[0m\u001b[0;31m:\u001b[0m unexpected indent\n"
]
}
],
"prompt_number": 237
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"Image(filename='edit.jpg')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"jpeg": "/9j/4AAQSkZJRgABAQAAAQABAAD/2wBDAAgGBgcGBQgHBwcJCQgKDBQNDAsLDBkSEw8UHRofHh0a\nHBwgJC4nICIsIxwcKDcpLDAxNDQ0Hyc5PTgyPC4zNDL/2wBDAQkJCQwLDBgNDRgyIRwhMjIyMjIy\nMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjIyMjL/wAARCALQBQADASIA\nAhEBAxEB/8QAHwAAAQUBAQEBAQEAAAAAAAAAAAECAwQFBgcICQoL/8QAtRAAAgEDAwIEAwUFBAQA\nAAF9AQIDAAQRBRIhMUEGE1FhByJxFDKBkaEII0KxwRVS0fAkM2JyggkKFhcYGRolJicoKSo0NTY3\nODk6Q0RFRkdISUpTVFVWV1hZWmNkZWZnaGlqc3R1dnd4eXqDhIWGh4iJipKTlJWWl5iZmqKjpKWm\np6ipqrKztLW2t7i5usLDxMXGx8jJytLT1NXW19jZ2uHi4+Tl5ufo6erx8vP09fb3+Pn6/8QAHwEA\nAwEBAQEBAQEBAQAAAAAAAAECAwQFBgcICQoL/8QAtREAAgECBAQDBAcFBAQAAQJ3AAECAxEEBSEx\nBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2Nzg5OkNERUZHSElK\nU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOkpaanqKmqsrO0tba3\nuLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/9oADAMBAAIRAxEAPwDyi2iT\nyF+VfyqXyo/7i/lTbb/UJU1ZlEXlR/3V/Kjyo/7o/Kn0UAReVH/dH5UnlR/3F/KpabQAzy4/7i/l\nR5cf/PNfyqSkoAZ5af3F/Kk8tP8Anmv5VJSUAR+Wn91fyo8tP7q/lTzRQAzy0/ur+VHlp/dX8qfR\nQIZ5af3V/Kjy0/ur+VOooAZ5Uf8AcWhkjXnC/lSuwQZNZNzN5p68elawpcwCT3IlOAihfYVXyPQU\n0kk4FKEzXcoJKxmKSD0UflSbTT1XFOpvyC5FtNLtNSU1mo3JuNwPWk4pO9O2ihIpIbgUu0dqcVpo\np6AxMClAoo/CnYGGBRilpKEgQtSKvsPyqIVMv3aTRohdgqQIvoPyqOng1nYoRo09BUe2pqSgYwAe\ng/KghfRfyp60jrSAjwtLt+tKKWqAbtX2pdq+gpaWkAbV/uj8qdsX0X8qKKQBtT+6Pypf3f8AcH5U\nUw0gHYj/ALq/lR8v90UlFAD1K+i/lUqunov5VBSUcqA0ElTui/lUy+W38C/lWYHIqeOY1jKn1E0X\n/KT+4v5UeUn9xfyqBJ6nWQGs3Fkh5Mf91fyo8mP+4v5U+ioAZ5Uf9wflR5Uf9xfyp9FADPKj/uL+\nVHlJ/dX8qfRSAb5Sf3F/Kjyo/wC4v5U6lpgM8uP+4n5UeXH/AHF/Kn0UCGeXH/cX8qPLj/uL+VPo\noAZ5Uf8AcX8qPKj/ALi/lT6SgBnlR/3F/Kjyo/7i/lT6KAGeVH/dX8qPKj/ur+VPooAZ5Uf9xfyo\n8qP+4v5U+igBvlx/3V/Kjy4/7q/lTqWgBnlx/wBxfyo8mP8AuL+VPooAZ5Sf3Fo8pP7q/lT6KAGG\nJP7q/lTfKT/nmtSGkpgM8pP7i/lR5Uf91fyp9FADPLj/ALi/lR5cf91fyp9FADPLj/ur+VHlx/3V\n/Kn0UAM8uP8AuL+VHlR/3V/Kn0UAS+VHj7i/lR5UX9xfypUPFOpgM8qL+4v5UeVF/cX8qfRQAzyo\nv7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UARmKLP3F/Kjyov7i/lT6KQxnlRf3F/Kk8qL+4v5\nU+ihgM8qL+4v5UeVF/cX8qfRQAzyov8Anmv/AHzSiKL/AJ5r/wB80tOFAhvlRf8APNf++aPKi/55\nr/3zT6KYDPKi/wCea/8AfNHlRf8APNf++afRQAzyov8Anmv/AHzR5UX/ADzX/vmn0UAM8qL/AJ5r\n/wB80eVF/wA81/75p9FADPJi/uL+VHkxf3F/Kn0UAM8mL+4v5UeTF/cX8qdRQAzyY/7i/lR5Mf8A\ncX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UAM8mP/nmv5UeTH/zzX8qfRQAzyY/\n+ea/lR5Mf/PNfyp9FADPJj/55r+VHkx/881/Kn0UAM8mP/nmv5UeTH/zzX8qfRQAzyY/+ea/lS+T\nH/zzX8qdRQA3yY/+ea/lR5Mf/PNfyp9FADPJj/55r+VHkx/881/Kn0UAM8qP+4v5UeXH/cX8qfRQ\nAzyo/wC4v5UeTH/cX8qfRQAzyY/7i/lR5Mf9xfyp9FADPJj/ALi/lR5Mf9xfyp9FADPJj/uL+VHk\nx/3F/Kn0UAM8mP8AuL+VHkx/3F/Kn0UAM8mP+4v5UeTH/cX8qfRQAzyov7i/lR5UX9xfyp9FADPK\ni/uL+VHlRf3F/Kn0UAM8qL+4v5VDcRR+Q3yr09Ks1Dc/6hqAI7f/AFC1LVe1kRoVG4Z9O9WKzKCi\niigAooooAQim06koAYaSlpDQAtFJS0AFFFFAhKY0gUdabNKIx7/yqhI+45zW0Kel2BNcZkBP5Vln\nOTk81pRPng1DdQDBdRzXTTVtCGU14qwqgiq+c9KcsmOtbNX2JHtxTAaefmFIFpLbUQh6ZptSEYFR\nHrTTASnKTSUqnB5plokprDilzSMwqUMjpaSl71ZLQtLSUdaQ43FAqRaAKWpbNUPooFFQMSloooAU\nUEg02kpAFLTc0uaYBSikpaAFpKKWgA5opc0xjQA6lxUQJzUwoYCUUtJSABS9KSloAcr4qZJveq1L\nU2QGik1Tq2ay1arEcuKxnC2wmi9RUaSZqSsWiQooooAWiiigGFFFFAgooooAKKKKAEooooAKKKKA\nCiiigAooooAWikooAWiiigApDS0hoASiiimAUUUUAFFFFABRRRQBLH0p9Rx9cVJTAKKKKACiiigA\nooooASg0UUhiUUlLQwCiiigBKdTacKYhaKKKACiiigAoopKAFpKKKACiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkpaACiiqFzeujlFAGO9JsaL2QOpoVlbO0g49D\nWK9xLJ95zSWtz9lm55Rzz7GpTHY3KKKKskKKKKACiiigAooprOqfeIH1NADqKpy6jBHkAlj7VSl1\naQ8RgKKm47GwSF6kVGtzE8nlBwW54rnZLqWTq5qbTkdr9GALAdc9BTCx0NFFFMQVDc/6hvpU1RXP\n+oegDmx9wVOl1NH0c49DyKrJ9ylrv5U1qSacWpE8Sr+IqzHeQyfxBfZuDWKDTqzeHi9h3OgorAV2\nX7rEVYj1GReH2sPXpXPKhLoNM1qSqyX8L98VZVlcfKVNYOLRQlNp1JQIKKKKBBVO5uguUXqO/aoL\nm+LZRAQO7etVN1dNKi92BJuJ69+9GaYDThXTYQobBq0pDDBqmRT0crUtDI5o/LbPY1EePpWiQsiV\nQkTymK9u1VGRL7jeR0p8Z5wajHymnJy1W9VcTtuSPUeKeRTelJbEjKUUhpKrcaVxSKKTNLQOzEpc\nZpO9SCi5aQzBNSgUopeKTZSQZoptLUlDqWkp4GaTAbmjNBGKSgBad1plOBoAMU2n02kgEp1NpaAF\noxSiigBDTDUlRmhAAp+aYBTitNgOzmjFRg4qUVLAQilANLTxikAzFJipcU3FCYDBkU/NGKTFDAni\nkxVuOTNZoqdJMVlOHYGjRpagjlzU4OawasQFFFFIQUUUUAFFFFABSUtJQAUUUUAFFFFABRRRSAKK\nKKYBRRRQAUtJRQAtIaWkNACUUUUwCiiigAooooAKKKKAHJ96pqrirFMAooooAKKKKACiiigBKKKS\nkMKKKKGIKKWkoGJT6aKdTEFFFJQAtJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABWHM+6Zvqa3KwJT+8bHrWci0FIyhgRSUZqUMvaZd5/0e\nU8j7pJrUrmHJUiVeCpzW9a3sU0AYsAR1BPetEyGWaKz5dWiX7g3GqUuqTv8Ad+Ue3FO4G28iR/eY\nD6nmqkmqQJ0+asNpHk6sxqWKwuJvuxNj1Y4GKkZal1aVuE+UVSknkkPzMT+NaMOi955R/urV6Kxt\n4sbYgT6nmnYDBitppj8iM3vjirkWjyHHmuF9hya2cUtOwrlWLTbaLB27z6tzVnaF4AwB2FLRTEFF\nFFABUNz/AKh6mqG5/wBQ9AHMKelLTB2pc16cVoQOpwNMoBoaGSZpKbmkzSQC05GKnIJB9qZmlpaC\nZcjvZkGMhv8Ae5qymor/ABoR/u81mZoJrJ0oyGbX2mHZuEq9M9eazLi7ac4BwnpVOnLSjQUSrj6W\nikrQBwp1NBp/WkxADRTaM0DJY5NpqZ0EqVUqeN+1Jq2qApsCpwaQHmr0sQcVRZSjYNVF3JaJN/rS\ncGmZoqrIiwUlLQOTTRURKKk204LRctIjxTgKeRRipuWkFJmkOaTmkMWingUlACing0wU6gANJQKW\nkAUlLS8UAN5pQDTgKeKTYEdGaeRTMUXAUGloxxTckUgFIpmKkzmlwKAGCn0YoNADCKUGlxRtouAt\nAJFOApcUmAuaKZRmlYB1FKKWhsBlLmlIpKAJUcirUcmapA1MjVnJCaL9FQxyZqasGiAooopAFFFF\nABSUtJQAUUUUAFFFFABRRRSAKKKKYBRRRQAUUUUAFBopDQAUUlLTAKKKKACiiigAooooAKnX7tQV\nNH0oAdRRRTAKKKKACkpaSgApKWikMSiiigApKdSUALRRRTEFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS1FcS+RbySgAlVJ5rm5tRupjhpCo9F4oA6C\na8t4PvygH06mqq6zC8gjVTtJA3Mf6VzxpV4YfWgDshzSms7Tb0SJ5L4BHQk9asSX0EXVs+wpXAnJ\nwCawJGy7E9zVqbV+yLj3rNZy3WpepSJi1MLioSfemGQUco7k5cnikG5ztGWPoBmq24k10ml2vkW4\nY/fcZJ9BTsIzItNuZv4Ng9W4q9FoyjmZyfZRgVqUhIHUijQCCOzt4fuRKD6kZNWKhaeJec1Sn1eJ\nM4OfpzRcDSphkjXqwrBm1eR87AcerVTkuppc7nOPQU9RG/PqcMIOME44BNT2dwbq1WQ4yeoFclzX\nR6RDJFaZYbd5yPXFAjRooopgFFFFABUNz/qHqaobn/UPQBy1JTwOKWvRT0JGc0Zp1FO4hoNLSGlz\nTGgp1NzSbqVhD6aTR1oxTC42lFFFIY8E0uabRQMfT1NMFL0qBjjTadmkNACZpynBplKKb1Qy4j5F\nQ3EO7kUiNg1aBytZfCxMy+hpRVieLHIqFRW17isJTkpCuDSrQUlYlxR0pR0ppqC0hCaA1MJopgSE\nigUyigB+abRSigAXipKTFJmkA6im07FIBKKXFLincBRTqjpamwDqTFJmn0AJnFHBpDQKAEPFIDTj\nSYoAcDS4pFFOoABS8UwmikA/NJmkpDQAuaKbS0APFOpgNOpAGaKbSigAp6tTTTaLAWkarUbVno1W\no2rGaJZaopFOaWsSQooooAKSlpKACiiigAooooAKKKKACiiigAooooAKKKKACkNLSGgBKKKKYC0U\nUUAFFFFABRRRQAVJHUdPX71AEtFFFMAooooAKSlpKACkpaSkAUUUUDCikpaAFooooEFFFFMAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACijp7VSm1OCHgHeR2FICS/\n4sZs/wB01ytal5qjzxNGAAGrLpgFFFFAEsb471NHFJMTtVnqovWr9ncm3mDZOO4qWhosxaRO/Lss\nY9OppJtImUZikDY7EYraRxLGGU8GgyIvU+1CA5KWKSFtsqlW9DUVbmppDO6t5wUqMHNUN1pF0RpT\n/tcCquFisqMx+VSa6OG6EVpH53DbcfSsNr2TGECoP9kVXZmY/MxJ96QG5LrEa/cOT7CqM2rTSfd+\nX681TSKSU4RGY/7IzV6HRrqQZYLGPc5P6UWEUXmkk++xNMwSfU10EOh26f6xnc/kKvRwRQ8JEqfQ\nYphc52HS7uYjEewHu/FX4dCUczSE+yDFbFFAFaDT7WDlYRn1bk/rVnGOKKKACiiigAooooAKhuf9\nQ9TVDc/6h6AOaH3KSlH3aK9CIhKKdijFO4hhFJinUYouA3FAFPFOxQ2SxlFOxSUANNNqSmGmgDNL\nSUCixZIKWmg0uamwxaWkpwFIBKKdijFK4yLcQatQvUJTNPT5aJbFJF3YHFUZYijZxVyKSpJFEgrJ\nPlY7GZkGmY5qWWPYaaEJHFbXTAVHzTic1DjBpckUrBccy0zBp+aSqQBRSilpAMp4ptPoAdnimmin\nYoAFNOJqPpS5pAOpaZmlzSsAtFJmloAKXNGKMGgAzThUdOFIB5pKSloAQ04GmmkosBJikoBoNACg\n0tMpwNAC0UUmaQC0UlLQAhpAacabimA7NFJiikA4Gp0NVhU61nJCLqGpKro1WBWDWpDCiiipASii\nigAooooAKKKKACiiigAooooAKKKKACiiigAoNFBoAbRRRTAKKKKAFooooAKKKKAClHWkooAsUUUU\nwCiiigApKWkpAFFFFAxKKKKQBQKKBTELRRRTEFFFFAwooooAKKKKACiioblikDkHBA4NAEkkkcf3\nmUfjVZtShU4GW+grJkZi5JJPPc0yo5irHSBg4yORRWVYXZU+UxyD+latNMlhRRRVAFFFRSXMUP33\nAI7d6LgS0VnS6vGPuIW9zwKozanPJ/Fs/wB3ipuM3+PriiszSfNw+8SbTyCen+elaVUAtFFFAgoo\nooAzNZV/KUqW64IBrNh0+4n6RED1biukIz/+qlpCOdu9Oe2tvNdh1A2is6uj1r/jx/4GK5ymMKKK\nKACnoRnBPFMpaARorqbRRCNAWA7k1WlvZpO+36UtvZXFzgxx8f3jwKvxaG3Hmyj6LQMx2Ysckk0g\nrpotMtY1/wBXuJ7tzWHKnlTMuOhxQ3YViAKTVmxEf2uMSqGRuMEVFRkq6uONpzSuVY6pEVBhQFHo\nBinU2JxJGjDoRTjTEFFFFAhaKSigBaKKKACiiigAooooAKhuf9QamqG4/wBQfpQBzo6GlxQn3adx\nXfckZRQaKYCEU2nUUAAFLSUuaTJYppppSRTCwoSAQ03FOzSfhVAkxtAp+0mnrHTuXYYAaeFqVY6k\nEdQ5DsRqlOCVKFxS1k5FJDQtIyVJSGlzFWIsUmKfS4FUAxSQato+ar7ad0qWgHzRBxkVV2lDV1G3\nDFRTJkcU4u2jAqSLmoqmzjrTGFagIKKbnFOoAUUGlphNABS9KRTTjQAmakBqKnU2A80lITSikA4U\n6mUtACYpaKdU3AKcOaYaUUWAcRTKkJ4qM9aQDxRTRS0AOpMUoooASilpKACloApaACjFJTqQCUE0\ntJQAmaUUYpwpMBuadjNNZaFJpiHgVIKizT1aoYE6GrSHIqolWkrGRLH0UUVmISiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAbRRRTAKKKKACiiigBaKKKACiiigCZKdTI+lPpgFFFFACUUUU\nhiUUtIaACiiloASikp1MQUUUUAFFFFABRRRQAUUUUAFV704tX9SMVYqjqn+oT/eqXsNGVSUm6jdU\nFC1qWF4GXypTyOhNZJamlycdaauJnQyXlvGOZR9ByapS6sB/ql/FjVGKynm+6hA9W4FXYtHA/wBd\nL+CinqBTlvp5c5cgei8Co0trif7qM3v0rdis4IcbUGf9rk1M8kcSZchR3p2YjGj0iZ/vsqD8zWhD\npsEPOC59WqKbWLaP/VneR6cCqE2tTvkIAg9qdgN4Y6fpS1zMF9NHdCVmLeuea1H1ZAP3Slj6mi9g\nNKisq3vJ5LgFs7OQeOKtS38MQ5YfypXHYt0EqOpH41jTa0OfLUn9KoS6hPL/AB4+lPUR0Ul3DGOT\n/SqE2souQnzfQVhszOcsSTT47eWU/u42b6DinYVyxd373K7MYXrVGtOLRbh8FysY9+TTLjSrmDLA\nCRfVf8KAKFFOZShweD34ptABRRRQBfXUHjMUcZIiQjPqa6RTkA9cjOawtM03zyJpfuDkD1rdAxgd\nKYxawNVh8u63f3xnFb1Z2rx77UN02mpYGJRjNKqselSiFu5AqbjNjSZfMsVB/gO2r9c9DMbKNsPw\nw6Yq5pNy0yyJIxLZyCfSqRLNSiiimAUUUUAFLSUUALRRRQAUUUUAFQ3H+oP0qaobj/UH6UAc4kEh\nGRTvKl9a2YI1MC5FP8hD2roVcXKYPlP60eQ/rW99nT0pPs6elH1hCsYfkP60nkuO9bvkr6VWmRap\nV3sPlMry29aPKb1q9gUmBV+0HyFMRE96eIKsbaKXOVykIhp/lgU/NJmldlWG7RTxikozRdhYeKKb\nmjNIB1FJmjNABml6000ZoAMUuabmimA6lqPdS7qLAPBwc1NncKrbqkRqlxAZKmagNXThhVOVdpqo\nPoBCeDRRxRWwC5pKSnCgBMUtLSVIBRmikxVALTqaKdUgOooooAWijNJmkAZoFFLigBaKKKQCinUL\nTqQCYoozRQAlLRS0AFNzQaSkA8Up4pVxSkCk2IizSilIpKLjHUUlLTAWjFJRQAtOAplSLUsCSP71\nW0NVkHzVZQVjIlklFFJWRIUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFIBtFFFUAUUUUA\nFFLRQAUUUUAFFFFAEkZ5qSoU+9U1MAooooASiiikMKSlpKAClpKWgBKWkpaYgooooAKKKKACio5L\niGH77qPr1qlLrES58pSx9egpXA0aa8iRglmC/U4rDl1SeQcME/3eKrqs9weA7579qdxmxLqcCZxl\nz7VQutQkuBtwFX6ZNPi0iY/6whAfxNW49LgQDduc+5qXdgYm73pGkA71p3GjbQzRyHjs1Yu05xjk\ndaLILjzKT0rS0i3Eshlds7DwvvWb5Zwa0NFlMdyYyeHH609BXN+iiimBXvJTDaSSjqF4rmZZ5J2z\nI5b2rf1WaNbN0LDewxtzzXN0AFFFFACg4qaKcxHIVT9agpe1Kw7k73kz/wAW0eg4qHlvU1d06CC4\nl2zMwP8ACM4zW9DZ28H3IlHvjJpiObisbmblYm+pGK0IdDJ5mlx7KK2sflRQBUh0y0h6Rhj6vzVs\nADpRRQAUUUySQJSbGkZOtwKAkoHPQmsWtjUrhGiKscsTwB2rKVGb7qk00IZRVlbOVuox9alW0jTl\n2zRdBY1NHmVrQhiBs4/CrjXES/xZ+lYIuIYh8n6VE14x+6AKQzbfUP7q/wDfVUbi+Drtdxj0AzWW\n0rv95iab9KLdx3LTXij7q5/SoXuJH74+lQmiiyFcUknrWjo283Zx93HNZ+35c10umRxrZxlABuGS\nfU0xFyiiigAooooAKKKKACiiigBaKKSgBahuP9QfpU1Q3H+oP0oAitv9QPpUtQ23+pFTUgCiiikA\njVSmq433apS1pAtEBptKaK6Bi5pKQ03NAAaKKKYBRS02mAZpc03NFIB2aXNNzRTsMWim0UhD6TNJ\nSUwAikzSg0jUDDNIHpKjbNUkBdR6JVDiqscmKsq2RUNWdxFIgqcGlA3VakQMKrgba0jIBmCOtFPf\nBqOmgFzS02lpgLRSU7FSAlLRiloAWkp1FABRSU4UgEp1LSEVIDqQihadQA1afSU4UANIpBTjTc0A\nPFBpAadSAZSgUUvSmAUZNGaWkAmaSlxSUAOFIaWigBBUigUynCpAVgMUitQx4pBRYRYQ1bQ1TSrK\nVhIlkoopRRWYhKKWkoAKKKKACiiigAooooAKKKKACiiigAooooAKWkooAbS0UUwEpaKKACiiigAo\noooAKKKKACrFVxU4+6KAFooopgJRSVVm1K3hzltxHYc80hlukrM/tNpRlAB9eat21x5yYON1K4WL\nNFFJTGLRSUtMkKKKKAIbib7PCz43YrFm1OebhTsHoOtbskayxlG6EYqOKzgh+6gz69aTA59La5uD\nkKzZ7mr0OjOcea4A9FrYJVPvMq07NKwynFp1tF/DuP8Atc1aChegA+lLRVCCiiigAI3Ag9xXNXEZ\njnZfc10tY+rQ4mDj+IelS9hozqSFzb3KSL2apFjJp4RB15NSpDsb8s8cQ5b8Kz59RZgQny+9Uwsk\nr92q9BpvQzH/AICKLsLIyLnpuIznviqldBrESR2ChFA+cdq5+rRItFFFMAo70UUAPVyjBgcEV01l\ndrdQj+8Bhq5arFpctaziQfiPWgDq6KZHMkkYcMMEZ5pjXUKn72aLoZNRVCTUD/CAPc1Sm1AHO58+\ny0rhY1pLhE6MCfbmqUk5fPX61mNfMfuKB9eartNI/wB5qmzHcuFIEJLkE/7RyaY94icIufeqOaKp\nRFcsNeSt3C/SoCzN95j+NNpaYhKWiug0u3tntVfygz9yeeaAMSK3mm/1cTMPYVeh0a4c/vCEH5mu\ngwB0GKKAOcvdPFmFIctnrxVTiui1OHzbJ8DkciudqWxgelbWizboniJJKnj2FYtXdKkMd9jOFYc+\n9NDOhooopkhRRRQAUUUUAFFFFABRRRQAtQ3H+oP0qWobj/UH6UARW/8Aqlqaobf/AFS1NSAKKKKQ\nDW+7VKWrrfdqpLWkNy0VSKaaeetMNdKGFNopKYDqSim5NAD800mm5pM0WGOzSZpKKBDs0ZptFMB2\naM02iiwx9JSZozRYLiilNNzRmgA20u2lBpaLgVyuDT0Y0rU3FN6oC2pyKjkTvTFbFS7s1FrAVDSY\nqSRec0zd2rRCG9KdTT1ooAWnZpmadQA7NLUdOBoAdS4oFLSATFOFJRmgB9JTC1JmpAkWpKjU1IKQ\nC4pMU6koAaaZinmm5pgFGTTqTFACg0ppBS0AJilozS0gCkNGaaWoAfRTA1O3UAFLmlGDScUALnNP\nUU1alUVDYD4xVlBUCVYWsZMljqKKKzJFpKKKACiiigAooooAKKKKACiiigApaSigBaKKKACg0UGg\nBtFFFMAooooAKKKKACiiigAooooAKlT7tRVJGaAJKKKKYGbrMhS0Cg/fOKwK3Nc/49o/96sOgZYt\nmw2PWraO0Z3DtWarYIq6rbkBrOatqUjcgmEyA9+4qWsaGdoXyOfatZJVdAwYYppiaH0tQyXUMfVx\nVGbWIk+4uTVkmrTHkSPlmArn5tXnk4U7RVJpZJD8zE0WA35tXgj6fMapvqssn3TtFUYrG5nOUjP1\nPFadrozD/XuPoKTQFa3nlN2jElzmugqOK3ihHygfXvUlCAKKKKYBRUMtzHH3yfSqEt878KcCpckV\nY0JbiKIcnn0FZ1xeecCoUYqBEkmfABJq5Fp3eXH0FS7sZnF8UwvikmUpMynnBxUeaVgNXSJPnkTn\nJ5zWtXOWMvlXaHOATg10VaLYTMvXXH2ZF7ls1gVs68fmhHsTWNTJCiiigAooooAMVJGgbljgCo6P\n0oAu/aY4U2x/N/Ko3u5G6HFVqWiwXHF2bqxNMo+tWrWzkupAACF7tQBVqaO1nlPyRs2fQV0UGm20\nGCIwT6tzVsADoMUAc/Folw3MhCD86lu9KjtrNpFZmdSDn2rbqOaMSwSJ/eBFAHIUUHOcUUAFbehz\nErJEe3IrEq5psvlXqZ6NxQB09FFFADXAeNlPcVysg2yMvTB6V1lc9qkPlXhPHzfNSYyjTlby5Ef+\n6c0lJSA65GDoGHQgGlqnpc3m2K5O4r8pq5TEFFFFMAooooAKKKKACiiigAqG4/1B+lTVDcf6g/Sg\nCOD/AFIqWobf/VLU1IAooopAIaqTVcqtOKuD1KRRamE096Ya6UUNpCaDSVQxc0pplLmiwBimmlpD\nVIBKKKSmA7NJ+dJRQAtGaSkoAdS5plLQA6lptFILEgozTAaM0WAU0UmaTJpiHU8Go80ZpNDJjyKr\numKnVs051DCpuIqYpCMUpyGp3UVYDBTxTDSg1QDsUlGaM1IDhS7qbSUAPzSUlFAC0tIKKTQDhUoN\nQU8Gk0BPmjNQ7sUvmUrBYeRTcUbxUbPQOzJM0m+o92aQmgpRZMHpC9RUUh8o/fS76jxRii47Di5N\nNyfSjFGKVwF3U7dTM0ZpjsiTfSebSZpuKAsidHzUoaq8YqwFqGwsiRXqdZarYxRurJoORMuedSiT\nNUd5pwc1LSJdJF7cKdmqO804SmixLpl3dRVXzDUiyetS0Q4MmopobNLmkTYdRRRQIKKKKACiiigA\nooooAKDRQaAG0UUUwCiiigApKWigBKWiigAooooAKen38UylHUfWgCekpxqOSWOMZZgPxpgZWun5\nIR7msSr+q3aXMy+Wcqo61n5oSAXNWYZgq4Y1VFKaGr6MLlxrlR0Gaja9l27VOBVetqx0pGiWWdSS\neQuaVkht3MgmSU4yWqzDpl1MfubQe7V0UcEUS4RFX6CpKYjKi0OMHMsjN6gcVeisreDGyNRgYyeT\nU9FABRRRQwQUvSqst6kfTk/pVCW7kkP9KhyKsaU12kfuRWfLePJ04qFI3lPAzV6HTwOZT+FTq2PQ\noIkkp4BPvV2LTuhkP4Cr6IsYwoAFO4HpVpIVxixrGNqilp3AHP61A91EnVh9BzQIydUj2XG7swz+\nNUK1b+eO5QAZ4/irOzEnU0mPYaAa2475UgQNuZgOnesRrhR90ZqN7iRj1x9KaTBlrVLn7RImOgFZ\n9KTmkqiUFFFFABRRRQAUdaKcrbWzjkUAWvLihQNJy/pVZn3HOMD0pGYucnrWhYaa10Q8gxH/ADoA\nisdPe7OT8qDvXSRxJAgROAKEjWNAqjAHpTqQBRRRTAKKKKAOa1OLyb18dG5FUa29chyI5QvsTWHQ\nAtOVirAjqKbRQB2ELiWFHGDlafWfo8vmWYT+4cVoUAFZesxboVlA5BwTWpUN5H5tpIv+ySPrSYzl\nqXFJjHFSLGW7UhmjocmHkjJ68gVt1y6QujB1fa3qKsC6uU63DH8KaaE0b9FUNMvGuEk3tkqfTHFX\n6YgooooAKKKKACiiigAqG5/492+lTVDc/wDHu1AEdv8A6palqG3P7hampAFFFFIAqGUVNTWFNaMD\nOmXFVzV2ZapsK6oPQ0Qw0lBpK0QxKKDSVQC0lGaM0AFNzS0hoABTsimUZqgH0lNzRmpAdSUUlUAu\naWm0tSAuaUGmUtOwD6SkBozSAWkNJSigB6GpQ1VicU+N6loQ+VM1Bypq1nNMdaEwIzyKjqSgrV3A\nTHFGKTkGnZpAJtpKdS0AJRSmmdaBjqMikxS4qeZArCZpeaB1p4qXJivYZto2+1PzRmo5mUmNxSYp\n+KSnzFJjaKKKLg2LSYp9FJSsJOw2iiimir3CiiihjENFLSUxhTwKaKkApNjJUFS1CjYNS5BrNhYC\naSnYzTKQITFOWlpwFANhxSYp4WnbaCWxoFPApQKeBSIbEFPFAFKDipZDJBRmoi9HmUibEtLUYenZ\nqRDqKQGloEFFFFABQaKDQA2iiimAUUUUAFFFFABRRUc1zFbpl2x7Dk0ASUcD2rJn1cf8sVP1NUZr\n2abqxoA35LiKPq4qnLq0acKCTWQqSSHADMatRaXcSfeAX60wFl1a4k4BwPaqhkllbksxrbg0WEf6\nxmf2zir8VtBD9yJR+HNAI5hLS4kXKxMV9cVG0bIcOhH1rsAAO1MlhjlQh1DZHcUXCxyFFSTxmKZ0\nPBBqOmIAcGuqtJfOtY39RXKVvaJPuhaInJU5ApMaNWiimu6xjJIX60AOoJAHPFZc+tRIcRAt71U+\n3y3BJbgDtSexRrTXqR8LyaoS3cknfAqOOJ5T8oJq/Fp46vz7VOrAoJHJKflBPvV6HTwMeacn0q0W\nit05wo/nVabU41+4C3uaLAW1RU4A/SlZgvUqKx5dVfH3gv061SkvS3ct9afoBvSXsKcZ3fSqkmpH\n+EAe5rFM7t3x9KjLEnk07CuaE18W+85PPaqpuWPSq9OALHAGfaiyC4rSu3U0yrUWn3Mv3YiB6mku\nLN7eTZIRnGeKYitTlUuwVeSaQjBxSqxRge4NAF6LSLmTkgJ/vUyfTLiHnbuX1WujibzIVfswzT6A\nONIIOCCDSV1N1ZxTxtlFzjg471zDKVYqeo60ANooooAKKKKANfTtLaTbNMML1APetwALwMfhVPTJ\nvOsY/wDZ461cNABRRRQAUUUUAFFFFAFe/i86xlX2yPrXKV2ZGQQe/FcldRmG5kT0JoAhooooA1NF\nm2XBjP8AGOK6CuStZTFco4OORn6V1gOQCO/NAB0rPu73rEv4mrk5ZYHK9QDXLvM5Jye9TqMsfInp\nSG4RenNUyxpN1LlHcsG4Y9MVGzsc8k1FmnoRvUt0zzVWFc2tFtdiGduN3A+la1Rw7fIj2jjaKkpi\nCiiigAooooAKKKKACobn/j3apqhuv9Q1AEVuf3C/Spqht/8AULU1SAUUUUAFFFFAEEyVRlWtQ1Tm\nj61rTZafQzjTc1K64qGupPQYZpKKSqGLSUlGadgFpKKKLhcKKKKBDqKKKAExRiiimK4lFGKKQXCj\nNFFA0woooFFh3ClBooxSAMZoAwaUUhNAEitUnUVBmno1KwCOMU0NU55FQMuKYhSKZThzTT1poBc0\nuSaULSgVDkFxMUoFOorNybE22JQaKKENBS0YopMpi0UlFArBTadTTQioiUUvG2kqmi2h1GaSio0I\nsgoooxTSRaSCkopRVDFGKXFIpwaeBSbGNVamC0zFSA1DYIQrRyKfSgVJQisRT8ZoEdPCmghsQLTw\nMUqVKBSbM2xqrT9tKBS1LZDYm2kpS1Rk0gSY7NFMzS5pjsIaSnUlUMUGnZqOnbqkTQ7NPD1DmnA0\nNA0Tg0tQ5pwapsQ1YkoNNBpSaRIlFFFMAooooAKKKKAGyDdGy+o7Vzotbh3I2Mfc10lFAGNFo8jc\nyMF9quxaZbx/w7/rVyigBFVU4UAfSloooAlj6U6o46koAKKKKBnPavCY7veOj881m10Orw77TzO6\nHP4VghSx4GaYWG4q9pUpivAex4NMS2UcyH8BVjhRhQF+lS5AomjcX23iLGc9axbuSR3AklZh71di\ngkm+6Dz3q4ulxHBmyzDt2oi2NmDDbS3BxGhI9a2bTSFhO6U7mx0HStKNFQYUBR6CnUyRAqoOgAFZ\n91q8UWVj+Y+tX3XehX1GK5GVCkrL/dNMZZnv5JmzVZpGPc00Ak1ai066m+7EQPU0CKlFbEOhsT+9\nkA9hV+HS7WHnZvPq1AHNpFJJ9xGb6Cr0OjXUnLAIPc810KoqcKAv0GKWgZmRaJDGcyOX+nFXYrWC\nEYSJR745qaigQvpWVrEQ8tJQOhxWpUF7F51pIvtmgDk260AZoqRBnNAG/o8ha02E/crR61z+mzi3\nmO77pGK1JL6MDKHcTx9Km5RYkmWEZY1y96P9KdsY3HNX559xLMazJZPMfNNNtgyOiiimSFFFFAGz\noU3Lwk+4FbZrldPl8q+jbsTg11NABRRRQAUUUUAFFFFABWBrUO24WQD5WGCfU1v1n6vF5llvxyhy\nKAOcooooAM11VhL51nEx4OMGuVrc0OUeVJF3B3UAaxFYd3o8wdnhIcHnHQit3PFFAHHOjRttcEH0\nNNrW1uMi4SQDAYYOPWsmgAooooA6nT5fNsoz3xg+1WqxtDl4kiP+9mtmgAooooAKKKKACiiigAqG\n5/1DVNUNz/qDQBHbf6ofSpaht/8AVLU1SAUUUUAFFFFABTJF3Cn0ULRgZs0dU3GK2JYsrxWfNFXV\nCZaZSpKey4pldCKCiiikIWiiimIWiijFIVwopaKYXEopaKQXEooxRimFwooopDCkpaKBjaXNJRTu\nFx9GKYDTs0hhQDR1ptAFhTmkdc1EhxU26p6gRKtO20dDSk8VLvcUrp+QClxTacKmSaE4tBRS4oqb\niuJRilopXHcbRRRTRaCiiikAmaKO9JTsOwUUGimMKKKShjFoooosCQUoptLQykmBqQUgSn7DUlpB\nThSrHmpliqGwbVhiipkSnKmKlAouYuQ0KKXFOxTaRFxcUvSm7qN1SKw7NNZqTNIaqw7CbqKaaUUx\n2Fp1NpaBi02hmwCfasp7iSU5Zjg9hUtpEOSjuaD3Ecf3mFV3vwPuJn3NUiOKZU81whPmNiCdZlyK\nlzWNE5jfcPxrWRxIgIpp3LSuSZpc02lqxkgNOzUOeKA1TYzaJ80tQhqeGpWIsPoopGdU+8QPxpCF\noqrJqEEfGdx9qsg7gCO4oAWiiigAooooAKKKKAHJ96parjrUjzRxjJNK6QySmvIiZJIqjNqHZKzp\nJmbqc0r9ii/c3yshRQCCMGqGcDjj2qIyqO9QPMzHg0kmySy0ir1NQyXLEELxVcmm1aQXOj0WbfbM\nh6q1aVc5o83lXgU9H4ro6YhKKWkoASqk+mQXFwZXJJPUVbpaAIYrWCH7kSj3xzU1FFABRRRQAUUU\nUAFFFFABSO6ojFjgY60tc3qF9LPK0fKoONtAFSTZ5rFPu54qaJcLk1WAOcCrscWOW60mNEiJSSSL\nGKZLOE4B5qkzFjk1MYgxXkMjZanRQvM+xFyadbQPcTLGnU10tnZR2iYXk45PrViOTpamuY/KuHQD\nGDxUNABRRRQAoODmurtJfOtY39RXJ1v6JMGt2izypzQBqUUUUAFFFFABRRRQAU2WPzIXQ9GBFOoo\nA41hhiPQ0lXdTi8m+f0bkVSoAKuaZL5d9HzgMdtU6crFHDDqDmgDsaWo4nEsYb154p9AGbrUW+zD\nj+Bs/hXPCuvuI/NgkT1BFciylWIPUGgBKKXBo20AW9Pm8m9iOcKTg109ccp2sGHY5rroH8yFH7sA\nTQA+iiigAooooAKKKKACobn/AFDVNUNz/qGoAht/9QtT1Bb/AOqWpaQDqKKKQBRRRQAUUUUAFQyx\n5qaimmNMypYcZqm6YrdkjDCs+aGumnU6FpmfS050200GujRiaFopaKRLYUUUUCCiloosAlFLRQAl\nFLSUAFFFFACUUtJTKCiiikMKSlptMoKUUoFLSbC4uKToad2pCKi9mJaMeCCKZ900iGn4yKp6liUA\n0nsaKz8mTfoySlpoNOrNohoSkpaShIaQUUUUFCUUUlNFIQ0UUUyhaKMUuKVxXEopcUlCYJjaWigA\nnpTuWhRzTgtSRxcVMsWO1TcbaQxEqcRihUxUgqGyG7iBakHFJ0pC1BDY+jdUW+gnNILD99N3UzBo\noHYeKU0xafTATNGaQ0lAxaKSigBc0dabThQAj/cb6VkDtWxIcRsfRTWQOlZ1Ohz1ugU0in0h6Vmj\nOnKzI6mgnML57dxUFOHSqTsdaNpWDjcDkGnVl21x5Jw3Kn9KtPexL0+b6VqmBYJoxVB75z91QKga\naR+rn8KXMhOcUaT3MUfVh+dQNqSj7ik/Ws/Ap3HbApcxk6nYnfUpW6cfSoGnZzyx60gjZ+EUt9BV\n2DS+8rdugpBuUQjSHCgsfat60Ro7dVfgj9afFDHD9xQKkoAKKKKBBRS1G8yR9TSuOw+mSSpH1NUp\nb1myF4qoXLHkk1LY7F2W+OML+dUpbk/xHNV5ZGU4Ax71XpqN9wuTvcE9KiLk96ZS1aSJuJRS0lMQ\nd6KSlpDHxN5cqv8A3TmuuRg6Bh0Irjq6TSpxLaAdShxQBoUUUUAFJS0UAJRRRQAUUUUAFFFFABRR\nRQAtYV7pTh3nR12E5xWrc3cdrHucjd2HrXPXV/LdSZJ2r2UUAOiiWIZbrTJLjAIXrVYsW6mkpWAC\nc0oG40oXJ5qQAUwOlsUiS1QxDAI69yasVm6PNvtzETyp/StLj2ouBg63DsuVk/vDH5VlV0erxeZZ\nlh1TmudxzQgYlFPWJ26CpRasepFFwK+K0NIm8q9AJwrDBpi2qjrzUyoq9ABUuaHY2GvIV/iz9KrT\naoIwcKPxqgWCgk1QlkMjE0JtjZ1FpN59ujnGSOcdqnrJ0STMLxHsc1rVRIUUUUAFFFFAGPrkXyxy\ngexPtWJXVahEJbGVfbdXK0IAooooA6TSJhLZ7O6fLzV+ua0++NoxU8q36VrDUCR/qx+dJuwF/Fcz\nqMPk3r4GAeRW3DfrJOISMMelUdai5jlHfINK47GPRRRTAK6DR5d9ns7ocVz9aeiy7bhoyeGHA96A\nN6iiimIKKKKACiiigAqG5/1Bqaobn/UNQBDb/wCoWpait/8AULUtIAp1NooAdRRRSAKKKKACiiig\nApjoGp9FGwFCa3PpVGSE+lbhXNQSQA1tCr0LTMQcGn1amtvQVUKsvaulSTQmri0U0GnVWxDVgooo\npCCiiigAooooASiloplCUUUUAJRS0YoHcSloxSik2O4tIaWkNShxClFJQKBsCvelDYPNLnimE0ot\nji2PbDcikFMBxTj603qW1cdkUZFNzSVO5K10JBS9qaKfWbViGrDKKKKaKQUlKKKL2KWglOpKXPFJ\nsTY00maUDcad5dVbuWo6ajQC1SiAU+OOrAWpbsVsVvJHpUiRYqwFzTtmKhyE5DVTFPxRSE0rmd22\nBppNBeoyaZSQ7fRuqOloKsh2KeopBS0iWO4pppM0ZpCQUuaTa3oacEPoaY7oKSn7KPLNF0TcbSVL\nto20uZC5iCnUrLimFgOTgCqLG3DFbeQjg4xWVmr1xdRvC0anJNUTWcznrPVBmlzSUVmY2G04Cilz\nTua+1fQTFLilVS7hV6k1dSziH3izH8qpRbEoykUcjFPSCST7qH6mtRYo0+6oH0FKatQRoqSW5RTT\n+7yfgoqwtpAv8GT7nNS0tVoi1FIQADoAPpUgNMpRQwaJlNOqMGmPcpH3zUNk2LOKhkuY4885qjLe\nM+ccCqxYsfWob7BYty3rHO3IqqWZupJqWK2kl6DA9TV2KyjTlvmNKzC5TitpZegwPU1dis0j6/Ma\nsdKKaRNzndR/4/pv96qtS3D77h29TUVaCClpKKBBRRS0hiUUlLQAVp6NOI7kxno44+tZlSQSmKZX\nBxg0AdfRQrBwGByD3ooAWiiigBKKWkoAKKKKACiiigAqleajFbDH3nxwBRd36RZSI5fHUdqxnZQS\nzYJNTcZBNNJcuZHOahp7vuPHAplUIKUcmr9naxk+ZcHbH2HrVZkG87OATwPalcLDAKUZp4WnAYqb\nlE+nzfZ7nLDCkYPtWjJqafwqx+pxWUKWldhYuTX7zArtAB9aqbF9KCQKaZUXvRqxklLVc3I/hWo2\nuGPTijlYXRczj0ppmRerflVEux6kmm0+QnmJZZmk69KiopRlmwOpqxbl/SJSl6qno/FdHWdpdgLe\nPzZQPMbp7Vo0AFFFFABRRRQA2RlRMt0/nXJTJsmZR0B4ropH8xyx6dh2rH1JV88FSDkdqSdxtFGi\niimISrdvc7Plbp2qrRQwLMMrm8R1PO6ug1CHzrFx3ADVmaNaFpftDD5V+77mtwjcGB7gigZx5oqS\nZDHM6njBqOkAtSWshhuo3HUHFRUhoEdlRVexlE1nEwz0x+NWKYBRRRQAUUUUAFQ3X+oapqhuf9Q1\nAENv/qFqWorf/ULUtIAooooAKUUlFADqKKKQBRRRQAUUUUAFFFFADWQNVWa2z0q5SYzVKTQ0zJlt\nsdqrGNlreZA3Wq0lsprojW7juZOaWrclp14NVmhZe9aqSewOK6DcUYpDuHUUb6ohxY6iiipEJRRR\nTEFJS0UFBS0ClxRcYlFFFQAUUUUIpCUUUUFB2ptOpDSvYIuwh6U9OaaaRTg1Vy0x7JtNGKfnIpmc\nHFTJdUEl1QUtBx60mR61G5PxC0Um4VJ5Up6Rt+VCY0mRZoDVKtnOedtTLZP/ABAUuaPUrQqk0ojJ\nq4th71OtqBS54oOZIpRx4qYIKs+QKesYFZuoL2hXVKeBU20Uu0UucjnIgKdT6KVxcxCQ3oaQoxqe\nilzBzPoVvJb1FOWHHWp6KXMHMyLyF9TR5K1LRSuK8hoUDtS7R6UtFFxXYm0Dpil/KiilcQUUU2SR\nY49zEAeppgOpM461ny6pGoxGu8+/SqEt7PMMF8A9qpRbA3HnjjGWYCqsmqRJ0XP6VjszNyzZpuPz\np8ncLl2TUZ5Ony/Soly3LMT9aSOyuZPuRn8aux6XIPvyAZ9Bmm7Cd3oirgCkzV9bSNTgkt9aebWB\n/wCHB9uKXKP2L6szcU2rM9sYVDA7lz6dKrkVDTRnKLi7MAKQilBoNBJZ09gJnU9xWgwrGhk8qdX9\nDWxnIrVHVDYKSloqixtOppIHJ4FV5LxE+7yaGxlngdaglu0jPrVGW4eU9cVBiouJlqS9eTgcCokY\nk8806G1kl5xgeprTtrOOMnI3H1NKzZDVkVorWSXtgepq9FZxxdfmPvViikkQ2FFFFMQUGikoA5Z/\n9Y31NNpz/fb602qEFFLSUAFLSUUhiUtJS0AFFFFAGtpWoGMiCT7h+6fQ1vVxfvXQaVqHmp5D/fHQ\n+tAGpSUtJQAtFJS0AFJSPIicswX6mqkmq20ecNvP+yM0AXOByTisu8vtxKRnjufWqdzqUs/H3V9K\npbiT1pMqxK7bemSagIZzk0tLSQDQlPCAfhR+dGQO9K7HoL04FKKjMg7U0uTTsF0TihmCjOarZPek\no5Sbk5mHYUwysajop2Qri5J680lFFMAooooAKKKKADvWzpVhki4kXj+EGsY11djL51lG2QeMHHY0\nAWKKKKACiiigAqjqjyx2ZaJsYPOPSr1RXEPn28kfTcMZoA5V5ZH+9Ix/Go6uzaXcw87dw9VqmQQe\naAEooooAKKKKAOp05w9jGR6Y/GrYrH0OXMckPcHcK2KAOf1iIR3e4fxjJ+tZtb+sw77YScfIeawK\nSAKQ0tBoGbehzZikizyDkD2rWrnNHlMd8F7OMV0dMQUUUUAFFFFABUNz/qD9KmqG5/1B+lAEMH+p\nFS1HB/qRUlIAooooAKKKKAFpabS0ALRRRSAKKKKACiiigAooooAKKKKAGlQajaBT2qaimm0MpSWm\nelVpLT2rWpCoNaKqx3MRrcjvUZjYVuGJTUTWymtVW7juZHPpRurSa0qJrSq9pEdolHIpc1Za1qJr\ncjoatSixciEopuxqNrUrJh7Ji0UnNHNIPZMWjNN5pCTSZXI0AyzYUEn0FSLbTt0jI+vFXrC1EUQk\nP3m/SrlYyq2diboyPsNwf4Vx67qd/Z0/qtatFS6r6BczV0w95efYU5dOVTyxNX6Kj2khXZWWxjBz\nz+dPNpCeqCpqKXPLuF2RC3hUYESfiuaeEVeiqPoMU6ilzMWoUUUUgCiiigAooooAKKKKACiiigAo\noooAKKKKBBRRRQAUUUUAFFFFABRRRQBXvpJIbcvGRkde9YckrStuZix966J0EiFT0YYqtFp9vHzt\n3H1bmqjJIDFWN5DhFLH2FWo9NuH+8An1raVQowAB9OKWjnYXM+PSYwcyOW+nFW47aGL7iKPwyalo\nqW2wCiiigCN1qGrVV2+9WiNYsHG9GU9wRWOAVYg9Qa16z7lAs54wDzRJaE1V7tyvS0YoFZnKNPWt\nS2fzIF/I1l1JFM8SsF7+taRdtzpjJLc1Cyr1IFV5b1FGFyx9ulUmLO2WbJ96aelHP2D2t3ZDpZ3k\n6nA9KiqeK0klGfur6mrsVpHF23H1NFjTUpRW0kvQYHqaux2UcfJ+Y+/Sp84oqkrFBUsVRVND92hm\nctiWiiioMwooooAKQkKCT2FLUVzj7PJnptNAHMv99vrSUCiqELSUtJQAUGig0DEooopALRSUtABT\nkdo3DKcEdKbS4oA6ewvluYPmIDL97PFPlv7aHguCfRea5gEjvRSuBsS62P8AllEfqxqnJql0/wDE\nF/3RVPNIWFIY9nd+WYt9Tmm03dSbqdgJeKbkCoySaSiwiQvSbyabRTAUn3pKKKACiiigAopfwoxQ\nFhKKcFpcYouOw6O3mlOEjY/hVyLRrl+W2oPc1s2EoltI29sc+tWaBHKXdsbWcxls8ZzVetnXIfmj\nmA6jBNY1ABRRRQAVuaFLmOSP0ORWHV3SpfKv0H975aAOmooooAKKKKACiiigBaxdchAKTgYJ4NbN\nVNSjMtjKB2G78qAOXooooAKKKKALulyiO/TJwG4NdPXGoxV1b0Oa66KTzIUf+8ueKAG3Efm28i4z\nkVyhGMg9Qa7CuWvovJvJFHPOaSHcr0UlFMQ6N9kiv/dINdejh41YdxmuOxXSaVMJLILkkrwc0gLt\nLRRTAKKKKACobn/UNU1Q3P8AqGoAhtv9QtS1Fb/6halpMAooooAKKKKACiiigB1FNpaAFooopAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFNIp1NY0AiB6gNSO1RVojpS0DaKaUFPppNO7KRF5dL5dPF\nOp3YyIxCpIbYO/PQUoq9GgUUnJmU5WVh2KbT6aetYs5xKKKKRQUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACUUtFIQlFLRTASilooASilooASilooASiiloGJRRmigQ\nVFJUtRuMinF6lR3GVWvYz5YkxyDUpkWMZYgVUnvA6lEXIPUmtGzVpNWZWyAKbuHpTaKzMVTSJB0p\nvQ07OBTCaDK12TRwSS8qvHqeBVuK1SPljub1pbV98A9RwanrVRSOiMFHYKKKKZYUUUUwFqaL7tQ0\n9DUsmS0J6KKKgyCiiigAqOf/AFEv+6akqGf/AI95P900AczRRRVCCiiigApKWkpDClpKKAClpKKA\nHAU4cUzJpKAHlqQsaSiiwBk0lFFABS0lLQAlFTxWs0x+SN2HTIFXI9EuW++UT/eOf5UAZtFb0OhR\nLgzSM3sOBV6Oytovuwp+IzQBzEdvNKfkjZj7CrkejXTn5tqfU10QAHQYooAy4tDhX/WOzfTircdh\naxfdhX6nmrNFAGbrMO6BXAyVNYVdVcxiW3kU91rlaljCiiigDX0Wbhoc/wC0BWxXNafL5N2hyACc\nHPpXS1aAp6lH5tnIMZI5H1rmBXZMoZCD3GK5K4j8m4eP+6cUhEVFFFABS5pKKAOwikEsKODkMM5p\n9UNHk82z2k8ocCr9ABRRRQAUUUUAFIRuBB7jFLRQByNxGYp3QjkGoq0tXh8q73AcMM596zaACiii\ngAro9Il8yyC85Q4rnK1NFl2XTISfmXgUAb9Ymtx/PHJ6jH41uVR1SHzbFiBkrzRYDmqKKKACtfQ5\nD5kkfqNwrJqexl8i8jc9M4pAdVRSUtMAooooAKiuf9Q30qWorn/UNQBBB/qRUtRW/wDqFqWkAUUU\nUAFFFFABRRRQAUUUUALS02igB1FFFIAooooAKKKKACiiigAooooAKKKKACoHapXOBVWQ81aLgtRj\nmos08mmVZ0IM0oop4pDYgFOooQbyB+dBN+pNAmfmNWaRQFHFLWTOVtthTT1p1NNJjQlFFFIAoooo\nAKKKKACiiiiwBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFJQAtFJupN1ADqKbk0l\nADs0ZptFIBc0ZpKKACiiigAoqOWeOL7zfgKz5tQY8IMD9aANJ50iGWOKoXGodo+PfvVBnZ+STQM9\nO9UotBcC7OcscmiporKV8FhtHvV+K1ijxxk+pqlG5ok2ZxQrjcCM8jNLxVy7T9yGHO05NUMmplGz\n0Mat0xDSU7HFNpCgy1ZPiXZ69Kv1kI2x1b0Oa1+taweh0RegUUUVYwopaSgApqt89ONREgHJxihj\ntcuoc0+s77dDH6n2AqJ9YP8ABF+LGs2YyRrU15EQZZlX6nFYUl9cSZ+fGey8VXLE5JJOfU0hG2+p\n269CX/3RVG51R3Uqi7c9z1qjmmHFAhKKKWqEJRRRQAUlKaSkMKKKKACiiigAoopQMmgBKXHvTiAv\nfNMoAUnNJRWnp2mm6PmSZEY/WgCKwsHvH5BEY6sK34bK3gACxrx3IyamjjWJAqgADtTqACkpaKAC\niikoAWkpaKAEopaSgA61zepxeVev/tfNXSVla1DmNJh/CcH1pNDMWikpaQADg59Dmuqt5fNt0fj5\ngCfrXKVvaNLutmi/uGmmDNKsDWoNlwso6OMVv1navD5lmXA5Tn8KYjnaKKKACiiigDU0SXbdNH/f\nFb9cjbyeVcRvz8rCutByM+tAC0UUUAFFFFABRRRQBma1FutVfP3T+dc/XX3Efm27rxyuOa5JhhiO\n4oAbRRRQAVNbSGO5jcHHIzUNFAHaZBAPrTJE3xunqCKisZfPtInPUjmp6AOOddkjL6HFJV/VojHf\nM3Hz8gCqFIYtIDg59KWkpiOut5BLbo+c5A5FSVm6NIXtCh/gOK0qACiiigAqK6/1DfSpahuv9Q30\noAhtv9QtS1Fbf6halpAFFFFABRRRQAUUUUAFFFFABRRRQAU6m0tAC0UUUgCiiigAooooAKKKKACi\niigCOWqchqxK9Vm5rRHRBEeadTcUoqjUfS02jNAh1WrdNqZPU1XgXc9Xaze5hN9ELRRRUmQUhpaQ\n0gG0UUUhhRTJJUiGXYLWdNqoXiFQeepp2A1Ka0iDgsAfTNYUl5PN1cj2Xios0NDsdJRVOyuxMgVv\nvj9auUhWCiiigAooooAKKKKACiikzQAtFJmk3UAOopmaM0AOyKTdSUUgF3UZNJRTAKKKKQBRRRQA\nUUUUwCiiikAUlQzXUcXU5PoKz5r+R+F+UUJN7AaUtxHEOT+ArPm1B2yF4H61SLFjQoJOBznsKtQS\n3HcVmZiST1oAz61ah0+R8FzsU8+pNaMFtFAPlHP949aHNLYLGbDYSSYLfKvvWjDZww9FyfVuanzS\nVLbYhj02lY5NJWq2NlsIwDAgjqMVkkFTg9QcVsVm3aBZ8/3hSkrozqq8bkFIaWg8iszni9RK0bOT\ndCB3HFZlSwzNCxIGc1cXZm8JJM1aTIXqQPrxWc13Mx+9t+lQkknLEk+9U5obqI02u4I/49x/2arv\nqXPyR/maokUnep5iee+xZNzLJ958ewpCKjSpsVLbZjOTGnpVdxg1axxUUi5FCYQnYg3U3NIwwaSr\nRqLk0UUUwCiiloEJRRRQAlFFFIYUUUUAFFFFABTgcU2igApRSVc08KLuMuAeehoAuadpfmkS3CkJ\n1C+tbiqEAVQAB0A4Apf8KKACiiigAooooAKSlooASlpKKAFooooASoLyPzbSRMA5HH1qxSUAcfRV\ni+hMN264wM5FV6kYVe0qQR3yjnDjbVGnRsyOrDqpBpoDrqbIgkjZWGQwINKjCRNy8g9KWmI4+RDH\nIVPVTTKvarF5d87DOG559ao0AFFFFABXT6bKJbJOclRtNcxWzocx3SQlsD7wBoA2qKKKACiiigAo\noooAK5fUovKvZBjAJyK6isXW4eUkH0PtQBjUUUUAFFFFAG5ocoMTxZOQc1r1zeky+XfAb9qsMGuk\noAydbh3RJKq9DhjWHXV3sYmtJFOemRj1rlDwSMYpDCikopiNPRZQl2UJPzjAroa5G2kMVwjg4wa6\n0EMAR35oAKKKKACorr/UN9KlqG5/1DfSgCG2/wBQtS1Fbf6halpAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFLmkooAdRRRSAKKKKACiiigApHpaY5oQytJUJp8rVDmtTpgOpKSloLEpwXNFWraP+Kk2\nTKSSJo0CJgU+iiszlYUUUUCCjtRRQAyorr/j1l/3TUtV7w4s5v8AdNSM57Jz1oPrRRWxJL2paarZ\nAp2RUF3BGKkEHpWxZ3YmG0n5wPzrFoVih3AnIocQOloqnaXa3CejDqKs1DBjs0maSigQuaTNFFAB\nRTXkSMZdlX6nFVZNTgToS/0FFgLlHSsiTVpG+4ir7nmqslzNKfmlOPTOBVKDFc6GiszTJT80Z5PU\nVp1LVnYYUUUUAFFFFABRRRQAUUUnSgBaOlVpr2KHjOW9B2rMnvZJTjOB6ChJsZqTXcUWecn0FZ89\n/LJwvyD2qmeTSqCTgDJ9qvlsFxSxPWgZPAGSatw6a74MnyD071ow2sMH3V59TyaHJLYkzrfTpJcF\n/kH6mtGG1ig+6v4nrU1FQ22MKKKO1IAqNmzxSM2aStYrqaJdRKXNJSVRoPNVb5VMIJ4IOQKSS72/\ncG4+p6VTdmc7nJJpSkkYznFaDKSlorK5ziGlpQKMUwuJS4opKQhetJilooEAqQGo6cKQMkpGFKoZ\nugJ96eIXJ6AfjVJNgqcnsijItRVrR2cZP7wlj6DgVoRQxRj5IlX3xzV2N1FrcwI7O4lPywvj3GBV\nqPSJj/rHVPpzW1RSuBmto0WPlkkz6kA1Uk0y4Q/KoYD0NbtFAzlmUqcEEH3ptdUyJIMOoYe4qhea\nZCIWkhG0jnGeMU7isYdFFFABRRRQAUUUUAFFFFAD061Mp2EMOo5FQr1qXNJ7jOpgk82BG9QOlSVn\naRLvtynHynitGmIKKKKACiiigAooooASilpKAClopKAFooooAxNbh/eJKM8jBrJrpdUi82yb1X5q\n5s1IxtFFFMDotLmMlkoOMpkY9qv1h6LKRO8X95etblMDK1qHNusufunH51g11t3H5trIg6kcZ9a5\nMjaxFAhKKKKACrenymG9ibA5OPzqpRjAoA7SkqlDqVu8Sk/KcDjGak+323/PX9DSGWaKrfb7bj97\n/wCOmrPp3piCiiigAqpqSebZSDpgbqt0jDchHqCKAONoqW5jMVw6HqDUVABRRRQA+NzHKjj+Eg11\n0bb40b1UGuOrpNIm8yxUY+4dv1oAvnpXKXkXk3UqZzg9a6vpWFrcZE6yADBGCfekBk0UUUwCuo06\nczWUZbG4cVy9amlX0dqkqybvm5GKAN+isl9cX+CAn3ZsVUk1e6boUj/3V/xpXA6Gq93NCkZV5FXI\n7nmuckuZ5M75nbPUZqGgdjpbf/ULUtRW/wDqFqWgQUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFOptFADqKTNLSAKKKKACo3qSo5OlNDW5TemYqV6jrQ6ovQSlpN1N3elMZLEu58VoAADAqK3h8t\nMn7x61LWTOabuwooopEBRRRQAUUhYCmlqLgBIFV7xs2co/2TUx5qveZ+yS5/umkmMwsUtFFbEjT9\n7608U1hkUopDQtFFJQMWNzE4ZeCK2ra5SdM5APcZrDyKRXZTlSQfapcbgdG0iJ95lX6nFVZNSt06\nbnPt0rG+Y9aAvrQodwuaEmqv0jjC+55qo95cSdZW/Dio9oFFUopCuM2mnBRS5qSG3lm+4nHqelAi\nLinxwyTOQik49BWnDpqJjzDvP6VeVVXhRgDsOAKly7DsUbTTzE4eRzu9Fq/RRWbdxhRRRQAUUUUA\nFHGM9qrXVybZAQu4k49qypbuaYnc+B2A6VSTYPQ0ptQijyB8x9qzpryWbgnA9B0qt1FOVSxwASfa\nq5EtwuGfxoALHAGTVyDT2fmT5B6d6vxRJAPkUA+vehvTQtJspQaY7cyHaP7vetGK3jhGEUD371LR\nWbdybhRRRSEFFFISBQgsxSQKhLE0McmkrVI1ihaWm0oqhjJpUiUbicnsOpqhJO8nB+Ueg/rVm9Td\nFuGMqc/hVGpm2Y1ZNaIdRRRWZzDaSlpKBhRS0lACGm07p1rWigiTBRFPoetVGNzWEbmWkTv91GPv\njip1spG+8VUe55rSIpp4q1BGqporJYxjlmZvbpT1ijj+6gHualpcVSSRailsNIytRYIqfFNZaZSY\nwHFWImqt0qWI8ipYppWLVFFFZmIUUUtMQYooqrdXiW/A+Z/T0pgYVzH5dy6ehqGppyXcsTknk1DQ\nAUUUUAFFFFABRRRQA4HBqTjbUNSocihgaGlS+XdqvHz8fSugrk0fY6tjO05rqkfzI1f1ANShjqKK\nKoQUUUUAFFFFABRRRQAlFFFABS0lFAA3II9RiuUnj8qZ067TiusrC1mHZcB+MOO1IaMukpaSgCaC\nUwzpKB9055rq+vPauPzXS6dKJbFOuV+U570CLZ5GK5W/h8i7dMYGcj6V0txOLePcRk9h71zl9KZ5\nt564xRfUCpRRRTAKKKKALq/cH0pajVsoKVmCjNRZ3KuRTOc7c8V01lL59lG5xkjn61yhOTk10elQ\nNBZjd1c7selWSX6KKKACiiigDn9Zh2XQkA4ccn3rMroNZjD2gbPKHP4Vz9ABRRRQAVq6RdJA0iyP\ntUjNZVGSDQB00mq2cf8Ay03kdlGc/wBKzNQ1CG7j2JEwx/E3FZlFABRRRQAUUUUASUUUVJQUUUUA\ndHb/AOoWpajtv9Qv0qSmSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOoptOpA\nFRSVLUExpopbleQ1AzUkz/NUPXrWh2RjoOZ6vWcOQJW5zyKrWcHnSbm+6K1ahsxqy6IWiiipOcKK\nKQtQAucU0tSdaSpAKKCQvU4qvJfW8RIaTJ9F5oAsVS1P/j0P+8Kgl1Zf+WUf4tVOa+mnG1yAvoKp\nJ3AiopAaWthBTVOBTqKVgG8ml20tFFguxNvrS4FFWrSyNyNzMUQenek3bcLFWjt05+tbKafbpj5S\nT6sanWJEGFVVHoBio50OxiraXEnKxtn34qzHpTn/AFkij6c1p0tLmCxVj0+3jxlS/wDvVaAA4HA9\nKKKXMMKKKKQBRRRQAUUUUgCiiimBU1CHzLfIHzLzWUsE0vKxOc98cV0FIzBRk1SlYLXMuHS2PMrB\nfYdatrHFANsa4/2u9K0hb6UyqV92bxjYdmjNNoqyyZHwcHpU1VBUqSdjWcl1Mpw6omooprOFqErm\naTFZsVCzZozmkrVKxqlYKKSimULS02loCwSKHQqehFZYOOvUcVqA0hRM52rn1xzRKNzOcOZGeI3Y\n4VCakW1c9SB+FXKKSghKjFEC2qDuScdzVNgVYqeoOK0qqXagT7v7wpSiraE1ILluitmgnijFJjis\nzn0E5rTsn3QBf7pxWfgU+KUQuWxkEYxVRdmdNPc1s0hqv9sg/v8A6GhbuAkAMc+mK0uWTUA0UlUM\nfRTaWkIRhmkiGJPzp1AoYPaxOG5xTqgBxUqvUGbRJRTDwMnisu6vi+UT5V9e5pCsT3l9t+SE89Cf\nSsskmkqN2zwKW4wkPao6SiqWhIUUUUAFFFFABRRRQAU5PvU2lFAEoNb+kS+ZabefkNc+v3a0dHl2\nXRQ87xipGb9FFFUIKKKKACiiigAooooAKKKKACkpaKACs/V4PMtNwHKHOfar9MlQSxsrDIYYoA5K\nigqVJB4I7GipGFa+jTgeZEzf7S1kU+OUxtnJH0oAvX10Zpjg/KOlZ8nSgy+1MLFjzTsISiiimAUU\nUUAKGI6GjJ70lFAFuwtvtV0qH7o5P+FdMWSJPmZVAGMs2K5JZJIuUdl9wcUjyNISWYsfUnNAHTSa\njaRdZ0/4Dz/KqsmuQD/Vxux9+K5+loA1H1u4b7iIg/Oqsmo3Un3pn/A4/lVWigANFFHegAooooAK\nKKKACijvRQAUUUUAFFJS0AOWnUwU+kygoooPSkB0UP8AqRU1RW/+rFSZqiRaKKKQBRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFGaSgBc1XnNT1DPTRUNzNk+9RHG0z7U6dzTnXdJj1rSt\n4BAmAKps6KlSy0JUQRoFXoKdRRWZyhSEgUjNTGIQZY7QPfFJsB2aQkdzWdNqiAYiUMfU9Kzprqac\n/O/HoOlNRYGxPqFvBkbt7f3VrPl1SaQ4jAQe1UqTg+gqlFAPkmll+/IzfU0zBNFPVHkPyKSfYZqr\nJAMxRiraadcydVC/7xq0mkLn95ISP9kYpcyAyqdWtJpMLcxuyfqKpyabOhymJB7cGjmQFaim/dOD\n+Ip1UAUUUmaYgNblnKJLZV7jjA7VgnrWhpcu2VoyfvDj61nNXQ0a1FFFZDCiiigAoopskiRDLMB9\naAHUySRYhlyFHvVCfUhyIxg/3jWfJK8hJY5JpqDYGnLqiJ9xS314qODUXedVYKFP4Vm06NWaQbFJ\nINaciSEdHRTUzsG7g45HpTqyGFFISFGTVaSfPA/OmlctRbZO0qgccmq5JY0wGlrVI2UUhaWm0VRV\nh1GKSnUCG0+mmlzQDJFcgYphoBpaSRKSEoBopQKY2FJTsUlAkAopDSUgG0tLSUwFooooAKiuV3QE\n45U5qVnCIWY4AqlPOZjgDC/qaTaS1JnJJakANJRR3rE40hCaSnYpMUzdTSQmKUUVJBCZpQg49T6U\n1qS25Ghbt5kKsfxqbFIqBQAOMClrU2EpaKKYBSUtJQA4UTSpCm5jj+dRzXKW689ey96yJp3nfLdO\nwrNsTJ57x7jp8qelV80zgUwnPNKxDYrtk0yiimSFSGJxGHKna3APrWhp+mtK4kmBCdQPWtHVLfzL\nDCKMR8jjGB3oA5qiiigAooooAKKKKACiiigCRDU0T+XIrZPBB4quvBqU8Ck9xnWowdFYdCM0tUtL\nm82zGTkrxV2mIKKKKACiiigAooooAKKKKACiiigApKX3NQtcwIx3TIMds80Ac/qkJhvn/wBr5uap\n1o6pdw3Pl+WSSvU4xWdSGFFFLQAyil20lUIKKKKQBRRRQAUUUUAJS0UUAFFJS0AFFFFABR3opKAF\nooooAKKKKADvRRRQAUUUUAFFFFABUlR09TxSY0OooopDOgt/9UtTYqC3/wBUtTigQoopKWmIKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigBKKKKACo5RkU+lpoaIootvNT0lFIQ6mu2KCeM1\nG3JqWxoOtZOpp+/V8cFcZ981rVHNAk6bXGR1oiBzuaekUkn3EZh7CtxLK3jx+7B9zzVkBR0AH0GK\nrmFYw49OuXPKBf8AeNWY9IH/AC0lP4DFalJS5mMrpYW8eP3QPu3NThQvQYpaKkQUUUUAFFFFAGTq\nsO2VZR0bis8Gt+8iE1s6d+o+tYHJORWkHdALTDTgaQ9a0QDakgkMUyuOxqOim1fQR0yMHQMOhGaW\nqWmS7oNufucfhU8l1FF95ufQda5Xo7FE1RyzxwjLMPp3rMn1FnyE+X+dUmdm6nrVKDYrl+fU2bIj\n4/CqLyM+SxyTTKckbyNhFLH2rVRUQGU9EeQ4VSx9q0INLPBmP/ARWjHDHEMIoUe1TKougGdBpfQz\nH/gIrRjhSIYRQBT6Kzbb3GFMeRUHP4AUx7gKMLyfX0qqxLHJpxh1NI076sc8rP7e1MpKWtjoSSVh\n1LmkooBjqKSgUCHUtJRQAtJRTqBCU8CmU8GgTAiilzTaLCHUhoqMmgBaUU0GloAkptGaKCRO9Opn\nen0DZSumJk2fwjnFQVduYGk2svJHWqTKy/eUj8Kzknc5qsW5XEpKdSVBiJSYpaKCriEVd09gS69/\nvVSzUlvJsuFY9DwauOjLpuzNem0uaQmtDoEpaQUtMAqtcXQiBVOX/lUdzeEkpEeO7VSxxUOVhSdh\nrMWOSck96Z0p1BqDNyI/rSUppKoQoUk4ArWsdOK/vZsZ7IefzqSx01YsPJ80nYdhWjQAtSgb0we9\nQ1Kh4oA5KaMxSshGNpxUVamsQ7LveOj/AM6y6ACiiigAooooAKKKKAFHWpM+vP8ASoqeKGBraNNt\nmaInhuQK3K5S2lMU6N0wa6lTuAPqAaAHUUUx5oovvyov1OKAH0VRk1ezTo5f/dFVZNeXkRwk+hZq\nANiiudk1q6f7uyP/AHRVSS7nl+/M7D03UAdRJc28Wd8yAjtnmqr6xaIeC7/7o/xrm80uaANmTXDz\nshHsWaq0mrXT5wwQeiis/cKN1AyV55ZPvSu31bNR59zTcmkzRYBxNIKSlFAC0UtJSAWm0tKoo2AZ\nRSnrSUxC0lFLQAlFFFABR3oo70AFFFFABRRRQAUUUUAHeijvRQAUUUUAFFFJQA4UpGKFFKw4pdR2\nGUUUUxC0q02lHFAElFFJU3KOgg/1K1JTIP8AUrT6Qh9FIKWmmAtFFFMQUUUUAFFFFABRRRQAUUUl\nAC0UlFABRRRQAUUUUAFFFFAC0UUUAFI3SjNMZuKAQhOTSUUVIxc0tNooAdRSClpAOFFNp1ABRRRQ\nAUUUUAFFFFAgrAvYvJu2GMA8it+s3VIQUEqjkHB+lVHQDKozRSGtQEopQtIKdxEiSNFnacE00uW6\nmmipI4pJWwik0tFqMjp8cbyHCKWPtWjBpXRpTn/ZFaEcaRjagCj2qHU7AUINKGcytn/ZWr8cSRDC\nKFHtT6Kzbb3GFFFQXFysQx1b0pJFKLexK7qgyTVCW4ZyccCo2d5DljTQa2jE6oUlFXJAadUYNPqy\nmgop2KTFBIopabRQA+ikBpaAFBpabS0hC0tIKWgQtAoooAWikpuaBDzTaUUUAAFGKUUtMlsZS0UU\nhhSilooEJS0EU2gCldRlJiezcioauXaZiBHVTVKspqzOSqrSFxSGnUhHFSZjM0maUijbTRqjWgk8\nyJX9R+tPqpYybQ0ffqKsSTLCuWOT6etaJnSndXHF1QbmOAKz57tpMqnC/qabPM8x+bhewFRbaly7\nGbn2GYpcU7bRipZk532GGmHrTyKRI2kfaqkk00JDUQuwCA5PYVt2VitugZhmT19KLS1W1T1Y9Wq3\nuqix9FN3UbqAHU+M5zUe6npw9AFXWIBLab+8fIxXNV2brvjZfUYrkZk8uVk9CRQBFRRRQAUUUUAF\nFFFABTl+9TaUdaAJBxV1tWuQgRdiY7gVSBpppIZLJe3Mmd07kHtnioSSe5ptFMQUUUUAFFFFABRR\nRQAUUoFBpgJRS0oFIBMUuKfRSGNooooAM0optKDQANwabTmptMTEpaSigBaKBS0AJRS0lABRRRQA\nUUUUAFFFFABRRSUALRRRQAUUUUAPWncbaYDRzSsO4yloopiCiiigBc0lFFAHSW/+oWpKjt/9QtSV\nAxRTqZThQAtLSUtUIKKKKACiikoAKKKKACiiigAooooAKKKKACiiigApaSloAKKKQmgBrGmUtGKk\nYlFFFABRRRQAUopKKAFFVp5yjbYz8/c+lOmm8oYH3qqKMfWhuyNqcLaskFzcA/MQwqUXxHWI/gaj\nIpuKSkzTlRcF3Af+Wn58VKCGGQc1Q8laQRbTkEg+oNLmRLpI0aKz/OuFGBITjpnmpo5rhusQJ9c4\noRjUioatlrpzVK7voBG0ZO8kYIWq9zb30p+Ygr6L0rNdGRsMD+NWl3M1OL2CiiitR3Gk5o6UpFNo\nQgrV0uTKsh6jkcVl9KntZfJuFbt0NKauhm/S0gORmlrAYUVFLOkSc9ew7mqMkzyn5ydvoOlUo6am\nsaTepNLclziM/jUGKUe1BNB0JWVkGKaRT6Q1SZSZHkinBqMU0itEyiYHNOqFGqUHNMhoDTafTSKB\nJhT6YKdmgLDhRSClpEsUUtJRQIdSGmU6mAUUtFArhT6ZRSE0PxRSUUCDFFLSGmAlFJRmkMdmmUbq\nYWouNJjmw6FT0INUAufrVzNQkDzT6HmokjCvH3bkYFOxTsUCpOFsjK80m2pSO9JQaKTsMUsrBl6i\nlYM7bmOafxS0A6srWIdooxTzSUib3EoIopwBc4UZP8qY4pt2RHsZyFAyT0FX7eFYFODlj1NJHEsa\n5HXuT3p25V5LKPxqkrHbCmorUn3UBqrm5hXq4P05qJr5P4UY/U4p3G3Fbl7PvRurMN5IegUZ/GmG\naQ9Xb8OKXMiHUgjYLhBkkD68Uz7fBE3MgP0GaxSMnnk0m2lzEc6NeTWYV+4jsfyrIuZFnnaRU2A9\ns0zbSgUxORHim4qbbSEUhJkWKMU/bRii47kdFPxSUxjaKKKAHjmlI4pq080mBHijFFFMBcUYoAp+\nKVxkeKKfikK0AMooopiCiiigBRTt1MooAeCTTqZmnBs0mihKKKKBBRRRQIRjSd6dTe9MBKKWkoAK\nWkooAWlptLQAd6KKcFoAbRinbRT8UrgR4owakxRii5Vhm2kIxUtMbkUJisMooopiCiiigApaSigA\noopKAFooooAKSlooA6S3/wBQtSVHb/6hakqBhRRRSAfRSA0VSELRRRTAKKKKACiiigAooooAKKKK\nACiiigApaSloAKKKCcUAITxUf8WaUnNJUjCiiikAUUUUAFFFFMAqGeRYl3H73pUjSKiZY4FUCGlf\ne/5U9FqXTg92KvPJ5Jp+KbinqKzbvqdG4tJS09YmbrxU3M51IwV5MZUixM3XgVMsYXoKfRY4KuOe\n0ENSJV6Dmn4xQKRpFQcnn0o2PObnUl3Y6mOyL98A1C9wTwvAqAknrRc7qOBk9Zuw6VYZZADGu32H\nNNfS4W6MwptXYm3oD3xVXaNMVB0UnDYzH0qUdGUj1qo1pMh5Q10NIavnOaOKktzmsYHSm5xXRPEj\nDBUEVA+nQNk4IJ9DVxn3NliYvdE1pL51uje2PxqOa6wCqDLevpURg8iPCudh6igBccCpuuh30OWc\neZEWO560tKRSUkzqQtFFFABRRRTAQim0+mkU0wGdDUimmGlQ1aH0JqKQGlqjMbRTqSgBRT6jzSik\nJjqSiimAtLSCloEFLTaWgQtLTabuouOxJSZpm6kJpXBIfupN1MzSUirIfuo3UyikKyFJpKKKBhTZ\nRwD6Gn0bQwIPQ8UCkrqxEaKauSPenCszyGraAaaafTKAuJS0lKKAEpKcRTaY0NOSDinpM0Y2oqge\n/NNNMNM1hNrYe0sjHlz+HFMwKSkyaB8ze7FpKKKBCGiijFA0LRSUUDsGKKKBUiCmmn02mA2lxSUo\noAQikxUoFIRQFyHbRtqTFLimO5DT6UrUZFMpMcaQUmaWixSFFLRSVIxaKQ0maLANNGKKkC1T0JIq\nKkK5NNKmgBtFFFABRRRQA7NLTKdQAtFFFIBKMUoqTGRRcZBS0HjiimIKSlooASiiigBalqKrUKhk\npSKiRikqwEUUYHpUXHYhwad5Z9KmpaLjsQ+U1I8Pymp6KE3cVjPopWGDikrQgKKKKACiilCkjI6U\nAJRRRQAUUUUAHeijvRQB0tuP3C0+kg/1C04iosMSiiikAU4dKbS5pgKKWkpaYgooopgFFFFABRRR\nQAUUUUAFFFLQAUUUUAFMY0rGmVLYBRRRSGFFFFABRRRQAUhIC5JA+tLVG4k81/LXoOp9apIuEbsR\n385844HSnY4oC+lSrET1rOUrs0qVow+JjAM9BUqwk9eKmVFUcU6p3PPq41vSGgxIwvbmn0U1pFTr\nT0Rx3nUl3Y+ms6p1NV2nY9OKj69aVzrp4BvWbsTPOx6cCoqKKR3wpwpq0UFFFFBoIRUsDclfyqOh\nW2uDTMq9P2lNxLtJmgHpimtmqPAsGaKTNFSaWsNddyEVTxg4q7VWZcPn1qk9T0cBUtJw7kdFFFWe\noJRRRQMKKKKYCUlLRTAQ00cGnmmkZq0UOBpwNQ9KcDVCsS0lIKdQZsSilooAWlplOFAhaWkozQIW\nkzTSaTNJsaQ4tTc03NJUjSHZozSUUh2FpaZux3/KgNz90/youS5RW7H0VHvYngAUm5j/ABn8KLmb\nrwXUlpu9B/EKjxk5PJ96Wlcylil0Q7zBn7pNIXYnsP1ozSZouZPE1HsCjkk9TTwKQU8CkjlnJt3Y\n2o2qU1GxpAhmaM0lFM1sLmikpaGKw00lFFMEJRRRQWJikpaKACm06kNMoSiiikSFLikoFACmikoq\nQExQBRS0wuKOlOpBQTTJEopKWpKCmkU6k7VVwTGEUzbU2KaRQaJjCaM4o20u2grmQzOaSnsKbimJ\nO4qinZpmTRmkMfupN1MpaAYpOabilooENop1JimAlPplOWgBaKBRSAKlWmohJqyseKTZVipIu1iD\nTKtXK/LmqlUiWLRR3ooAKSlooAKs2zcEZ/Cq1SQttkFJ7DRcpKdSVnYuwUUUtIBKKKDQBVuFw+fW\noatzrlM+lVTWqIYlFFFMQVNA3O2oacjbXBoYE85AXpVanu+9s1HQAUtFFABRRSUAdPb/AOoWpait\n/wDULUtADKKWisxiUUtJQA6lpop1MAoooqhBRRRQAUUUUAFFFFABS0UUAJQWpCaYTSYwNFFFSAUU\nUUAFFFFABRTJJkhGXbb/ADqhPqeciEY9zTAuXUixLksBVKPEjZ6CqEkzyNudiatW8mcU3ewTqyjG\n0TURQOlTCqyPTjMq9ayPNlCU5WWrJ6a0ip1P4VA07N04FRUrnVSwLes2SvMx4HAqKiig74U4wVoo\ndRRRSKCiiigBKKbRVBYeKa1ANKeaBliB8oBnpU2KqW5w+PWrYoPCxcOSq7DSKTHFSU0jimYpjKhn\nXK59KmpCNwxSNqU+Sal2KNFKww2DSVZ76d1dBRRRTGFFFFAxKSlNJVAFJilooQIbTehp9IRVpjTF\nBp4NQZqVTVCaJKSgGloIG0U0mm5LA7QalsbaWrJN1NJpNrnsPxo2H1qeZGUsRTXUAaCQOpFKEX0/\nOlxikZPGx6IZn0BP1ow3oB9akpKDJ4ub2GYJPLUbR6Z+tOpKDJ1Zy3YDFLSUUEWEooopAJRRRQMQ\n0lLRimCYoqUVGOtPFJkSFNRmn5FBxiglEJpuae/FQk0G8NUSUZpgNLnimDQUUUhqgCkpaSkUFFFL\nikA2iloqiRhpKfSYoKQlFFFSMU0YzRQKQgIIptSmozQJMUGg0UYoAYaBT8UbaB3FXmhhQDilyCKB\nEJNKOtKwpFoNNx+KSjNJSJSENNIp9JVDIsUlS4ppFBVxlFO203FMBaKSlpDCiiigAp2KQc1IFobG\nIF9KkWPnmnImKkFTcoAAOwp1JS1AxHG5CKoHg1oVTnGJT781pElkNFLSVRItFJRQAtJRS0AaKHcg\nPtS1DbNlCPSpqxejLEpKdRUgJSUGm1QxXG5CKomr9U5V2ua0iQyOiiiqEFFFFABR3opKAFopabQA\ntJS0lAHT2/8AqlqWorf/AFS1LSADTacaQ0gEooopDClpKWi4BS0UVQgooooAKKKKACiiigBaCaKY\nTSbAQmkooqRhRRRQAUfnUU1zFD95ufQdazZtSduE+UeooSbA0pLiKH77c+lZ8+ps2RENvvWezMx5\nPNJWih3Fcezu/U0lAqzBZyzngYHqaLpAVasQ2s0pyq8eprVg06KHG75z+lXOnTikMyhbPEMMxz7U\n0HDYNacibhVCWI5xirSRvScVpYFNOqAEqealDVjOFjVofRRRWZA6iiikA2ilpKAEoooqxhRRRQA4\nHBBq8p3AHtVCrNu2V2+lI4MfTvBTXQlpDS0Gg8lDKSlpDQaIrTrhs+tRVakXch9aq1UWezg6nNTt\n2EpKcelMrRHYOopKKAsLSUUUAJRmiimMKKKKYIYacppKTpVpj3Jc5pC4AOetNXLdBTgm33rNysc9\nWvGnpuwAycnp2FTLjFRUoOKk8urKVR3ZMRTCKk6000GadiOm08imUFoBRRRmqAKTFGaWgY2ilpKk\nBKKMUUDEopaSgYUtJS0AJRmig0xIXNGaZRUisDmoSKkNNqjSDsNpaWkxQXuOpKM0GmSFJRS0xiUt\nGaSpFuFJRmkqrjSHCiiikOw3BpOakpKCkhKM0lFSFh2aMUg6UtMy2ExRS0tADaKWkoASgGiipKFJ\n4ptLTTQNDsUmKBS0wDFFFFArjaMUUUDG4pCKfSEUxpkWKSnkUmKZaYlFNp4GaAHotThaRFqTFZtl\nCAU7FFLUlBRRRQAVBcpkBqnpsi74yPaqW4nsZ9FFLWpAlLRSUgFpKWigCa3bEmPWrdUFOGFXgcgG\nomhodSGiioKG0UtFAxKr3A6GrFMlH7pqqL1E0U6KWkrQgKKKKAEpaKKACg0Ud6AFooopDOlt/wDU\nLUtRW/8AqF+lS0CCiiigBtFOptSwCiiigYCnU2loAWiiiqEFLSUtABRRSN92gBGNMooqGMKKrzXs\nMP8AFk+grOn1CST7p2D0FNJsDTmuooQdzc+nes2fUpJPlT5V/WqROTk0lWoLqFxSxJ5NJRViGzmn\n+6uB6mrukSVqtwWUs/QbR6mtK306GIZI3t79KvYxwKgZTt9OiiwxG5vfpVzGKKKQBRRRQAUxkDU+\nihMa0KE0NViChrVcbhVWWGqTudEKl9yBWp9QMpU8CnB6zlT7GrV9ialpoNLWTRGw6iiikIbRRRTG\nJRRRTGLUkTbXHvUdFIicFOLi+peopsTbowe9OpnzsouLaYlJTjSUxpjMVTkXa5FXarXC9GoO7B1O\nWpbuQ0h60tJVo9hMSiloqhiUlLSUxhRRRTAKKKVVLHAFJuwm1FXYoFTJbluW4FTQwBeTyan21n8R\n5eIx32af3lbYAMAUxlqyVqJhVWOGM22QEVGalNMIoNkxwNO61GKeDQhSQhFNIqQ00inYSYzFFLSU\nixtLRikoK3CkpxplAh4opO1LQDExSUtJTBDaKKKBiUuaSimAgpppM0Uh2FpD0oopjQUUUUFCCjNF\nFIAJpKU0lA0haKSlosUJmikpaYxtFLRQFwooopjEooopAAp1Np3ehETFoooxSIEopKKADFGKKKAE\npDS0h6UikFFFFBQlLmm5paBWHUlFFA0FBFA60tAiOjFOpMUDRHinxCkNSJwKb0NI6k4pRTBT6yKF\nooooGFFFLQAUtJRTuIz3GHI96ZVm5XDA+tVq1RDCiiigBaKSloAKuwNujHtxVGrNscEilJaAiwaK\nSisjQWiiigApBS0UAUSMMaSpbhcPn1qGtjMWiiigBKWiigBKOtLQopgFFO2mjbUlWOjg/wBQtS1F\nb/6paloJCiiigAppFOooAbRRSVAxaWkopgOoooqhBS0lLQAnSmE5qpc6jFHwPmPtWbNfSzcAlV9B\nRZsZpz38MPQ7m9BWZNfyy5XO1fQVUoqlTSFcXvRRVmGylmPTaPU1TaQisKsw2Usx6bR6mtOCwhhw\nSNx9TVrpWbn2HYqQ6fDDgkb29T0FXQKAKdSGFFFFMQUUUUAFFFFABRRRQAUhGaWigCtLDnpVN4iO\ngrVqN4weoq0zaFRrcywSvWpUanyQ+1QbShqZRudCakWAaWq4epQ1Yyi0S42FoooqRCGilpKpAgoo\nopDJ7dsEr61PVNW2sCO1XByMig8fHU+WfN3FpM0UGg40MprrvUipKSmaRdndFCirDQgsSDSeR70c\nx7KxVNrVkFFTeR71E67WxVJ30NKdeFR2ixlFFFWbjaKdUqQ92/KhysZ1K0aavIbHGX57VcjQKuAK\nRR7VKoqN3c8XE4mVR67EgFLRRVHE3caRTCuakpMUxoqulQkVeZeKrslBvCfcrUlSlajIpGydx4NL\nUYNPFMlqw1ulMNPPSmGgoKSlpKZQtJSiigL2GUuaWjFILiUhpcUlMENzSZpcUlA0FFJRQVYZS0lK\nKYMWkpaKQhp6UUtJQi0LTDT6bQNCU4U2nCgYUUUUAJRRSUFIWiiigAoopKYwooooAKUGk7UgqSJD\nqWm0tBAEUlLSUAFFFBoASiiikMTvRQaMUyrkfelBpSKaaQ0Popop46UC2EooooBju9FAprGmVBXd\nhoB60+m0+pbOlIcDT80wGnA1Imh9FMBp9IkWlpKWgAooopCIp13RmqJrSIyKz3G1yPQ1rHYTG0UU\nVRIUUUUALUkbYcGo6DTAv0UiHKA0tYMtBRRRQMKWkooAjuFymfSqdWrhu1Vq1iQxaKSimIWikooA\nWnqOKjqVeg+lJjiLSnGKSg1JR0Ft/qlqWooP9SKlqiAooooAKKKKAGminU2kxhRRSEgck4pAKKUs\nq8k4rPn1SNOEG8+vas6a7lm6tx6U0BrXGpRxcL8zfpWVPeyzk7m49BVYmiqUe4gooq1BYzT842r6\nmrbSAq1ag0+abkjavqa1IbGGDGBuI7mrFZufYLFaCwih5xvb1NWaKKkYUoFIBUgoSEFFFFUAUUUU\nAFFFFABRRRQAUUUUAFFFFABRRRQAhXNV3gB7VZoNNMqMmjMkgqEgoa1WQGoJIPaq3N4VblMSU8NQ\n8OOlR8rScL7Gmj2LG6kqINTg1ZODQnFofiiiipEJVu3bKY9KrAZOBVuKPYDk8mkzix8oezs9xaKK\nDTPJQmaSijFI2SSEJoFFFOwuYSoJxyDU/uTVWR97ewoW51YOMnUuuhHSqpY8U5Iy3J4FTqoUYFW5\n9jtr4uMNI6sEiCe59alC0KKmValI8mpUcneTEC04ClApas52wooooJEooopjuBqJlzUxphFA0U2W\nozVhhUTCkdEGQ07NBFNoNhSabTqbimAlFFJTBBmlopKEMM0tNpM0AOpDTc0ZpjSHUhozRQOw2m06\nkPWgaG0CiikwFooooEJimmn02mikwp1NHWnUikNooooKCiiigYyiiikMKWkxRQIdRRRVDGjrTqaD\nTxSJbsJRS4oNBncbRRRSASloxRQAtJS0lACUUtJSGKaSlNJTGgIppFSU2gBmKcKXFLQO4mKTFLSE\n0gVxScCmUUtB1QhZBS0lLSZYU4GmUZpBYmFLUYNO3UiWiSlpgNOBpENC0tJS0hBVO5XbJn1q5UFy\nuYwfSrgJlOiiitCQooooAWiiigCzbngj0qeqkBxIKtms5blISiiipKCg8Ciopn2pjuacVcRXY7sm\nmU6nSLjFakEdFFFAC0tJRQAualqIdRUtJjQtBopDUoZ0Fv8A6halqK3/ANQtS1RIUUUUAFFFMklj\nhB3sB+poAfTZHREyxA+tZ8+qqMiIZ/2mrMknkmOWYmkBp3GpomRCNx/vGs2S4kmJ3tmoaKpRQXEo\nFKM5471bg0+abBYbV96psCpVqCwlm5I2r6mtWGxggxhQx/vGp6hyCxVgsIYe25vUirVFFSMKKKKQ\nBR1op4FNIApaKKoQUUUUAFFFFABRRRQAUUUUAFFFFABRQKKACiiigAooooAKMUUUANZAarvBmrVF\nNMuM2jNeDFQlCvStYoDULwg1VzaNUzgxFSIxY4FTmCoG/cuD2apklbQKlRqDcdy4gCDAqTdVITVI\nstYnhyjJu7LOaQVEJKdvoM7Ml4pCaZuNGTQNXEoBozRmgBkxbAVe9NSHHLVLmikdKrSjDkjoIBTw\nKQVIoq0YOVhwFPAoApaoxbuFFFFBIU3NKajNMpDs0uaizTgaBuJKOlBFIppxpksgZaiYVZYVGRSL\njKxUYVEetWnXFV2FB0RlcbS0zNANUaNEhFMNOzxTaQIbS0lLVDGU2nU2mMKKKWpGJQKWigLiUUUU\ngEooooGJmikpaAEoPWikNNAhR1p1NHWnUihtJS0lBSCiiigoYaKXFJikwTHCikFLQD0CiiloFewz\nFOzQaQ0EN3HCg0GkoEhBS02lpjYtGKSjNAhabS0hpMYZooopAFLRRQNbjaKdSUXLsAFFGaKA5RcV\nGeaUmm0XNYU7ai0tFFFzYKKKKQwFLSUUgCnA02nUASZpQajpd1IixIKk7VCKkzQQxaRhuQj1FFFJ\naMVjPptSzLtkIqKtkQwpaSigBaKKKAFHBq8DkA+1URVqA5Q+1TIqJJRRRUFB0qpI5Zs5qaVsKRVb\nvVxRDHKMmnt90/SkQYFLRfUdiKkpabVki0UlFIBalByKiqWPkUpDQ6kNLRipGb9v/qFqWorf/ULR\nLcRQ8s34DrVEktMklSIZcgVmz6oeRCMf7R61nSSvKSWYmgDSn1TtCPxNZsszzNl2LGm9qShAFFLj\nPSrlvpss2C3yL79TRcCljsKt2+nyzcsNi+prWhsooAMDJ9T1qfFF2BVgsYIcYUM2OpqzRRUjE7Ck\npewpKGAUUUUgCiilFPqIdS0UVQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAUUUUAFFJS0AJUVxbieIrnB7VNSUJjuZL2NxGflAcD0NQmR0OHUr9RW7SNgjBGR0osiXCLMdZ\nqkE1UJ1ME7x/3TimiU0rGLoo1BNTvOrNE1PE1RymbpGh5tBkqiZ6DNRyk+yZe8ylElUxLT1kzRYH\nCxfQ1MtVoz0qcGtEjmmiXNGaZmjNUZ8o/IoyKi3UZosFiUmmHmkzRmgdhlKDig4opWKuOBqQGoM0\n4NimS1ce1MzSscioyaBpA3Iqu4qcmom5osaQ0KxFNqUimbaZ0JjKXNBpM0h7jqKQUtNCYlJS0lMa\nCmU89KbikUgHWn00dadUiGUUtJQO4tFFFJFISiijvRYbG0UUUzMDRS96SmXESm06kqTRBRRRVDFp\nDQKDQJIMUUlOApXGxtPxQKTNSZN3EoIozikzTSGkxaKXNJSKsMpaQ0opg46BSU7FGKZFxtFLikpD\nEpaKKAFooooENGc0/tSd6XtQXF3YhFMY04mmHNBvFagKdSA4pahmwlLilpM0DDFNp1JQACiiloAS\nloooAdS02nigkM08GoqcDSE0SZpaaKWkQQXS9GqrV+Vd0ZqhWsSGFFFFMQUtFFABU0DYfHrUNOQ4\ncGhgtC7R/jRTJG2pWSRoV5W3NTUGTTalQYFaPRGaHUUtJUFkT9c+tNqSQZGajrRbEMKKKKAEqWM1\nFT160mNE2aeOlMFSDpWbKJW1N/L2p8vv3qizs5ySST3JpoorWxAUUoGelXrfTJZeX+RevvQBRAz0\n61fg0yWXl/kX9a0oLSK3A2jJ/vGrFIZDDaxQfdUZ9T1qaiigQUlLRQA00UppKkYnakpe1JQwCiiq\ndxfRRHj5z6CgC5SjgZJxWPJqcjDCKF+tV2up2GDIapRYrnQs6p94hfqcVE99bJ1mU+ynJrnnleRs\nuxJ96jpgbjatAM4Un3qtJrEh/wBWgX3PNZlFAF19TuWP3gPYCr1hfed8krfP/OsSloA6uis+x1AS\njy5jh+x9a0KQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUlLSUAFFFFAC0UUUAFJS0hIGSS\nAPegDK1eEApKO/BrKrSv75ZVMSDIz941nUwCiiigQUdO9FFMY9WJNXYRxVWFMmtCNOKVjGtJIsJ2\nqXoKjSpDVHDJ3DdRupMUmKZAtFFFAwzRRRQAUuaSikDFNGaQ0zPNAKNyUHNNNANL1oFsMpMU7FLV\nDuRFabipCKQrxUstMrstR4qdhUVI1TG4paKKEVcSloxSUx7hRRRQIMUYoopDuJTqbmgdKRSQmaSl\nxSUFBTadzSYpXC4tFAoxTIENFLSGmhiUlLSCpsWmLSYFLRQHMxMUcUlLVCuNp1NzS5qQYtNJpe9G\nKY1ZDadQVpvNSXdDs0UYoxTsHOiOlFKRQKLA56C0lLSUzMKKQmjNAxaSjNFIBKXOBSUhPFA0ri96\nWkApcUraHQtBKXtRilAoE3YZj5aUU/FR8qcUNBSle46kzRR1p8psJmilpBSsMUGnU3FLmk4jClpu\naUGlZiYEUA4pc0GgQoNFM6Uu6lYLEgp2ajBp2aCWh/UVRYYYiroNVpxh81UDORBS0UVZIUUUUAFJ\nS0lAF2NtyCoZmy+PSkjfCEVH15pWHcFGTUopqDmn0mNBRRS1IxpGRUFWG+4agPQVaJYUUUUxBRRR\nQBOpyKkzxUUZ4xTzWbRVyBFLHABJ9qvwaXK+DLhB6d60bOCOOEFVGT371ZqxEMFrHAo2qMjuepqa\niigQUUUUAFFFFABRRRQAUhpaZJIkYy7BfrQAdhVee6jt/vfl3qlc6ozfLF/30etZ2c9aFG4XLVxf\nSynCkoh7A1Vooq0rCCilxRimAyiiioAKKKKBhRRRQAVsafflsQSdexz1rIpKAOrorM0/UN22GXO7\noretadIAooooAKKKKACiiigAooooAKKKKACkpaSgBaKSloASilpKAFopOtZ95qYT5Ifmbu3pQBbn\nnS3Tc5+g71i3V9LcnH3U7AVBJK8z7nOTTKLAB5pKdSHrTASlpKWgBDTgMmmmpYxk0xbK5ZgTpV+N\naghHSraCg4asrscOKKKKo5xaSlooASiiloGJRS0UCuJRRRQMaabipKTFIadhop9NAp1UD1CjFFLQ\nSNoxS0VLKTI2FQMtWTUbLSLjIrUmakZajPWg2QtJRRmmOw/tSGndqYakBKQ0UtWAnFHFJRipGJii\nilpAJRRRigAFFFFAC0hozSmgBlIKKKRoLRQKKZAUUZpaAGEU2pSKbikNMQUtGKXFMApuKXIpM0Id\nmLRmkzRQPkYGm5oIoxSK5EkLkUhpwFLinuRcipMVJtpNtFhpjRTsUoWnhadhNjMU01LtppWk0XTk\nr6iYop1LVGjYzbTguKcBTqRlOXQbimNyae5wMd6jpmlFdRcUwinZpKLHQtBtFOxTcVJVwopeaSmC\nCkooxQMM07NNoo5RCk0vSm06iwXAGnZppFJio5QJAaZJyuaQGlJyMUmrO5DiQEUmKlA4pMVqc9yL\nFFS4ppWkO4yil20UgEpy9RTaenJoY0SAYpaKKzLEoopaAI3PFR1JIecUytEQxKKKKACiiigBy8NU\np6VEOtSGpY0dBb/6palqK3/1S1LTEFFFFABRRRQAUUUUAFFU7nUYrfp87egNZM95LcE5bA/ujpQB\npXWqLHlIfmPr2FZEs8krZkck1FS0wFFLQKdVoBtFOooEFFFFADDSUtJUDCiiigAooooAKKKKACtf\nT7/O2GTOc8N1zWRRQB1dFZNhqGP3U7f7rH+ta1IAooooAKKKKAClpKWgBKKKKACiiigBKWiigApr\nyLGhZmCiobm7jthzyx6KKxLi4kuHyx+i+lAye71Fp/lTKp+pqlRRQAUlLSGmAUtJRQIQUtJ0paAF\nqzAtVhyavwrjFIyqOyLkS1OBUMdWKs8+b1G0UuKSmQFLikFOoAbRS0lAC0UUUAJRRRQAhopSKMUD\nuFFFFMBKUUUtAAaMUGkqXsMQimkVKRTCKRSZC61A64NWzULLTLiytilAp2MUlI1vcdRTaWgQUUtJ\nQIaabTyKTFBSGZo3UGkoKQ4NSg1HS5pBYkxQRQKXFMkjxRmlIptIoQ0lLSUFId2pppe1FAPcjzzT\n1NJigcUgY/NJRSUxDqOlGaSguMRmKMU+ig1G0UuKKADFGKkC8ZpMU7GUpDQKcBRilqkjO4m2jbS0\nUWFcbinUUUDEooopAMIo/GlNAHNOxop9xw6UUtNfgcUrELV2GM2TTaSlFSj0IxUVZDc0Ciincqw/\nNFNzSg0CaY6jFLSUxDabmnGm0hoWiiimAUtJS0AJSGikoEmLRmkopFAB1oxSrT6a2OOppIjIpKeR\nTSKZKY0ikxTqKLFDMUqU7FIeKlq5UXqPopKKgsWikzQaQETctTaVutJVksKKKKACiiigBetSKdwq\nIU9aTQ0dHb/6palqK3/1S1LQIKKKKACiiigArP1V2S3G04y1aFZusf6iP/eoAxqKKKYBRRRQA8Ut\nIKWrAKKKKBBRRRQAyilIpKlgJRRRSGFFFFABRRRQAUUUtACVq2Gof8spm/3WP9ayqKAOrorHsdQ2\nYhlOF7N6VsUgCiiigAooooAKKKKAEopaiuJ47dNznHoO5oAlrOu9SVMpBy3duwqjc38txnnav90H\nr9aq0AKxLncSSaSiigYUlLSUxC0UlFABRRRQAUUGkFA2TQj560IRVS3XmtKFaDkrSJFFSCk20CqO\nN6jsUmKcKMUyRppRQaKYC0lFFABS0lOFADKKUilpAJRSUtAxKSnUlADaAaWkpgOppoooYDs0pFM3\n0u6pGNYVGwqUmoWJ9KRcRjLUZWpSTTGpmiGUUmaBUl2HUlGaKoQUUmaDSCw0imEVJmmGnYpCUlFG\nKkoUU4Go6cKQNDzTaWimSFNNPoPNA0Mpc0Gk7UihCaSikplqAuaTNFGKCuRBQKKXFBTFpwpoHNOF\nVYQ/FJt5p3anDvTRnN2RHSU/bRimY3GUUpFJQAUmaWkNSUhpNPFRU5TQNodS0UlMkCKbT6Q0DCgj\nIpKKQyKinMMHFNpHoJ3QEU3pUlIRQNMjop2KMUrDuKKKTFFUIKKKBQAlKKXFJikFwooopiFooooA\nZzRzTqKYXGjjmpO2aYaeoytIwrLqFNxTqSmYDdtGKdQadh3G0mOKU0maQxnSloPWikdK2DNJ2paA\nOaAloNIpMVJimkUWMUxlFLijFIY2iiikMco5qXaMUxBVgrxTRtBG1b/6palqK3/1S1LUmIUUUUAF\nFFFABWdq/wDx7J/vf0rRrH1n/Wx/7poAzKKKKYBRRRQA4GnVHT6pMBaKKKYgooooAKZ0p9NIpAJS\nUtJSAKKKKQwooooAKKKKACiiigArTsNQMZWGXGzoCe1ZlFAHV0Vjaff+ViGQZTPDZ6f/AFq2aQBR\nRRQAUUm4AbiQB1znisq81LPyQfi3+FAFm6v0t+B80npWLJI8r7nOTTaShAFFFFMBaKSlpDCkpaKA\nEooopiCloopDCkPWlpf4hQIuwDkVoxVRhWr8VUefWZPjikIp60VRz3IxTqXFFAriUyn0tMY2m1JT\naBDafTadQMDTSKfTTQJMZRTsUYpFCUlOxTaACkpaKBBSUppKRohtFLRTHcQUjLTwKWkSV2FMIqd1\nqLFBoiAim1YdaiIoLTGUUUUFC0tFFADaQin02kBHRT8UlFy1qJSClopBcUGim0tMQtLmm0UgCkzS\nZoplJB3oooqTVMSlApcU4CrSC43FKBT6SqFcUDikIxThQaBDAaeDzUY604UMb1JqCKQNS5FK5zcr\nIyKTFOooC5HSVJimkUFJjCKaODUlIVosNMAaU00cU8c0CY2l60hFApDFIpKXNJQBGy9DSYqX+E1H\nS6nZRd42FoopM0zSwtNpaKYIKCKWkpDGUU+kxSGJmlplKKAsJRTqMVQhtFFFACUU6ikIKVDzSUg+\n9SJmrxsPNIaeaYao5EAoNJRTGNNNzT2FMxUlIUmikooNovQWlUc03pTlPJpoU9hSKaakOKYaDFEb\ndKQCnNSDg0upothlLS4pKQEkYqx/BUKdambgU0dUErGzb/6palqK3/1S1LUHMFFFFABRRRQAVjaz\n/ro/92tmsbWf9dH/ALtMDNooooAKKKKAClpKKAJKKaDTqsQUUUUAFFFFADaSnEUlSxjaKU0lIAoo\nooAKKKKACkpaSgBaKKKACtCwv/I/dyZKdj6Vn0UAdXnNQz3MVuMu3P8AdHU1iw6hNBEUU5H8Of4a\nrMzO2WJJPc0AWbm9kuW54TstVqbTqAEpaSigBaKKSgAooFFABS0UlABRRRmgBaKTNLSGFKoy1NqW\nEZamhN6GjB2q9GtU4B0q8lUzzar1H0EUtIaDAKWmU6mAUUUUCEoopaYCUtJS0gCkoJophYKKM0Zp\nDEptPNMpjEpCaXFJikAlFLijFIq4lKBRTqbC40igGnUygBTURFT0wrSGmRVGwqXFMxQWmQEU2pmW\noyKDVMbThTadSGwopTSUCQ3FJin4oIoHewzFMqXFMIoHcbSgUuKcBQxtDcUYp+2kIpCIiKbin0Yp\npFpgOaUdKQDmnVViosWilpKCriZpaTFApDFpM0tJVEhRzThS4phewgp9MxTh0qRMbSilIpB1o0FL\nVC0EUUA0zAbRSmmmkUJRSUtAwopabQAUUhpKBjqjIwalFMcUmtDehK0rCUmKKWkdWwyilop2C4UZ\nopKYgp2OKaKd2pDG4op1LTE2JiinUlIExBSEUooPSgnYZTqMUoFFh7jcUGloNMExRyKQ9aVc4oxT\nOSW5HQKWkpDHU0ilBpaYhmKWnYpCKbRcJa2ExxRilpCam5U2xuaQmlpppEoD2ooHJoIqbmyWglFK\nBS4pmT0FUVKM00EU7IqG2jppSujbt/8AVLUtRW/+qWpaZgFFFFABRRRQAVjax/ro/wDdrZrG1j/X\nR/7p/nTAzaKKKACiiigAooooABT6ZThTQh1FFFUAUUUUAFNp1FADabTjTakYUUUUgCiiigAooooA\nWkpaSgAooooAKKKKAEpSKUUUALRTaWgAooopAFFLRTAKKKKACiiigApKWkoASp4PvioKsW/36CZb\nGpF2q4lU4quLTR51TckoxSZpQaZgNxS0YopgFFJT6AGkUlPpMUANpaKKAQlJS0lBQlFLijFAhDRT\niKbQMSjFLRQAykp9JQMbRmlxSUALSUUUAApaKWgdxhFRkVNTSM0ikyIiomFTlaawxmmWmV24pBTn\nFNqS0OoxTc0uaAHYoxS0hpkjaTFOopFoZQKWkoNR4Gaa1KKXFBk1ZkVGKk20FapILiYppGKkpMU0\nWpWI8UU/FIRTLTG0mDThS0FXsNFJT6KAuA604U2nCgl6gaKKKQgqMmlJpppGsUPzxmkpqniloRhJ\nWdh1IRRRTJGUUpFFIdwFLSUZoASjFLS0DEpHGVoNLQxx0dyI0lSMBmozSR3p3Q6kozRTCwlJS0lA\nxKWjFJSGLilpM0tMhhRRRSEFApKWqGOopKM0ibD6QDJozT1GBmjcio+VDcUlKaSmcowim4p5FNpG\niYgpc0mKKYC5pDyKWkoBEXejNBpuag13HUUlFBIpFGKBS4pWLvYcKXFAp2KoybExSH8aeDSGmJM3\nLf8A1S1LUEEieSPmFSebH/fX86zNh9FN82P++v50nmx/31/OgB9FNMif3l/OkMiL1ZR+NAD6wdTJ\n+3MM5xitvzI/7w/OsLUSDeuc5Hr+FMCpRRRQAUUUUAFFFFABRRRQA8c0tMBp9WnoIKKKKACiiigB\nrUlOOKbSGJRRRUgFFFFABRRRQAtFJRQAUUtJQAUUUUALRRRQAgooFJQAtFJRQAtFJRQAtBooNACU\ntJRTAKKKKAF9Kt2/3qqDtVu3IzSIn8JpxVaWqsTAGrIYeop3PNmncfSim70/vijen98VRFmPopvm\nJ/fFJvT+8KBWY6lqPev95aXzE/vLQFmSUmaZ5if3hS+Yn95aAsxabml3p/eX86Z5i+ooCzHUtN3p\n6r+dG9P7w/OgdmLRSb0/vD86Ten94fnSFZklJSF1x98Um9P74pgkx2KSk3r/AHx+dJvX+8v50DSY\npFJSb1/vCjev94UBZjqSk3p/eFG9P7wpD1G0opNy/wB4Ub0/vD86BtMXmjmk3r/eFLuj/vUBZicU\n7iozIv8AeFPEif3h+dA7McRULCpNyf3l/Omsyf3h+dIauV2QCo2GKnLKf4hUbbfUUGiv1IKKVtvr\nTc+9BpYlBpai3e9O3UkDiPpppN3vSE+9UOKY6kxRke1LxQkWOFPApm5aeHX1FUjGYuBQwpd6e1IW\nX2/OquZq5GRTakJFMOKSNUmBpMUhb3pNwoNEmJRRke1JmgvUWikyKMj1oCw+lxTc+9LketITTFpG\nNG6o2YetA4xbFpKaWpN1BsOHBp9QGSpQwIzmkjGrF7jqKbuHrRketBlYMUuKYWHrRv8AcUDsSU2n\nZHqKTcPWgSG4pRSZH94UmR6igdh1NIoyPWjI9f1oAQjkGg04jimE0jsou8RlGabzRmi5rYXmlGaT\ncKcG4oCwUgNJminYVxaKTJozQIKKAuR1pDkdaQlJXsLSg0hxmgUrlMfRRRxVXJEHJqTtTY+uc04k\netBzVJXdhCaKOPWgUzMQ0lOJFMoKQlITSEj1puaCkhSaTNJSZpFWFpKTNKDSAMUpo4o70AOApcUU\n4EZpJhJCYp1LxTSaZFmyXFIw4oBHrQxHrSuNRP/Z\n",
"output_type": "pyout",
"prompt_number": 263,
"text": [
"<IPython.core.display.Image object at 0xa6ceb90>"
]
}
],
"prompt_number": 263
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"Image(filename='street1715.jpg')"
],
"language": "python",
"metadata": {},
"outputs": [
{
"jpeg": "/9j//gAOTGF2YzUyLjg3LjEA/9sAQwAIBgYHBgcICAgICAgJCQkKCgoJCQkJCgoKCgoKDAwMCgoK\nCgoKCgwMDAwNDg0NDQwNDg4PDw8SEhERFRUVGRkf/8QBogAAAQUBAQEBAQEAAAAAAAAAAAECAwQF\nBgcICQoLAQADAQEBAQEBAQEBAAAAAAAAAQIDBAUGBwgJCgsQAAIBAwMCBAMFBQQEAAABfQECAwAE\nEQUSITFBBhNRYQcicRQygZGhCCNCscEVUtHwJDNicoIJChYXGBkaJSYnKCkqNDU2Nzg5OkNERUZH\nSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6g4SFhoeIiYqSk5SVlpeYmZqio6Slpqeoqaqys7S1\ntre4ubrCw8TFxsfIycrS09TV1tfY2drh4uPk5ebn6Onq8fLz9PX29/j5+hEAAgECBAQDBAcFBAQA\nAQJ3AAECAxEEBSExBhJBUQdhcRMiMoEIFEKRobHBCSMzUvAVYnLRChYkNOEl8RcYGRomJygpKjU2\nNzg5OkNERUZHSElKU1RVVldYWVpjZGVmZ2hpanN0dXZ3eHl6goOEhYaHiImKkpOUlZaXmJmaoqOk\npaanqKmqsrO0tba3uLm6wsPExcbHyMnK0tPU1dbX2Nna4uPk5ebn6Onq8vP09fb3+Pn6/8AAEQgC\n0AUAAwEiAAIRAAMRAP/aAAwDAQACEQMRAD8A87tok8pflX8ql8qP+4v5Cm23+qSpqgZF5Uf91fyo\n8qP+6Pyp9FADPKj/ALo/Kjyo/wC4v5U+igCPyo/7q/lR5Uf9xfyqSkpgM8pP7i/lSeUn9xfyFSUl\nAEflJ/dX8hR5Sf3V/KnmigBnlJ/dX8qPKT+6v5U+igQzyk/ur+VHlJ/dX8hTqKAGeVH/AHFo8qP+\n6v5U+igBnlR/3F/Kjyk/uL+Qp9FADPKj/uD8qPKj/uD8qfRQAzyo/wC4v5UeVH/dX8qfRQAzyk/u\nL+QpfKj/ALi/kKdRQA3yo/7o/IUeVH/dX8hT6KAGeVH/AHV/Kjyo/wC4v5U+igBnlR/3F/Kjyo/7\ni/lT6KAGeVH/AHF/KjyU/uL+Qp9FADPJT+6v5CjyU/ur+Qp9FADPKj/uL+VHlJ/dX8qfRQMj8qP+\n6v5UeVH/AHF/Kn0UDGeVH/dX8qPKT+4v5Cn0UCGeVH/dX8qPKj/uL+VPooAZ5Uf9xfyo8qP+4v5U\n+igBnlR/3V/Kjyo/7i/lT6KAGeVH/dX8qPKj/uL+VPooAZ5Uf91fyo8pP7q/98in0UAM8tP7i/8A\nfIo8tP7i/wDfIp9FADPKT+4v5UeUn9xfyp9FADPJj/ur+VHkx/3F/Kn0UAM8qP8AuD8qPKj/ALi/\nlT6KAGeVH/cX8qPKT+6v5U+igBvlJ/cX8qPKj/uL+VOpaAGeXH/cT8qPLj/uL+VPooEM8uP+4v5U\neXH/AHF/Kn0UAM8qP+4v5UeVH/cX8qfSUAM8qP8AuL+VHlR/3F/Kn0UAM8qP+6v5UeVH/dX8qfRQ\nAzyo/wC4v5UeVH/cX8qfRQAzy4/7q/lR5cf91fyp9FADPLj/ALi/lR5Mf9xfyp9FADPKT+4v6UeU\nn91fyp9FADDEn91fypvlJ/cWpDSUwGeUn9xfyo8qP+6v5U+igBnlx/3F/IUeXH/dX8qfRQAzy4/7\nq/kKPLj/ALq/kKfRQAzy4/7i/kKPKj/ur+Qp9FAEvlR4+4v5UeVF/cX8qVDxTqYDPKi/uL+VHlRf\n3F/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL+VHlRf3F/Kn0UAM8qL+4\nv5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPKi/uL/3yKPKi/uL/wB8in0UAM8qL+4v/fIo8qL+\n4v8A3yKfRQAzyov7i/8AfIo8qL+4v/fIp9FADPKi/uL/AN8ijyov7i/98in0UAM8qL+4v/fIo8qL\n+4v/AHyKfRQAzyYv7i/kKPJi/uL+Qp9FADPJi/uL+Qo8mL+4v5Cn0UAM8mP+4v5UeTH/AHF/Kn0U\nAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5UX9xfyp9FADPJj/uL+Qo8mP+4v5Cn0UAM8mP+4v5CjyY\n/wC4v5Cn0UAM8mP+4v5CjyY/7i/kKfRQAzyY/wC4v5CjyY/7i/kKfRQAzyY/7i/kKPJj/uL+Qp9F\nADPJj/uL+Qo8mP8AuL+Qp9FADPJj/uL+Qo8mP+4v5Cn0UAM8qP8AuL+Qo8uP+4v5Cn0UAM8qP+4v\n5UeTH/cX8qfRQAzyY/7i/lR5Mf8AcX8qfRQAzyY/7i/lR5Mf9xfyp9FADPJj/uL+VHkx/wBxfyp9\nFADPJj/uL+VHkx/3F/Kn0UAM8mP+4v5UeTH/AHF/Kn0UAM8qL+4v5UeVF/cX8qfRQAzyov7i/lR5\nUX9xfyp9FADPKi/uL+VQ3EUflN8q9PQVZqG5/wBU1ACW3+qWpahtv9WtTVHUYUUUUAFFFFABSUUV\nQCGkpaQ1IBRSUtMAooooEJRRRQAUUUUAFFFFABRRRQAUUUUAFFFFAC0UlLQAUUUUAFFFFABRRRQA\nUUUUAFFFFABSUtFAxKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigB\naKKKAYUUUUCCiiigAooooASiiigAooooAKKKKACiiigAooooAKKKKACkNLSGgBKKKKYBRRRQAUUU\nUAFFFFAEsfSn1HH1xUlMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiqFzeuj\nFFAGO9KTsNF7IHU0KytnaQcehrFe4lk+85pLW5+yyc8o559j61KlcdjcoooqyQooooAKKKKACiim\ns6p94gfU0AOoqnLqMEeQCWPtVKXVpDwgCj/PrU3HY2CQvUio1uYnfyw4Lc8fSudkupZOrmptOR2u\n0YAsBnOeg4p6hY6GiiimIKhuf9U30qaorn/VPQAy3/1S1NUNt/qhU1SMKKKKLAJRRSUAFFFFABTa\nWigAooooEFJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALRSUtABRRRQAUUUUAFFFFABR\nRRQAUUUUAFJS0UDEooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApaSloAKKKKBB\nRRRQAUUUUAFJS0lABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiii\ngBydamquKsUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKwpn3SN9T/Ot2sCU/\nO2P7xrOZcRKRlDAikozUIZe0y7z+4kPI+6Sf0rUrmHJUiReCpzW9a3sU0QYsAR1BPf8AnWsWQyzR\nWfLq0S/cG4/5+v8ASqUuqTv935R7cU7gbbyJH95gPqeaqSapAnT5v8/57VhtI8nVmNSxWFxN92Ns\nerHaMevOM/hU6jLUurStwnyiqUk8kh+Zifx/ya0YdF7zSD/dT/E/4VeisbeLG2ME+p+b+dHLfuBg\nxW00x+RGb3xx+dXItHkOPMcL7DJP49B/OtnFLVWQrlWLTbaLB27z6tz+nT86s7QvAGAOwpaKYgoo\nooAKhuf9U9TVDc/6p6AG23+qSpaht/8AVrU1SMKKKSgBaKSkoQCUUUtAMSloooEFJRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABS0lFAC0UlLQAUUUUAFFFFABRRRQAUUUUAFFFFABR\nRRQAlFLSUDCiiigAooooAKKKKACiiigAooooAKKKKACiiloAKKKKBBRRRQAUUUUAFFFFABSUtJQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUhpaQ0AJRRRTAKKKKACiiigAooooAKnXpUFTR9KAHUUU\nUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigApaiuJfIhkkABKqTzXNTancz9ZCo9E4/Uc0AdDNeW8H35AD6d\nT+Qqquswu4RVO0kDex9/7v8AjXO5JpVOCPqKAOzHNKaztNvRIvlPgEdCT1FWJL6CLq2fYUrgTk4B\nNYEjZZie5q1Nq/ZFx7/5/wDr1ms5brUS1KRMWphcVCT70wyCjlHcmLk8Ug3Odoyx9ACf5VW3kmul\n0u18iEMfvuMk8cD078VXKIy4tNuZv4Ng9X4/Tk/pV6LRlHMrk+yjA/M5J/StSkJA6kUWQEEdnbw/\ncjUH1I3H9asVC08S85/z+OKpT6vEmcHP0+b/AAFF/IDSphkjXqwrBm1iR87Qcerf4DiqUl1NLnc5\nx6DgfpRdiOgn1OGEHGCccAnv9BU9ncG6gWQ4yeoFclz9a6PSIZIrfLDbvOR1zj8aYjRooopgFFFF\nABUNz/qnqaobn/VPQAy2/wBUtS1Dbf6palqRi5optFAC0UUUAFFFJQIWkoooAKKKKACiiigAoooo\nAKKKKACiiigAooooAKKKKACiiigAooooAKKKKAClpKKAFooooAKKKKACiiigAooooAKKKKACiiig\nAooooASilooASijFFAwooooAKKKKACiiigAoopaACiiigAooooEFFFFABRRRQAUUUUAFJS0lABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABSGlpDQAlFFFMAooooAKKKKACiiigAqSOo6evWgCWiiimAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUdPaqU2pwQ8A7yOwpASX/FrNn+4a5Ota81R542QAANWTTAKKKKAJ43x3\nqaOKSYnarPVRetX7O5NvIGycdx7fnUtDRZi0id+XZYx6dTST6RMozFIGx2IwfzyRW0jiVAyng0GR\nF6n2oWgHIzRSxNskUqfeo63NUSGdlbzghUEHOOn86z91nD0RpT/tcD/P4U7hYqpG7H5QT+FdLDdC\nK3j83htuPpWE19L0QLGP9kf1quzM5+Yk/U0ajN2XWYl+6cn2H9TiqE2rTSfd+X6/N/8AW/SqKQyS\nHEaM5/2QT/Kr8OiXUgy+2Me5yfyXP6kUWEyjJNJJ95if89u1M5JxyT9K6GHQ7dP9YzyH/vkfkOf1\nq9HBFDwkap9AB+Z6n8aegrnOw6VdzYwmwHu5K/py36Veh0FRzLIx9k4H5nJ/QVs0UAVoNPtYOViG\nfVvmP/j2f0qzjHFFFABRRRQAUUUUAFQ3P+qepqhuf9U9AEVv/qlqaorf/VLUtSAUUUlAC0lFFABR\nRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUU\nUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABQaKDQA2iiimAUUUUAFFFFABRR\nRQAUo60lFAFiiiimAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUVDcsUicg4\nIHBoAkkkjj+8yj8arNqUKnAy30FZMjMWJJJ57n3plZ85VjpAwcZHIorKsLsqfLY5B/StWqTuSwoo\noqgCiiopLmKH77gEdu/4gUXAlorOl1eMfcQt7nAH9c1Rm1OeT+LZ/u8VNxm/x9cUVmaT5uH3iTae\nQT0z/P0rSqgFooooEFFFFAGZrKv5alS3XBAJ/DpWbDp9xP0jIHq3FdIRn/8AVS0hHOXmnPbQeY7D\nqBtHv6ms2uk1z/jzP++tc3TQwooooAKkjYfxHAqOlAzQNGkNVMSCNAWxxljj+Wciq0l9NL3C/wC7\nRb2Nzc4MceB/eJ2j8z/StCHQTwZZBn0T/E/4UrDMdmLHJJP1pMHtXTxaXaRD/V7ie7c8/wAqw5U8\nqRlx0OKHoIrCImrVisQuYxIodWyORnntUdGSrK442kH9aSZR1SIqDCgKPQDFOpsTiREYdCKcaokK\nKKKBBRRRQAUUUUAFFFFABRRRQAVDc/6o1NUNx/qj9KAIrf8A1S1LUVv/AKpfpUtIAooopAFFFFAB\nRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFL\nSUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA2iiimAUUUUAFFFFABRR\nRQAUUUUATJTqZH0p9MAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqvenED+pG\nP1qxVHVP9Un+9/SplsNGVSUm6jdWZQtalheBh5ch5HQmsktTS5OOtUriZ0Ml5bxjmQfQcmqUurAf\n6tfxY/0qjFZTzfdQgercD/GrsWjgf62T8FH9T/hTuwKct9PLnLkD0Xgc/So0trif7qM3v0/U1uxW\ncEONqDP+1yfwzUzyRxLlyFHenZiMaPSJn++yoPzb8uBWhDpsEPOC59W/zioptYto/uHeR6cCs+bW\n53yEAT6dadgN8Y6fpS1zFvfzJOJSxbPXPPHpWq+rIB+7UsfU0XsBpUVlW95PJMC2dnIPHy1alv4Y\nhyw/lS5h2LdBKjqR+NY02trzsBP6f/XrPl1C4l/i2/T/ABPNGojo5LuGMcn+n86z5tajXIX5voP6\nmsJnZ+WYk+9Pit5psbI3b3xx+fSnZgWLvUWul2bcLnv1qn2rSh0S5fl2WMe/JH4D/Go7jSLmDJAE\ni+qdf++f8M0CKFFKVZSQylSOxpKYBRRRQBoJqLIYo4yRGhGfVh3zXSqcgHrkZzWBpWmediaT7nVV\n/vY9a3wMYHSmMWsDVYfLn3f3xnFb1Z2rx74A3Taf58VMgMSjGaVVY9KlELdyBUXGbGky+ZaqD/Ad\ntX656GY2KNhuGHTA/QVc0i6adZFdiWzkE/3ataks1KKKKYBRRRQAUUUUAFFFFABRRRQAVDcf6o/S\npqhuP9UfpQBFb/6palqK3/1S1LSAKKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUA\nFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUtJRQAtFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUlABRRRQAUUUUAFFFFABRRRQAU\nUUUAFFFFABRRRQAUUUUANooopgFFFFABRRRQAUUUUAFFFFAEkZ5qSoU61NTAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5LiGH77qPr1qlLrES58tSx9egpXA0aa8iRglmC/U4rDl1SeQcME/\n3eP161XVZ7g8B3z37fnTuM2JdTgTOMufb/GqF1qElwNuAq/TJp8WkTH75CA/if51bj0uBAN25z7n\nj8ql3YGJu96RpAO9aVzouAzRyHgH5W/x4NYuxskY6UcqC49pj2rS0eATMZWYNsPC+57ms3yjg1oa\nJNsnaPPDD/x4dKNAudBRRRVCK95KYbeSQdQvH1zXLzXEs5zI5b+Q+grodWmjS2dSw3MMbc81zNAB\nRRRQA4HFTRTmLkKp+vNV6f2pNXHcmkvJn/i2+y8VXJLHuT+Jq/p9tb3Mm2Ytn+Fc4De1b8Nnbwfc\njUe+AT+ZosguczFYXU33Ymx6t8v8+taMOhE4M0n4IP6n/CtvH5UUxFSHTLSHpGGPq/zH/D8qtgAd\nKKKACiimSSBKTdhpGTrkCgJKBzyCf5ZrDra1O4RoyrHLE8Adqx1id+imhSCw2irKWMrdePr1qdbO\nNOXbP5UcwWNPRpg1thiAU4/DrV1riJf4s/SsAXEEIwn5Convm/hAo1HY3H1D+6v/AH1VG4vg42u4\nx6AZrJaaR/vEmoz71Nmxl5rxR91c/pUD3Mj98fSoBS4quVE3FLE9a0tF3m4OPu7ef6VnbOM102mR\nxrbRlABuGSfU0AXKKKKYgooooAKKKKACiiigAooooAKhuP8AVH6VNUNx/qj9KAIrb/VD6VLUNt/q\nxU1IAooopAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFF\nFFABRRRQAUUUUAFFFFABRRRQAUUUUALRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRRSUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANooo\npgFFFFABRRRQAUUUUAFFFFABViq4qcdBQAtFFFMAopKqzalbw5y24jsOeaALdFZf9ptKMoAPrzVy\n2uPOXBxupcw7FiiiimAUUUUCCiiigCG4m+zxs+N2KxZtTnm4U7B6DrW7JGsqFG6EYqOKzgh+6gz6\n9f1pMDn0trm4OQrNnuf/AK9XodGc48xwB6L/AI1sEqn3mVadmlYZTi062i/h3H/a5/SrQUL0AH0p\naKoQUUUUABG4EHuK5q4jMcrL7n8q6WsfVocSBx/EPSplsNGdTImNvcRyL2apljJp4RB15NQpFWN+\nWeOIct+FZ8+oswIT5feqYWSVu7Veg03oZT/wEU7tisjIuem4jOe+O9VK6DWIkjtFCKB+8Hb2Nc/V\nokSiiimAUopKKAJEcqQwOCPSunsrtbqMf3gMNXKirNpctayhx+I9RSQHV0UyOZJEDhhgjPNMa6hU\n/ezTuhk1FUJNQP8ACAPc1Sm1Ec7nz7LUuQWNaS4ROjAn25qlJOXz1+tZT6gf4Vx7nmq73Ej9WNLk\nkyi8UgQkuQT/ALRyfyFMe8ROEXPv2qhk0lNQsTcsveyt0wPpUDOzdST+NJSVVhC0lFdFpdvbPAr+\nWGfuTzzQBhR2003+rjdvcA4/PpV+DRLh/wDWERj0+8fy6V0OAOgxRQFzm73TlswpDl88HIFVeK6L\nU4fNtnwORyPoOtc7UtjA9K2tFm3RvESSUPHstYtXdKkMd1jOFcc+5HSmhnQ0UUUyQooooAKKKKAC\niiigAooooAKhuP8AVH6VNUNx/qj9KAIbf/VrU1Q2/wDq1qakAUUUUgCiiigAooooAKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACl\npKKAFopKKAFooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACg0UGgBtFFFMAooooAKKKKACiiigAooooAKlTpUV\nSRmgCSiiimBnazIUtwoP3ziufrd1z/Ux/wC//SsKkxli1bBx61dR2jO4dqylbBFaCtuUGspaFI24\nJhMoPfuKmrFhnaFsjn2rXSVXUMGGK0i7iaH0VFJdQx9XH6VQm1mJPujJqiTVpjyJHyzAVz02sTyc\nKdoqi80sh5Yt7f8A6qQHQzavBH0+Y1TfVZZPunaKz4bC5n+7G2PVuP51q2ujMP8AXOPov+NDQFa3\nnlNwjElzmugqOK3ihHygfXvUlCAKKKKYBRUMtzHH3yfSqEt878KcCpc0VY0JbiKIcnn0FZ1xeecC\noUYqBEkmbABJq5Fp3eTH0FS7sexnF8UwvikmUpIynnBxUeamwGrpEnzSJzk85rWrnLGXyrhDnAJw\nfpXRVrHYTMvXXHkIvcvn8ga56trXzzCPZjWLTJCiiigAooooAM1NGgbljgCoaUfWgC99qjhXanzf\noM1C99I3Tj+f51Wox+XrSsMc0rt1J/Om0H2q1Z2Ul0wABC927Y9qYirU8drcTY2Rsc+1dHBpttBg\niME+rcmrYAHQYoA56LQ7huZCsY/M1Ld6TFbWzOrMzqQc+3etyo5oxLFIn95SPzFAHHUUp449KSgA\nrd0KYlZIz2+Yfj1rCq5pcoiuk/2vl/PpQB1NFFFADXAdGU9wa5WQbXZemCePxrrK57VIfKuSePm+\nb86mQyjTlby3R/7rA/kaSkpAdcjB1DDoQD+dLVPS5vNtVydxX5T+HT9KuVQgooopgFFFFABRRRQA\nUUUUAFQ3H+qP0qaobj/VH6UARQf6sVLUNv8A6tampAFFFFIAooooAKKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKAClpKKAFopKWgAooooAKKKKACiiigAooooAKKKKACiiigAooooAKSiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAoNFBoAbRRRTAKKKKACiiigAooooAKKKKACnp97FMpR1H1o\nAnopTTJJY4xlmA/GmBla6flhHuf5ViVf1W7S5kXyzlVHWs7NIB1WYJgq4Y1UzSUOKY7l5rpB05pj\nX0uNqnA+tVOfzrdsNJjMayTKSSMhc9vehKwN3MbfJKcfMx9BzVmHSrqYj5Ng9W4/SukjgiiGERV+\ngqSmIyYdBiX/AFjs/qBwP8avxWVvBjZGowMZPJ/Wp6KACiiihggpelVZb1I+nJ/SqEt3JIf6VDmV\nY0prtI/cis+W8eTpxUKRvKeBmr0OngcyH8Kj3pMeiKCJJKeAT71di07oZD+Aq+iLGMKABTuB6Voo\noVxixrGNqilp3AHP61A91EnVh9BzRoIydUj2TbuzDP41QrVv547lQBnj+Ks7MSdTUsew0A1tx3yp\nEgbczAdO/wCdYjXKj7ozUT3Mjd9v0pxTBlrVbn7Q6YzgA1nUuSepzSVRAUUUUxhRRRQAUo9KSnRs\nEOevpQBbEUMCAvy392qrvvP90dsUjuztk1oadpbXB3vkJ/OkMjsdOe7O4/Kg7+tdLHEkChE4AoSN\nY1CqMAelOoEFFFFMAooooA5fVofKum9G+YCqVbmuw5EcoHThj7dqxKAEpVYqwYdQQR+FJRQB2ULi\nWNHGDlRT6z9Hl8y2C/3Dj8OtaFABWXrMW6NZAOQcE+3b9a1KhvI/Nt5F/wBkkfUcj9aTGctS4pOn\nFSLGW7VN0M0dDkw0kZPX5gP51t1y6QujB1fa3qKsC6uU6zsfwqlJCaN+iqGmXjXKybmyVb0xxV+m\nIKKKKACiiigAooooAKhuf9S30qaobn/UtQBFb/6talqG3P7pampAFFFFIAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKAFopKKAFopKKAFopKKAFopKKAFpKKKACiiigAooooAKKKKACi\niigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKDRQaAG0UUUwCiiigAooooAKKKjmuYrdcu2\nPYcmgCSjge1ZM+sD/lkp+pqjNezTdWP4UAb8lxFH1cVTl1aNOFBJrGVZZTgKzfnVuLS7iT7wCfXr\nTAdLq1xJwDge1VGkmlPVmP4mtuDRIB/rCz+2cD9K0IraCH7kaj8OaAOWSyuJRuWJ8euMVG8TofmD\nL9RXZAAdqZLDHKpDqGyO4oA42ipbiMwzOhHRj+VRUAKpwc11tpL50Eb+q/yrka6DQ590TRk5KnIH\nsfSgDVooprusYySF+tADqCQBzxWXPrcSHEQL+/aqgv5bnJb5QO1JvQo1pr1I+F5NUJbuSTvgVHHE\n8p+UE1fi08dX59qj3mBQSOSU/KCfer0OngY8w5PpVotFbrzhR/Oq02pxr9wFvc0+WwFtUVOAP0pW\nYL1KiseXVXx94L9OtUZL7d3LfWn6Ab8l7CnGd30qpJqR/hAHuaw2uXPt9KjLFupJotcDSmvi33nJ\n57VUa7Paq9CqWOACT7UcoXHtM7dTTKtRaddS9IyB6niknsntm2OecZ45qhXK1Kil2CgZJOBQwwcU\nkbbGDDtQK5oRaNcy9cIP9r/61Rz6XcwDO0OPVf8ACulibzI1fswB/Sn0WA4tgV4Ix9aSururOKdG\nyi5wcHHeuVZSrFT1BIoASiiigAooooA2NN0ovtllGF6qDnn3rdAC8DH4VT0ybzrWP/Z46+lXDQAU\nUUUAFFFFABRRRQBXv4vOtZV9sj6iuSrtSMgg9+K5G7iMM8iejH8jQBBRRRQBq6HPsmaM/wAQ4/Dm\nuhrkLOUwzo2cfMM/TPNdcDkAjvzQAdKz7u96xr+Jq5OWWJyvUKa5d5nJOT3qHcZY+RPSkNwi9Oap\nljSZpcg7lg3DHpio2djnkmos0sbDeu7pkZ+lVawrm5otrsUzNxv4H0rWqOHb5Ue0cbV/lUlUIKKK\nKACiiigAooooAKhuf9S1TVDdf6pqAIbc/ul+lTVDb/6pamqQCiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAoNFITQAlFFFMAooooAKKKKAGyDcjL6g9K5z7JcSMRt\nY89W/wDr10tFAGLDo0h5kYL7Cr0WmW8f8O/61cooARVVOFAH0paKKAJY+lPqOOpKYBRRRQBzmtQe\nXcb+cOP1rNrpNYg8y3390IPviueCM54GfpRcdhlX9IlMVyP7pGDTY7RV5kOT6DpVjhRhQF+lTKfY\nfKaVxfbeI8Zz1rEvpJWI3SM/sTxV2KCSb7oPPerq6XEcGXLMO3alFtgzn7e1luD8ik+/YVt2ekLD\n80p3tjoOlaUaKgwoCj0FOqiRAqoOgAFZ91q8UWQnzH1q+671K+oIrj5U8uR1PZiKYy1PqDzHP5VW\nMrN3NMAzwAT7CrUOm3U3SMgep4FFgKtFbMOhMf8AWyAey/48Vfh0u1h52bz6tQK5zSQySY2IzfQG\nr0Oi3UnLYjHuefyrolRU4UBfoMUtAzLi0OBP9Yxk/QVeitYIRhI1Hvjn86mooEL6VlaxENiSAdDj\n8/8A9ValQXsXnW8i+xP5UAcm3WkAJ6UGpIhxSuB0GjyFrfYT9z+R6Vo9a5/TZxbyHd90jH61qSX0\nYGUO4nj6UuYosSTLCMsa5a+H792xjcd351oTz7iWY1lzSea2fyoUm2DRFRRRVEhRRRQBt6FNy8RP\nuo/nW2a5TTpfJuoz2Jwfoa6qgAooooAKKKKACiiigArn9ch2yrIBwwxn1Yf/AFsV0FZ2sReZalsc\nocj8eDQBzdFFFACjg11dhL51tEx4OMH8K5Ot7QpQY5I+4O78OlAGsRWHd6PMGZ4iHB5x0IrdzxRQ\nBxro8ZKuCD70ytbXYsSpJgAEYJ9//wBVZNABRRRQB1eny+bbRnvjB9sVarG0KXiSM+zZ/StmgAoo\nooAKKKKACiiigAqG5/1TVNUNz/qjQBFbf6sfSpaht/8AVrU1SAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUjHAJ9q5+fUbiUsN20cjihIDce4jj+8wqtJqCr91c+56VhBzuBJJ5q4CD+VKW\ng1qbcEyzLkVJWJDKYWBHTv8AStlHEigihO4WHUUUUwCkNL2ptMQUUUUAFFFIzqn3iB+NAC0VVk1C\nCPjO4+1WQdwBHcUALRRRQAUUUUAFFFFADk61NVcdakeaOMZJoukBJTXkRMkkVRm1DslZ8kzN1OaX\nN2KL9zfKylFAIIwaz84HHHtUZlUd6ryTk9DUpMRaaRV6mq0tyxBC8fzqDdmkqlEGzodEn8yAqeqt\n/PmtOub0ebyrkKejjH410lVoK9wooooAKpz6ZBcTGRySTjI+lXKKAIYrWCH7kaj3xzU1FFABRRRQ\nAUUUUAFFFFABSO6orFjgY60tc1qN9LO7JyiLxt9frQBTl2mR9mduflNTwoFWqyZY8Vejixy3WpkU\niREpJJFjFMlnCcA81RdixyamMQYskjSHJpYoXnbbGMnr+FOt7Z7qRY179/QV09nZR2i4Xk45PrWh\nJydJU11H5U0iYwAeB7VDQAUUUUAKDggjtXW2kvnQRv6r/LiuRroNDm3QtGTyrZ/A0wNWiiikAUUU\nUAFFFFABTZY/MjdD0ZSPzGKdRQBxjDaSPQkU2ruqwmK6f0b5h+NUqACruly+Xdx84DfKfx6frVKn\nIxRlYcYIP5UAdnS1HE4lQN64PFPoAzdbi32wcfwNn8DxXOGuxuI/NikT1Uj8a5BlKkqexxQA2inb\nKXbQBY0yYw3SZJCk4P4j/GuqrjgdhDDsQfyNddA/mRo/dlBP5UAPooooAKKKKACiiigAqG5/1TVN\nUNz/AKpqAILf/VLU9QW/+rWpaQDqKKKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAF\nFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU\nUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANf7rfQ/yr\nkz3rrJDhGPop/lXJHrVIAq3C+RiqlSxNhqUlcaLWasW05gb27iq9HWs0ykb6sHG4HINLWTaXXkna\n33f5Vckv4U77vpVolosk0YrLk1Uc7QBVKXUJXPU49uKYG49xFH1YfnVWTUo1+6M/WsQzO1M5PXJo\nEaUmpyN0IH0qu0zOeWPWooreaX7qMffFakGld5Wzx0FIZmhGkOFBY+1b1ojRwqr8EfrUkUMcP3FA\np9MAooooEFFLUbzJH1NK47D6ZJKkfU1SlvWbIXiqhcseSTUuQ7F6W+OML+dUpbk/xHNVppHU4Ax7\n1WJpqN9wLL3BPSoTIT3qOiq5UhXFyaKSimIWikpaAHxSeXIjehBrr0YOoYdCK42uk0ifzbZQeWTg\n0AaFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALWDfaS+55kddpOcHtWtdXkVom5yM9h61zl3qE10xO\nSq9lFAEkUSxDLdaZLcYBC9aql2bqaSpsMCSTSqCxpVT1qUAUxHS2KRJAhjGAR17k981YrN0ebfCY\nyeVP6GtLj2p3AwNch2TLJ/eGPxWsmul1iLzbYkdU5/DvXN8t0BpXGJRUiwu3apVtD3IobSFYritD\nR5vKucE4VwQf6UxbRB15qdUVegAqPaIrlNhryFf4s/Sq02qCMHCj8aoFgoJNZ00pkb2qotsGdVaT\nefCjnGSOcdqnrI0KUNE8f905/OteqJCiiigAooooAx9dhyscmPYn27VhV1moRCW1lX23flXJ0gCi\niimB0ujTebahT1T5efzrQrmdOvzaMVPKt+hrXGoEj7g/Ok5WDcv4rmdRh8m5fAwDyK24b9ZJRERh\nj0/CqOtRcxyDvlT+FK47GPRRRQAV0GjTeZbbecoSOfzrn60tEl2zNGTwy5A98/4UwN+iiimIKKKK\nACiiigAqG5/1Rqaobn/VNQBBb/6palqK3/1S1LSAKdTaKAHUUUUgCiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiigkDk4AoAhu3McErDgha5augvryEwSIGySMcVz9NAFFFFMC6HXGc0wzKPeq2aSp5ENMlMxPtTD\nIzdTUlvAbiQIO/f2rbi0u2TqC596pKwmznwrMeAT9AatRadcy/w7R78V0CxRp91QPoKdSAyo9GUc\nySE+y1cjsbaPpGM+p5qzRTuAgAHQAfSloopALSUtQyXCR980XGtSbFQyXMceec1RlvGfOOBVYsWP\nrUN9irFuW9Y525FVSzN1JNSxW0kvQYHqauxWUact8x/SlZhcpxW0svQYHqauxWaR9fmNWOlFUkTc\n5zUf+Pyb/eqrUty/mTSN/tGoqsQUUUUAFFFFAC0UlLQAVp6LOI5zGejjj61mVJBIYZFcHGDmgDsK\nKRWDgMDkHvS0AFFFFABRRRQAUUUUAFFFFABVK91KK1GPvPjhR/Wi7v0iykZy+Oo7VjOyglmwSf51\nPMMrzSy3TF3P/wBaoTT5JCx44FM5xVAJTlFXrKzjP7y5IC9h6/8A1qgZBuOzgE8D2pNgMApRmnha\ncBiochk+nzfZ5ssMKRg+1aMmpp/CrH6nH8qyhS0XYWLk1+8wK7QAfWqmxfSgkCmmVF70tWPQkpar\nNdKOgqNrhj0wKfIwui7nHpTTMi9W/Ks9nc9WptHs/MXMTTTtJ9KhopVUkgDnnitNhN3NDRpdlyF7\nPweO/aukrO0uwFunmSAeY3T/AGRWjQIKKKKACiiigBsjKi5bp/OuQnTy5HXtuOPpXSSP5jFj07Dt\nWLqiqJQykHI5xUqV+hTRRoooqiRatW91s+VunaqlFK1wLMM7m6Rh1L4H410WoQ+dauO4Ab8qy9Ft\nCz+ew4X7vua3SNwYHuCKdkM480VJMhjkdTxgmo6kBafaytBcRsP7wH4Hg1HSGmI7Kiq9jKJraJhn\n7oH4jr+tWKYBRRRQAUUUUAFQ3X+qapqhuf8AVNQBBb/6palqK3/1S1LSAKKKKAClFJRQA6iiikAU\nUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRTZJFjTcxAHqaAHUmcdazptWiThBvPv0rOm1GeXIJIHoKYG+88cYyzAVVk1SJOi5/SsJ5nc8k\n00ZY9CaLDNGXVpG6EL/u1TkuZH6kn6kmpI9PuJekZ/HirkWinjzHx7Lz+tAjKLs3WkxXRx6bbR/w\n7vduf/rU97K3kGDGv4DFFwOYNFad7pggQyIxI7g9h9azKYBRRRQBraMwBdT36evFbBrn7KTypEb3\n5rf6ipAKKKKACikJA5PAqvLepH05NDYyzwOtV5btI/eqE108nfFQZ9am9wsWZLx5OBwKr5J681ND\nayS84wPU1oRWccXUbj6mhJsexQitZJe2B6mr0VnHF1+Y+9WKKpKwmwooopiCiiigDlJPvt/vH+dN\np7/fb6n+dMpgFFFFABRRRQAUtJS0AFFFFAGtpWoGMiGT7h+6fQ1vVxfTmug0rUPNXyX++Oh9RQBq\nUUUUAFFFFABRTXkROWYL9TVSTVbaPOG3n/ZGf1oAu8DknFZd5fbiUjPHc+tUrnUpZ+Pur6f41T3E\nnrUyZViV229Mk1AQznJp1FJegDRHTwgH4UfnRkDvSHoL04FKKjMg7UwyGq5WwuuxYFDMFGc1ULE9\n6SjkFzFgzqOlMMzH2qKinyoVxSSepNJRRTEFFFFABRRRQAorZ0jTzxPKP90H+dYorrbGXzraNsg8\nYOOxFAFiiiigAooooAKo6q8sdsWibGDzj0NXqiuIfPhkj6blIzQBybTyyfedj9Sf5Uw1dm0q5h52\n7x6rzVIgjg8Uh3EooopiCiiigDq9OcPaxkemPxHFWxWNoUuUki6kHcPpWzQBz+sRCO43D+MZP16V\nm1v6zDvgD8fIefXn0+lc/UgLSGloNO4zb0KbMckWeVOQP9n/APXWtXOaPKY7oL2cY/LpXR0xBRRR\nQAUUUUAFQ3P+qP0qaobn/VH6UAQQf6sVLUcH+rFSUgCiiigAooooAWlptLQAtFFFIAooooAKKKKA\nCiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAr30kkMJeMjI69\n65yWaWYkyMT/ACrqXQSKVPRhiq0WnW0fO3cfVuaLgc/HDJIcIjNx2FXItIuH+9hPr1reVQowAB9O\nKWncRmxaNCn32Z/0H9aux20MX3EUfhk/malopDCiiigAooooAbIu9WU9wRXKzRmN2U9iRXWVg6vF\nsmDAYDD9RTQGdRRRTAsR5AHNb9pJ5sKn8D9awBwBmpor9rdGVRknoew/CkgZvFlXqQKqy6hCvCtu\nPt0rClupZjl2J/l+nFEIy3vR0BF+S6eb1A9Kh5PqaswWUkoyflHqavxWkcXbcfU1HKMz4bWSXtge\npq/FZRxcn5j79KsdKKpKwNhRRRTEFFFFABRRRQAUhIUEnsKWo7jHkyZ6bG/lQBzD/eb6n+dNoNFM\nAooooAKKKKACiiigBaKSloAKcjtGwZTgjpTaXFAHT2F8tzF8xAZfvZ4/Gny39tDwXBPovP8AKuYB\nI70UrgbMutj/AJZxn6sf8M1Tk1S6f+IL/uj/ABzVLNG4VIxzO78sxb6kmm0m6m7qqwEvFJkCoiSa\nSiwiUvTTIaZRRYBdxNJRRTAKKKKACilCn3pdtA7DaKkC0uMUrhYWO2mlPyRsfwNXItFuX5bag9zz\n+lbVhKJbeNvbHPqO9WaYjkry2NpL5ZO7gHPsar1ta9DzHKAORtJ/lWLQAUUUUAFb2hS5SSP+6QR+\nNYNXtJl8q6T/AG/l/OgDp6KKKACiiigAooooAWsTXYB8kwGCeD/MVtVU1KMy2soHYbv++c/0oA5W\niiigAooooAvaVKIrqPJwGyv59K6iuLRtjq390g/ka7CKTzI0f+8oPHuKAG3EfmwyLjOVP51yhGMg\n9Qa7CuWvovJuZFHPOfz5qR3K9FJRQA6N9jq/90g/lXXo4dFYdwD+dcdiuk0mYS2qjJJXg5/z6UxF\n6iiimAUUUUAFQ3P+qapqhuf9U1AEFt/qlqWorf8A1S1LSYBRRRQAUUUUAFFFFADqKbS0ALRRRSAK\nKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiii\ngAooooAKKKKACiikoAWqWqwebblscqc57+9WmkWMZYgVRuL9CCijORyTRew0jECFjwDUnkEdWH0q\nbPoAM0mRS5hlaTrgZ/Om9adt3k08LjpTEya306ebBxtX1ata2sIbfn7zf3j/AEFPs5PMhU9xwfwq\nxTFsFFFFABRRRQAUUUUAFFFFABRRRQAUyf8A1Uv+438jT6in/wBTJ/uN/I0AcvRRRTAKKKKACiii\ngAooooAKWkooAcBThxTMmkoYDy1IWNNopDFyaSiimIKKKKACipo7S4m+5Gzc4zg4/OrseiXLfeKR\n/wC8c/8AoOaAM2jFb0OhRLgyuzewwB/U1ejsraL7sSfiN3880AcvHbTS8JGzfQGrsWi3L/e2x/U/\n4V0QAHQYpaAMqLQoV/1js/0wP8auR2FrF92Jfqef51ZooAzdZh3RK4GSp/nWFXVXMYlhkU91P6Vy\ntSxhRRRQBr6LNw0Wf9oD+dbFc1p8vk3CHIAJwc+hrpatAU9Ti862kGMkDI+tcsa7RlDKQe4xXIXE\nXkzSJ/dYgUhEVFFFABQODmiigDsopBLGjg5DDOafWfo0vm220kZjO3j860KACiiigAooooAKQjcC\nD3GPzpaKAOPuYzDM6HjDGoq0tah8qfcAcOOvv3rNoAKKKKACul0eXzLULzmM7f61zVauhzbZmQk/\nMvA9x/8AWoA6CsTW4/mjk9QV989a3Ko6pD5tqxAyV5/x/SiwHNUUUVIwrX0KX55I+Om78ayamsZf\nIuo2OcZx+dMR1dFFFMAooooAKiuf9U30qWorn/VNQBXg/wBWKlqK3/1S1LSAKKKKACiiigAooooA\nKKKKAFpabRQA6iiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRRYAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooA\nKKKKACiiigAooooAKKKKACio5Z44vvN+ArPm1FjwgwP1oCxoyTJEMscVQn1HsnHv3rPaRn5JNNGe\nnepuytB7zPIckk00ZNWoNPlkwWG1ffrWlDZww4wuT/ePWmlcVzEnSSBVLKRu6VUZya6DU4fMtmx1\nX5s1z1UkguPRsGpqrA81OpzSkCNHTJMOY+55Falc/A/lyq/+0PyroOtCBhRRRTEFFFFABRRSEgcn\nGKAFoqrJqFtH/Fu9lGf/AK1VJNXP8Ef4sf6D/GgdjVpryIgyzKv1OKwpL64kz8+M9l4/Xr+tVyxO\nSSTn1JoA231O3XoS/wDuj/HFUrnVHdSqLtz3PJqhmmkii4hlFFFMAooooAKKKKACiiigAooooAKK\nKUDJoASlx704gL3zTKAFJzSUVpadpv2r53yIx/499PagCLT9Pe8bJDBB1b+ldBDZW8AAWNeO5GTU\n0caxKFUAAdqdQAUUUUAFFFFABRRRQAUUUUAHWub1OLyrl/8Aa+b866SsrWocoko/hOD689KTQzFo\npKWpAAcHPoc11VvL5sKPx8ygn61ylb2jS7oWj/uH+dUmDNKuf1uDZMsg6OMfiK6Cs7WIfMtiwHKc\n/h3piObooooAKKKKANXQ5ds7R/3x/wCg10FchbSeVNG/91h09K64HIz60ALRRRQAUUUUAFFFFAGZ\nrcW63D5+4fzzXO12NxH5sLrxypHNcg42nHpwaAG0UUUAFT2shinjYHHzDP0J5qCigDtsggH1pkib\n0dPVSPzqKxl8+3ic9SOfwqegDjnXY7L6Ej9aSr2rwmO6LcfP8wA/LmqNIYUA4OfSiihCOut5BLCj\n5zlRyPXHP61JWboshe3KH+A4/PmtKmAUUUUAFRXX+qb6VLUN1/qm+lAEFt/qlqWorb/VLUtIAooo\noAKKKKACiiigAooooAKKKKACnU2loAWiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABRTJJUiGXYLWbPq6qdsK7jnqRxTsBq01pEHBYA+mawpLyebq5HsvFRZpMd\njpKKp2V2JlCt98frVygVgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKK\nKKACiiigApKhmuo4upyfQVnT6hI/C/KP896VxmnLcRxDk/gKzp9RdsheB+tUSxY0KCTgc57ClqMV\nmZiST1oAz61bg06R8FzsU8+pP4dq0oLaKAfKOf7x60WAzINPkkwW+VffrWlDZww9FyfVuTU+aSqs\nK4UtFFAhGAYEEdRiuWnjMUroexrqqw9Yi2yK4/i4P4dKaAzKlQ1FT04pPUaJa3bGTfCvqOKwd1WL\nW9+zbvlznoM0LQLm9SEhepA+vFYkmqXL9CE/3R/jmqryvIcs5b6nNMRuyX1vF1kDH0Xk/pVR9XH8\nEZ/4EcfyrKzQTQMtyajcv0fA/wBkD+uT+tV2ld87mY/U1Hmmk0CH0ZphOaSiw7km6mbqSiiwhcmk\noopgFFFFABRRRQAUUUUAFFFFABRRRQAU4HFNooAKUUlXNPCi4jLgH5uhoAt6bpXm4knUheoX+97n\n2/Kt1VCAKoAA6AcAUv8AhRQAUUUUAFFFFABRRRQAUUUUAFFFFABUF5H5tvImAcqcfXtU9FAHH0VY\nvoTDcOuMDOR9DVepGFXtKkEd0o5w42/ielUadGzIysOqkH8qaA66myIJEZWGQwINKjCRdy8g9KWm\nI4yWMxuyHscU2r+rxeXdMQDh+cn171QoAKKKKACup02US2yc5KjafqK5atrQpjmSIsAPvAe/egDb\nooooAKKKKACiiigArltTi8m6cbcAnI+ldTWJrkP3JB9D7AUAYtFFFABRRRQBvaHKDG8eTkHd+Fa9\nc1pEvl3QG7arAg+/pXS0AZOtw7o0lC/dOGb0HasOurvYxNbyKc9MjHqK5Q8EjGKQwopKKBGnosoS\n4KEn5xgenFdDXIW0hhmjYHGGH5d664EMAR35pgFFFFABUV1/qm+lS1Dc/wCqb6UAQW3+qWpaitv9\nUtS0gCiiigAooooAKKKKACiiigAooooAKKKKAClzSUUAOooopAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFRXX+ol/3G/lUtV7w4tpv9xqAOZPPXn680KcGkoqgLXaikU5ApayZd\nxUYqQQelbNndiYbSfnA/OsWlRih3AnIppiOkoqtaXa3C+jDqP8Ks1QmFFFFAgooooAKKa8iRjLsq\n/UgfzqpJqlunQl/90f44oAu0dKx5NXkb7iKvucsf6VTlu55PvSMfYcD8hxQB0lFZOkXBbfGckjBB\nPp6VrUAFFFFABRRRQAUUUUAFFFJ0oAWjpVaa9ih4zlvQdvrWZPfSSnGcD0FIZqTXcUWecn0FZ0+o\nSycL8g9uv41SPJpVBJwBk+3WgYpZj1oAJ4AyTVyDTHfBk+QenVq0obWGD7q8+p5NFhGbb6bJLgv8\ng/8AHj+H+NaUNrFB91fxPWpqKYgooooAKKKKACiiigANUtTRWt2yQpHIzTbrU44DtX53/QfWsaa5\nkuGy7Z9B2H4VVgIgKWk6UmaVgHik4puaTNFgHE0maSimAUUUUAFFFFABRU8VpPNjZGxB6HGF/wC+\njgVbj0edsb2VPUfeP6cfrQBm0VvRaTbp9/dIfc4H5Dn9atxwRRfcjVffHP59aAOejsriX7sT/UjA\n/M4FWo9HlP33VPplj/QfrW3RSAzW0aLHyySZ9SFP6DH86py6VcJnaN49iK3qKYHJlWU4ZSD6EUld\nYyJIMOoYe4rPvdLhETPENpHOMnGP1xQBh0UUUAFFFFABRRRQAUUUUAPTrUynYQw6jkfWoV61Lmp6\njOpgk82JG9QOn61JWdpEu+Epx8p4/GtGqEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAYutw/Okgzy\nMH046fzrJrpNUi822b1X5vyrmzUjEooooA6LS5jJbKDjKZGPbtmr9YeiykSvH/eXr9K3KoDK1uHd\nCsmfunH/AH1XP1193H5sEiDqV4z61yLDBI9DQISiiigAq1ps3k3UZ45YLz/tcVVoB5oA7akqlDqV\nu8ak/KcDjBP8hUn2+2/56f8Ajrf4UroZZoqt9vtuP3n/AI63+FWfTvTEFFFFABVTUk822kHTA3fl\nVukYblI9QRQBxdFTXMZimkQ9jUNABRRRQA+J/LkR+6sD+RzXYRtvRG9VBrjK6bSJvMtVGPuHb9e9\nAF89K5S8i8meVM5wev15rq+lYOuRkSpIAMEYJ46/zpAZVFFFABXUabOZrWMtjcOPy4rl609Jvo7V\nJVk3c4Ixz0HpTA6Cisl9cX+CEn3ZgP0Ab+dVJNXum6FI/wDdX/4rdSuB0NV7uaGNCHkRcjuwz+Vc\n5JczyZ3yu2eoycfl0qGi47HSW/8AqlqWorf/AFS1LQIKKKKACiiigAooooAKKKKACiiigAooooAK\nKKKACnU2igB1FJmlpAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAVBe/wDHtN/uN/Kp\n6r3v/HtNn+41NAcxRRRTAliPaparKcGrNRNDQUUUlQMfHIYmDLwRW3bXKTrnIB7jNYORSCQochiv\n0OKtXEzpWkRPvMq/UgfzqpLqdtH03SH/AGen5nH6VhGTPU5/P+dNL+lOwGrLq79I41X3Y5/QYx+Z\nqpJfXD9ZWH+78v8ALFU9xNFFgH7xTSxpMVZhs5rg/Kpx/ePA/wDr/hTEV+alht5Z+I0Lep7D6mte\nDSYo8GT9435L+Xf8a0FVV4UYA7DgCgDPstM8hg7ud3ovT8fWtGiikAUUUUAFFFFABRxjPaqt5d/Z\nEDbd2Tj2rGmv55jycD+6Ogpjsa82oRR5A+Y+3TNZs17LNwTgeg6flVXJI5pyqWOACT7CpYBn8aAC\nxwBk1et9MeTmT5B6d604reOAfIoB9e/5nNFhmdBpjtzIdo/u/wAVaMVvHCMIoHv3qWimK4UUUUCC\niiigAooooAKKKKAIp7iK3TdI2PbuaxLrVJZ8qnyJ7feP41p6nF5tuxGMrz+Fc7VAFFFFABRRRQAU\nUUUAFLSx7d67hlcjI9vwrpIbaCLBjjToMHGT+ZyaAMCO0uJcbI2IPfGB+ZwKtx6PM2C7onqOpH8h\n+tbdFAFCPSLdeWLv7E4H6YP61ajt4YfuRovvjn8+v61LRSAKKKKACiiigAooooAKKKKYBRRVW6vE\nt+B8z+np9aAMG5j8qaRfRjUVTTkuxYnJPJqGgAooooAKKKKACiiigBVOKl4xUNSocikBoaVL5dwq\n8fPx9K6CuTR9jK2M7TmuqR/MRX9QDSQx1FFFUIKKKKACiiigAooooAKKKKACiiigBG5BHqMfnXKT\nx+VI6ddrEV1lYWsw7Jg/GHHb1HUmkNGXRRRSAmglMMqSAfdOea6vrz2rj810unSiW1TrlflOe+O9\nMRbPIxXKahD5Fw64wM5X6GumuJxbpuIyew965u/lM8m89cYpX1Ap0UUVQBRRRQBfX7o+lLUatlRS\nswUZrOzuVcinc/dBrprKXz7aNzjJXn6iuSYkkmum0qBoLYburndj09BWhJeooooAKKKKAOe1uHZM\nJAPvjk/7VZddFrUYe3DZ5Rs/gf8A69c7QAUUUUAFa2jXSQGRJH2gjPPr9ayaUHHSgDp5NVs4/wDl\npvI7IpOfx4X9ay9R1KG6QKkT9fvNgEfgM/zrNooAKKKKQBRRRQA+iiipKCilpKAOjt/9UtS1Hbf6\npfpUlUSFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAOoptOpAFFFFABRRRQAUUU\nUAFFFFABRRRQAUUUUAFFBIXqcVWlv7aHO6TJ9F+b+VAFmqWq/wDHq31FQS6uv/LNPxb/AAH+NUbm\n/nnXaSAPQD+vX9aYFKiiimAVYQ8VXooeoExkFM8w0yilZDuOLk03JorRsdN+0je7FU+nJ+hNGiFc\nzqUAk4HP0FdEml2iY+TcfVyT+Y+7+lWViRBhVVR6AAfyouM52LT7qTpEQP8Aawv6Ng/pVyPRHP8A\nrJVX2QZ/U4/ka2KWi4inFplrEQdm8+r8/pwP0q4ABwOB6UUUXAKKKKQBRRRQAUUUUAFFFFAFPUoP\nOgOB8y8isOK0uJMbInI9dpA/M8V1FFO4XMiDSWPMrBf9lev/ANb9a0oreKAYRce/epaKQ7hRRRQI\nKKKKACiiigAooooAKKKKACiiigBkih1KnoRXLyRGN2THQ11NN2JnO1c+uBmmBzsVhcy9I2H+98v8\n8Z/CrkejOf8AWSBfZQT+pAH862KKYFFNKth1Bc4/ibj64XFYtxF5MrpjGD+nauorG1mLEiyDPzDB\n9OKAMulAyaSlU80AS7RW7p774FH93isMVcsZvIZsqSCPWp5irG1RUH2y3/v/AKN/hQt5bsQA/J6D\nB/wp3JJ6KKKACiiigAooooAKKKKAFopp4GTxWVdXxfKJ8q+vc0DsT3l9t+SI89CfT/69ZZJNJUTv\nngVO4xZD2qKiiqsSFFFFMAooooAKKKKACnJ1ptKKAJQa39Il8y328/If51z69K0dHl2TlDzvGKkZ\nv0UUVQgooooAKKKKACiiigAooooAKKKKACqGrweZb7gOUOc/7Per9MlQSoysMhhigDkaKUqVJB4I\n7GkqRhWxo04HmRs3+0v9eax6kjlMZzkj6UAXr66M0hwflHSs+XpQZvao2ctQlqA2iiiqEFFFFADg\n7DvSFie9JRSsBb061+1Tqp+6OW98dvxrqCyRL8zKoAxlmA/WuQjmeL7jMh77TtP6HP50O7SHLMzH\n1JJz9aYHTyajaRdZk/4Dlv8A0HNVJddgX/VxyOffCj8+T+lYHNLQBpya5cH7iIg/76I/l/Kqr6jd\nyfemf/gPyf8AoOKrUUgA02nUhoASiiimAUUUUAOopBS0gCiiigAooooActOqMdakpMoKSlpD0pAd\nHB/qxUtR2/3BUlWSFFFFIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigBc0ZpKW\nkAtFFFABRRRQAUUUjEIMsdoHvigBaCR3NZlxq8aDEa7z69h7+v8AKs2a9mnPzMcf3RwPyppAbc+o\nW8GRu3t/dX+p6VmzatK/3MRj25P+fpWZS8+5p2AnkuJJfvyM3sSaiL02nRwyScKjN9BQA0sTRmrs\nelXT/wAKp/vH+gzVyLRVH+skLf7ox/PNAGNSVvS6PA/3GZP1H68/rVGXSZ0+5iQe3B/I/wCNAGfR\nTiCCQRgim0AFFFLigAFdLYzLNbpj0xgdq5wdK1NImw7Rk/eGR9aTHY2KKKKQgooooAKKKbJIkQyz\nAfWgB1MkkWIZchR71nz6mORGMH+8f6Cs6SZ5CSxyTSHY1JdVjT7ilvrxUdvqTySqrBQrfh/Wsunx\nK7ONiliDQgsdLRTUztG7g45HpTqYgooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACkoNJ\nQAUUUUwCiiigAqtfxedbOuORyPwqwzhFLMcAVjX2p+blI+F/vdzTAzSMUoFNqQEAdqGBYRBUnA9q\nrLLigyE1DVyrkrS9hULEk+9JuFT2UBu5cfwjkmmoibNy2fzYkY+nNS0iqFAA4wKWmIKKKKACiiig\nApk0qQruY4/nTbi5S3HPXsvesWe4e4bLdOy9qlsZLc3j3HT5U9P8fWquaQkCoCxJosFxzvk0yiir\nEFPMThVcqdrZAbsSK0dP01pWDyghOoHdv/rVo6rb+ZaYRR+75XjGB3oA5qiiigAooooAKKKKACii\nigCRDU0T+W6tk8EHiq68GpTwKnqM61GDqrDoRmlqlpc3m2wycleP8Ku1QgooooAKKKKACiiigAoo\nooAKKKKACij3NRNcwITulQY7ZGfy60Ac/qkJhun/ANr5uffriqdaOq3cNz5flkkr1OMDHpzzWdUs\nYUlLRQBHRTttNpgFFFFMQUUUUAFFFFAC0tNp1ABRRRSAKKKKACkNLSUAJRRRTAKKKKAFFLTadSAK\nKKKYBRRRSAKkqOnqeKTGhaKKKkZ0Vv8A6talqK3/ANWtS1oSFFFFIAooooAKKKKACiiigAooooAK\nKKKACiiigAooooAKKKKACiiigAooooAKWkooAdRSZpaQBWJrMbCRHGdpXBI9QTW3Uc0CTrtcZHWm\ngOVxUiQSy/cRm9wDj866KOxtosYjX6kZ/WrAVR0AH0GKdwOej0m5k6gJ/vEf0zVyPRV/5aSE/wC6\nAv685rWpKLgVo9PtosYiU+7c/wA6sBQvQYpaKkAooooAKKKKAMbWYMMso6Hg/h3rJrqL2ETwOnfG\nR9RXLkbeDTTAKeKZTh0oYDqlt5TDKj+h5+neoqKQzqkYOoYdCM0tUdLm3w7c/c4/CrEl1FF95ufQ\ndaVwJqjlnjhGWYfTvWXcamz5CfL/AD/OqLSM3U9aBGhcaoxyI+Pw5qg8rPksck1HT44nlOEUsfag\nZHUiI8hwqlj7VowaUeDMf+Aj/GtKOGOIYRQo9qYGbBpXQzH/AICP8a0o4UiGEUAU+igVwooooAKK\nKKACiiigAooooAKKKKACiiigAooooAKKKKACg0U2gAooopgFFFFABRRRQBkavNIpEY4QjP4//WrJ\nrodQs2uUGzG4evTmsV7SeP70bfXqP0pgQUUUUALTs0yikMM1taM4MbJ3U5/CsbFXdOk8mdQc4bii\n4jfooooAKKKKACqt1eLACq8v/wCg+5qG91DblIj9W/p/9eskkk9aQ7EjuzksxyajLYpGeoaFELis\nSaSij2HWqEABJwASfStiw00r+9lxnsh5/wC+u1SWOmrFh5Pmk7Dsv+JrRoAWpQN64PfNQ1Kh4oA5\nGaMxSOhGNrEVHWnrMGy4LjOJB+GR6VmUAFFFFABRRRQAUUUUAKOtSZ9ef6VFTxSA1tGm2yNGTw3I\nHvW5XKW0pilRumCK6pTuAPqAfzpgLRRTHmii+/Ii/VgP/r0APoqjJq9mnRy/+6p/rgVVk15eRHCT\n6Fmx+Y/+vQBsUVzsmtXT/d2R/wC6P6nJqpJdzy/fldh6bjj8qAOokubeLO+VAR2yM/l1/Sqr6xaI\neC7/AO6v/wAVtrm80uaANmTXDzsiHsWb+gx/Oq0mrXT5wwQeigf1yf1rP3CjdSuMleeWT70jt9WJ\n/rUefc0zcaM0AOJoFNpwoAWiiikAUzrT6FFAEdFKw5pKoAooooEFFFFABSikpRQAtFFFIAooooAK\nKKKAENJSmkpgFFFFABTqbS0AOFBGKVRSsOKkdhlFFFMQU5abSjiiwD6KWkqLFHRQf6talqOD/VrU\nlaEhRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAXNL\nTaKAHUUgpaQBRRRQAUUUUAFFFFABRRRQAVzeow+TcOAMBvmH410lZesQBoxIByp5x6VSQGJSikpR\nQA+lAzTN9SCk0MkjlaHO04JprOW6mmipIoZJThFJpWAjp8cTynCKWPtWlBpPRpTn/ZH9TWjHGkY2\noAo9qAM+DSRnMrZ/2V/qa0I4kiGEUKPan0UCCiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiim5oAU0lFFMAooooAKKKKACiiigAooooAw9Wh8uYPjiT+YrOrf1SLfbkjqhz+HesCm\nAUCilHWgCQAUtIKWpYHRwSebGr+o/WpKz9Km3IydxyPpV2WdLddzn8PWgY5nVBuY4ArIu9QMmVj4\nX17mo7q9e5OAdqDt/jVXigBT6k1EX9KQuabTsgCiipIoJJ2CoMmmIakbyNsUbjW9ZWK26hmGZPX0\n+lPtLNbVfVj1b+n0q1QAUUUUAFPjOc0ynJw1AFXWIBLb7+8fIx6HrXNV2brvRl9QRXITR+VI6+jE\nflQBHRRRQAUUUUAFFFFABTl602lHWgCQcVdbV7kKEXy029wOenvxVIGmmpGSyXtzJndNIQe244/L\npUG4nqaSiqEFFFFABRRRQAUUUUAFFKBQaLAJRRTgKAEAp2KdRSGNpaSikAuaUU2lBoARxTKkao6p\nAFFFFAgooooAKKKKAHUUUUgCiiigAooooAKbTqSgBKKKKYBRRRQBKtO4xUYajJqR3G0tFFMQUUUU\nALmkoooA6a3/ANUtS1Fb/wCqWpaYBRRRSAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiig\nAooooAKKKKACiiigAooooAKKKKAClFJRQAopabSikAtFFFABRRRQAUUE4FU7jUoYc4O9h2HT86AL\nnTmqN5f26oyE7yQQQv8AjWRPfzXH3mIH90cCq1UgEooooAcopxpgNOpMB1a2kyZVkPUcjjtWRViz\nl8mZG7Hg/jQM6KlpAcjNLSEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFIaSi\nmAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA1lDqVPQg1zE0ZidkPY11NYmrxbZQ4/iH6imBm0UUUA\nSr0paYnpTjUtDJ7af7NJv68Uy5vHuDlvwHYVXJNJTWgh240maSimAUUVYtbSS5fABC/xNigBtvbP\ncPtQfU1v2tqlsmF5Pc0+C3jt0wgA9T60/cq8llH4igB1FQPeW8f3pF/A5/lVd9WgH3Vdv0oAv0Vj\nvq8hzsRR7nJNVX1C5f8A5aEf7uB/KgZ0RIQZJA+vFRG+t4T80i/hz/KubZ2flmJ+ppM0BY6CTWrd\nfuK7n8APz5rDu5lnmZ1Tywe2c8+tR5pppIQlFFFMAooooAKKKKACiiigB45pSOKatPNSBHijFLRT\nAMUYpQKdik2MjxSVJikK07gMooopiCiiigBRTt1MooAeCTTqjBxTw2akoSiiigQUUUUCBjTTS0hp\noBKKKKYBRRRQAUUUUAKKWmj+lSBaQDaMGnbRT8UrjIsGlwakxRii5Vhm2msuKmpj8ihMViKiiiqJ\nCiiigBRS02nUrAFFJmimAtFFFIApKSimB1Fv/qlqWorf/VLUtABRRRSAKKKKACiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKWkLBRknA96pz6jF\nHwnzH9KALp4GSQBVKfUY48hfnb9BWXNdyTfebNVyaQya4vZZj8zceg4FVc5oNSwWk1wfkU4/vdBV\nCIamhtprg4jUn37D8a1bbSETmY7j6DpWkiKgwoAA9KVwMV9JaOBnZsuOcDpWZXXkZ61y95CYJnXt\nuOPpQBBTxTKUUAPooopDOltJfOhRvbH4jipqyNImwzRHvyK16dhBRRRUgFFFFMAooooAKKKKACii\nigAooooAKKKKACikzSUALSUUUwCiiigAooooAKKKKACiiigAooooAKKKKACiiigAqrqMXm27eq/M\nPw/+tVqkKhgQeh4oA5OipJ08qR1PYkVHTAUHFHekpaAEooooAKKKWgBybARvzj2rQGqeUu2GIAf7\nXPPrWdRSAtSajcyfx7f90YqBpXbqxP40yigAoopaACiiloGJRS02kAZpKKKoQlFFFABRRRQAUUUU\nAFFFFACjrUlRU8dKTAU0gpaMUrjQClpaSluMKKQ0madgGmjFHWpAtO4iKipCuTTSppiG0UUUAFFF\nFADs0tMp1KwC0UlLSASjFOFPxkU7jIKKUjBpKYgooooAKKKKAFFTVBVyFQy1L2KjqRiirARRRgel\nRcdiDBp3ln0qeii47EPlNSPD8pqeihN3FYzaKcwwTTa1IegUUUUAFFFOCEjNADaKKKAHUUUUgENJ\nSmkpgdRb/wCqWpait/8AVLUtIAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAoo\nooAKKKKACiiigAooooAKKKKACimvIkYy5xVCfUwvEYz7n/CgDQZlQZZsCqE+pomRH83HXtWZLcSS\nnLGoaQyxPdyTHljj0qDNJU8NrLP90HHqelICCpYraWc4RT9e1asGlxpzId59O1XgqoMKMD2pgULf\nSY05k+c/pV9VC8AAfSlopiClpKKAFzWRrEA+WUfRv6VrVDcwieF09uPrQBzFFKwwSD24pKYDxS0g\npaQySCUwyq47H9K6ZX3qGHQgGuVrd0uXzIdvdOPwoAvUUUUCCiiikAUUUUAFFFFABRRSU7AFFJRQ\nAtJRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUU1pY4/vOo/EZ/Kq76jbIfvFv90UAWqKzJNXU\nZ2IfbP8AhVdtUuG6YX6CgDbpjTRJ951H1P8ASufe5mk+9Ix/GoiSe9AG62pWyn7xb6Cq0mr/ANyP\n8zWVRSGPuZmuH3NjPtUFPplMQUopKBTAfto206ipGMxRSkUlNCCiiimAUtFGKQBRRS0DCiikpAIT\nSUUVQgoopaQCUlOptMAooooAKKKKACiiigAp4PamUo60rAPpaSikMcaTpQTTCc07BcCaTrSCnUAO\nUYp2aZk0maAH7qTdTaKAYpOabilooENop1JimAlOptKKTAWloFFIAqVaaiEmrKx4pNlWKcqFWplW\n7lflzVSqTuJhRRRTEFFFFABVq1bgjP4VVqWFtrik1oOJdooorKxdgoopaQCUUtIaAKlyuGz61BVy\n4XKZ9Kp1utUS0FFFFBIVYt2/hqvT4m2tmkBYnIC9KrUsr7zTaAClptOpgFJilpKAOnt/9UtS1Fb/\nAOqWpaACiiikAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRTJJ\nkhGXbb/Os641TqIhj3NFwNJ5Ei5ZgKz7jU8cRj8TWZJNJIcsxNR1IErzvKcsSetRUVYgtJp/ujj1\nPSmMr1PBaSz/AHV4/vdq1INMii5f52x+FXgAAAOKAKMGlxx4Mnzt+lXQAowMAD0paKYgooooAKKK\nKACiiigAooooA57UYPKuG44bkVTrc1eHfEJB/B1PtWHTAUU+o6eDSYxav6VN5U23s/8AMVQpVcxs\nGBwQRQB1NGajilEsauO4p9AgooooAKKKKACiiigAooooAKKKKACiiigAooooAKMUVBJeQR5Bfn0F\nAE9FZ8mrRD7qlvrVZ9WlI+VVX9aANmms6J95lH1Irn5L24kzmRsHsOB+lQliepJ+ppDN97+2T+Pd\n7Dmq76tGPuIze5/wrHooAvyarO33Qq/Tn+dVnu53zmVsH0OP5VDRQApJPU5pKKKACiiigAooooAK\nKKKAEplPpppoQlFFFMB60/FRLUmaloYhptOPNJTQCUUtApAFFLRQAUUUmaAAmm0UUwCloooEFFFF\nABSUtFADaKKKYBRRRQAUUUUAFFFFAElB6U0UppAMpcUYpaYBiiiikAUUUUAFFFFABRRRQAUUUUAF\nOxSDmpAtJsYgX0qRY+eaciYqQVPMygAA7CnUlLUDEcblIrPIwa0apTjEh98GtIMmS0IqKKKskKKK\nKACiiigDSQ7lB9qWobZsqR6VNWEtGWFFFFIApKDSUxg43KRWeRg1o1SmXaxrSLJZFRRRVkhRRRQA\nUppKWgBKdTaWgBaSlpKAOnt/9WtS1Fb/AOrWpaQBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUfnUU1zFD95ufQdazJ9TduE+UeopAaclxFD99ufSs6fVGbIiG3371nF2fkn\nOaaaBkjSPJ1NR0oqxBZSzngYHqaAK1WILOac/KOD/Ef6VqwadFDjd85/SrnTpxTAo2+mRx4Mnzt+\nlXQMcClooEFFFFABRRRQAUUUUAFFFFABRRRQAUUUUANkTzEZOzAiuWkQxsynqDiurrD1eDZKJB0c\nfqKYGdTgabSigB9FFFSM2NJm3I0Z6ryPoa0a56ym8mdTnAPB/GuhpiCiiigAooooAKKKKACiiigA\nooooAKKKKACmvIsakscVDc3cdsOeW7CsW4uZLg/MfoOwoAsXmotNlI/lT9TVCiikMKKKKACiiigA\nooooAKKKKACiiigAooooAKKKKACkpaSgApD0paKBDKKKKoYop9R08UmAtFFFIBKWiigAoopKAAmm\n0uKXFMBtLTsUUgG0uKWloHYbil20tLRcLDcUu2ilouBDRTm602qEFFFFAgooooAKKKKAFXrTqZTx\nQAlFKaSkAUUUUAFFFFABRRRQAUUUUAFFFKBmgB8a1OFpEWpMVm2UIBTsUUtSUFFFFABUFymQGqem\nyLvQj2q47ilsZ9FFFakBRRRSAKKKKAJ7ZsPj1q5WchwRWgDkA1nURSFpDS0lQMSiiigYVXuR0NWK\nZMMxtVQeomijRRRWpAUUUUALSUUUAFAopRQA6iiikM6W3/1S1LUVv/ql+lS0CCiiigAooooAKKKK\nACiiigAooooAKKKKACiiigAooooAKKrzXsMP8WT6Cs2fUZJPunYPQUgNSa6ihB3Nz6d6zLjU5JPl\nT5R+v51RJycmkoGKXZuSaZThViCymnOQuB6mgCtVmCyln6DaPU1qQadDEMkb29+n5VcxjgUxFO30\n6KLDEbm9+lXMYoooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAqnqMPnQH1Xkf1FXK\nMZGPXigDkqKnvIvJndegzxUFMBwNOpgp9IYZx9a6Gzm86FD3xg/UVztaekS4Z4yevIpCNeiiimAU\nUUUAFFFFABRRRQAUUVHNPHAu52/DufwoAk6VnXepBMpFgt69h/8AXqrd6i82VT5U/U1RoYxzOXJL\nGm0UUgCiiigAooooAKKKKACiiigAooooAKKKKACiiigApKWkoAKKKKBBRRRQMaaSnmmVQgpV60lK\nOtAD6KKWpGRmloNJTAXFKBSilpNgJRS0UXGFFFFIAooooAWiiikAUUUUAI3SoqnPQ1CapCYlFFFU\nIKKKKACiiigApy02lXrQA/FNp9NpDEooooEFLSUUALSUUUALSUUUAFTRrUaKSatKuBUyY0OFKKAK\nWsygooooGFFFLQAUtJRTuIzpBtZh702rF0uCD61XrVbEsKKKKYgooooAKvwNuQe3FUKs2rdRUy1Q\n0WTSUUVkWFFFFABQKKKAKDjDEe9Nqe5XDZ9agrchhRRRQIKKKKAClApKeopAFFO2mk2UFWOkg/1S\n1LUVv/q1qWgkKKKKACiiigAooooAKKKKACiiigAooooAKWqdxqEUPH3j7VmT6hLLwCVHoKANWe/h\nh6Hc3oP61lz6hLLkZ2r6CqdFSMCSeaKAM9KtQWEs2ONo9TTAq4zVqCwlmxxtHqa1YLCGHBI3H1NW\nulAipDp8MOCRvb1PQVboopgFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFA\nBRRRQBlavBkLIByODWPXUXEQmidD3BrmGBUkEYIpgJT6ZThQA6pbaQwSq/vz9DUNLj+VSFjqFO4A\njvS1jw6k8UaoUBwOpzUg1Y941/OmOxqUVk/2w3/PNfzNaFrP9ojD4x7UCJqKKKACikJCjJ4FZV5q\nW7KQ/wDff+H+NAy1d36W+VX5n9Ow+tYssrzPuc5ph+uaKQBRRRQAUUUUAFFFFABRRRQAUUUUAFFF\nFABRRRQAUUUUAFFFFABSUUUCCiiigAooooGFMp9NNNCEooopgPWnUwU6kxhRRRQAUtFFSNBRRRQA\nUUUtABRRRQAUUUUgCiiigA7VEwqQmmNVoTG0UUUxBRRRQAUUUUAFFFFADx0opFpTUgJRRRTAKKKK\nACiiigApQM0lTwp3NJ6DRIibRUlJS1m2UkFLRRSGFFFFABS0lLQAUUUUhEU67kNUa0iMis9xtYj0\nNbQ2FIbRRRVEhRRRQAU+Ftjj34plApNAaNFNQ5UGnViy0FFFFAwooooAiuFyufSqlWbhu1Va1RDC\niiiqEFFFFABU6jioKsL0H0pMqItBxiig1Azftv8AVrUtRQf6sVLVkBRRRQAUUUUAFFFFABRRSEgc\nk4oAWkLKvJOKoz6pGnCDefXtWZNdyzdW49O1IZrXGpRxcL8zfpWVPeyzE7m49B0qtS0CFyaSirdv\nYTT9ti+pH8qBlXrx1q3Bp003JGxfU1qw2MMGMDcR3NWKYirBp8MHON7epq1RRQAUUUUAFFFFABRR\nRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUALXP6pAYp93Z+f8a3ZJEi\nUs5wBXPX14bpxgfKvT1osBVpRSU5abAeFp4AFIOlBbFSMWmsaaTSUBcD1rU0iX76duorL5OABkmt\n6wtRbx5b7zcn2pgXKinnjgXLn6D1qvdaikIKp8z/AKCsaWV5m3McmgCe5vZLnj7q/wB3/GqtFFIA\nooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigApKKKBBRRRQAUUUUDCiiigApDRRTQ\nhtFFFMBc08VHTwaTAWiiikUhaKKKQC0UUUAFFFFABRRRQAUUUUgCiimsaYhCabRmkqgCiiimIKKK\nKACiiigAooooAVafTBT85pANopaKAEooooAKKKcq5NAx0SbjVoDHFNVcU+s2ykgpaSlqRhRRRQAU\nUUUAFLSUtABRRRSEFU7ldr59auVBdLlAfStKe4Mp0UUVoQFFFFABRRRQBatmyCPT+tWKp25w/wBa\nuGspKzLQlFFFSMKDwKKimfauO5pxVxFR33NSUoGTT5FxitiWR0UUUCCiiigBQORVioFPIqepZSCh\nqKQ1AzoLf/VLUtRW/wDqlqWtCAooooAKKKZJLHCDvYD9TQA+kd0QZYgfWs6fVVGRGM/7TVmSTyTH\nLMTSA1bjVETIiG4/3j0rMkuZJydzZ/lUFFABRSjOeO9W7fTppsFhsX36/lTAp4PvVy306abk/Ivq\na1oLGCDGFDH+8asUAVYLCGHtub1I/pVqiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKK\nKACiiigAooooAKKKKACiiigAooooAKKKKACop7mO2Ulz9B61LWXrERZUcdsg/pigDMuLh7hyzfgO\nwqGiimAUtJRQA7caXrTKXNKw7imkNJRTEXtOWHe0kpxs6DsalutSaT5Y/lX9TWf2paQwooopAFFF\nFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFJS0lABRRRQIKKKKBhRRSUALSUUUxBR\nRRQAhFJT6ZTAKVaSlFJgPooopFIKWkp1IAopaSgAooooAKKKKACiikJxQkAhao6KBV2JClFApaAE\nNJTqbQAUUUUAFFFFABRRRQAU5abTloY0OpKWlA5pDsNoqTZ7Um2lcLEY5q1EmBmkRKlqeYLBS0Ut\nQUFFFFABRRRQAUUUUAFFFFABS0lFAC0jDcpHqKKKFoxWM08UVJMu1zUdbEsKKKKYgooooAVTgg1o\nA5APtWdVy3OU+lTNaXLiS0UUVmMOlU5ZNzdanmbapqn1q4rQlkiLzUjfdP0pEGBS0X1HYr0Up4NJ\nVEsKKKKYhR1qcHIqvU8fIqWUh1IaWlxUDN63/wBUtS1Fb/6paJbiKHlm/Ada0IJaZJKkQy5ArNn1\nQ8iIY/2j1/Ks6SV5SSzE0AaU+qdoh+J/pWbLM8xyzFjTe1NpAFFLjPSrtvpss2C3yL79T9BQBRxn\ngVdt9NlmwW+RfU9TWrDZRQAYGT6nrVimBWgsYIcYUM2OpqzRRQAUUUUAFFFFABRRRQAUUUUAFFFF\nABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFRzwieNkPepKKAMO\nbSZ1J2bXH4Zqm9vLH95GH4GuooOCMEZHSmByVFTXUXkzOno1Q0AFFFFAwpRQBThQIKWkpaQwooop\nAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRSE0ABNG6m0lMQ+iiikAUUUUAFFFFAxKSlop\niCiiigApwFIKdQygqM9akprUJgxlFFFMkctOpgp9SxoKfTKcKGMKKdSVICUUuKMUAJRS5FNLCmlc\nAJxUROaCc0uKtKwhKUU4Lml20NgNop2KUClcdhtNIqbbTHFFxWI6KKKYgooooAKKKKACiiigB+RT\nl5qMVInFSxofmnqKTFSLgVBQop1ICKWkxhS0tJSAKKKKEAUUUUAFFFFABRRRQAUUUUAFFFFAFe6X\no1VavyruQ1QraL0IYUUUUxBRRRQAVPbthsetQU+M4YGk9hpl6j/GimSNtWskiytO240yMZNNPNTo\nMCtHoiEOoooqCiGQc59aZU0gyM1DWiJYUUUUxBUsZqKnJ1pPVDRPmpB0qMVKOlYvQslbU32bU+X3\n71RZ2c5JJJ7k00UlakC0UoGelXbfS5ZeX+Revv8Al2oApAZ6davwaZLLy/yL+taUFpFbgbRk/wB4\n1YpgQw2sUH3VGfU9amoooEFFFFABRRRQAUUUUAFFFU7m/ih6fOfQf1oAuUdBknFY0urOeEUD361V\ne+uH6ucUAdCzqn3iF+px/OonvrZOsqn2Uhj+hrnZJZJDlmLH3plMDcbVoBnAJ96rSaxIfuIF9zzW\nZRQBdfU7lv4gvsB0q9YX/nfJI3z/AJZrEpKAOtorOsNREw2SnD9j/e+natGkAUUUUAFFFFABRRRQ\nAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFBIGSSAPegDJ1iEDZIO/yn/GsitTUL5ZVMaD\nIz94/wBKy6YBRRRQMfRRRUgFFFFAC0UUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFACGmGn\n009aaASiiimIcKWkpaTAKKKKQwpKKKYgooopgFKBShadSbGhMUdKM0ZqRhRSZFGaqwmR0UppKYhR\nTs0ynikwFpQcUlBoHcXdRuplFFkFxd5oyaSkzSsFxSabRRVCFAqRVpAQBRvpDH0UzzBR5gpWHsPx\nRUe+k3miwXJs01+lRbqM00hXEooopiCiiigAooooAKUDJpKkjXmhgS4AFLS+tJWbepaCiimO2KEg\nED/vBz3q4Kzh1rQjbKg0TQkOooorMYUUUUwEpaKKBiUUtFACUUtFFwEooooAKKKKADqKz5BhiPet\nCqlyvOaumyWQUUUVoSFFFFABS0lFAF6NtyioJ3y2PSiJ8IRUJOTSSSKvcVRk1MKbGuKfSlYEFFFL\nUDGkZFQVYb7pqt3NaIlhRRRTEFFFFAFhTkVJnioozxinGspF3IkUscAEn2q/Bpcr4MuEHp3rRs4I\n44wVUZPfvVmtCSGC1jgA2qMjuep/GpqKKBBRRRQAUUUUAFFFFABRRTHkSMZdgv1oAfUE91Hb/e/L\nvWfcaqWysX/fZ6/hWaSWPJoAt3GoyzEhCY06Y9fqapUUUwCikzRmgBabRRQAUUUUAFFFFABWzp2o\nb8Qv17HPX6571jUUAdbRWXp2o79sMud3RW659j71qUgCiiigAooooAKKKKACiiigAooooAKKKKAC\niiigAooooAKKOtZ15qYT5Ivmbu3Yf4mgC5POluu5z9B3rFur6W5OPup2A/rUEkrzNuc5NMpDA80w\nin01qaAbRRRTEKKdTRTqljCiiigApaSloAKKKKACiiigAooooAKKKKACiiigAooooAKKSigAphp9\nNNNCEooopgFPplOHSkwQtFFLikMbRS0tMY2gGiiggNxoyaKM0FXDNFFFAgooozTAQ0lLSUAFKOtJ\nQKAJKDRRSGNopDSUxC0lFFABRRRQAUUUUAFFOCE07y6GFiOjFTBBS49qVx2IcUbDU4prNii9waIt\nppKcTTaYgooooAKKKKACrEfSq9TRv2NJ7DRJRRRWZQVXc5NSu2Kgq4oTFFXohtQVVgTcwPYVcpTG\ngpc0lFZjFzRmkooAdRTaXNAC0UUmaBC0UUUgCiiigAopKSmMKjmXchqSg8jFVDRiZnUUrDBpK1IC\niiigAooooAKcnJptSRCk9holAxS0UVmUJRRRQAyQ4FQ1LKe1RVrFEsKKKKBBRRRQA+M81KelQpwa\nmNTJFHQW/wDq1qWorf8A1a1LTJCiiigAooooAKKKKACiqdzqMVv0+dvQH+ZrJnvZbgnLYH90dKAN\nK61RY8pF8x9ew/xrIlnklOXYsaiozTAWikpKAHUU2igAooooAKKKKACiiigAooooAKKKKAF9K19O\n1DO2GQkt2brn2NY9FAHW0VkafqP/ACzmb02sf5Mf61r0gCiiigAooooAKKKKACiiigAooooAKKKK\nACmvIsalmYKKhubuO2HPLHoo/wA8ViXFxJcNlj9F7CgZYu9Raf5Uyqfqao0UUgCiiigAooooAYeK\nSnEU2qEFOFNpRQMdRRRSAKKKKQC0UUUAFFFFABRRRQAUUUUAFFFFACUUUUAFFFFAgppp1FNbgMoo\nopgFKDSUUAO3UbqbiigB26kzSUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAPWlpgNPpANIptSGo\nzQAUUUUwCiiigApyrmgLmpQMVLkUkLRRRUjCiiigBDwKjY5oZ+1NzVpCYlFFFMkKKKKACiiigAoo\nooAmWT1p+arU/fxU2Q7iMcmkpKkhG5hmquBZhj2L7nmpaKSspO7LCiiipAKKKKACiiigAooooAKK\nKKACiiigAooooFcKKKKAKlwMNUNWrgZGfSqtbIlhRRRTEFFFFABU0fSoafGcZpS2GiaiikrIoWlp\nKDTQEMh5plOfrTa1RLCiiigQUUUUAA4qdTuFQVItJ6lLU6S3/wBWtS1Fb/6taloJCiiigAooooAK\nz9VdkhG04y1aFZusf6qP/f8A6UAYlFFFMAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKA\nCiiigArW0/Uf+WUzf7rn+THP61k0UAdbRWNp+olcRSkBf4W9PQGtmkAUUUUAFFFFABRRRQAUUVHc\nTx267nOPQdz9KAJKzrvUlTKQ8t3bsPp6/wAqo3N/LcZ52r/dU9f971qrSAViXO4kk0lFFAwooooA\nKKKKACiiigBDTKeaaaaBiUUUUxDgaWminUgCiiigYClpBS0gCiiigAooopAFFFNpgLRRRQIKKKKA\nCiiigAooooQDaSnbaMVQDaKdtpdo9aAGUU7AoxQA2lpcUUANop2KTFIBKKdiimA2lxS4opXAbS0t\nFMBKKWigBtFFFABTxTKUUAPpNuaKUdaQxPLNGypaKVwsR+XSiOn0Umx2DGKKKKQwooooAKY54p9R\nydqa3BkdFFFWQFFFFABRRRQAUUUUAFFFFABRRRQAU5G2sDTaKANGimRNuQGpKxe5oJRRRSAKKKKA\nCiiigAooooAKKKKACiiigQUUUUAFFFFAhrjcMVQIwcVoVTmGHP8AntWkGJkdFFFWIKKKKAClHWko\noAsDpRQvSlrNosKQ8DNLTXPy0JAyCiiitCAooooAKKKKAHAVNtGKYgqwV4po3prQ27f/AFa1LUVv\n/q1qWpMAooooAKKKKACs3Wf9Qn+//StKsbWv9ZF/un+dAGXRRRTAKKKKACiiigAooooAKKKKACii\nigAooooAKKKKACiiigAooooAKKKKACtTT9QMe2KXG3oGPG369BisuigDraKxdOv/ACsQycrnhs/d\n9jk421tUgCiiigAopNwA3EgDrnPFZd5qWfkh/F//AIn/ABoAsXV+lvwPmk9P8f8ACsWSR5m3Pyab\nRSGFFFFABRRRQAUUUUAFFFFABRRRQAUjUtBpgR0UUUxCilptOpALRSUUALS0lJSC4tFJS0DCiiig\nQUUUUAFFFFABRRRQAUUUUDCnYpBTqBhSYooJpagKaZRmkqiQooooAKKKKACiiigAooooAKKKKACi\niloASg0U3NABRRRTAKKKKAH0UlLUsaJB0paYtPpMoKKKKkQUUUUxhRRRQAUhGRS0UICvRUnl/Wm7\nSK0FYbRRRQSFFFFABRRRQAUUUUAFFFFABRRRQBYtn5K1ZqjGcOp96vdRms5lR2CiiioKCiiigAoo\nooAKKKKACiiigAooooJCiiigAopM0ZphYKguFyAampsgyhqo6MGUqKKK0JCiiigAooooAljp9Qr1\nqcVMi0xKZIeKkqKQ9KSEyOiiirJFXrSuMUsfWnSClcLEVAooFMETxirH8NQR1O3AqkddOKSNm3/1\na1LUVv8A6talqDkCiiigAooooAKxda/1sX+4f51tVi61/rYv9w/zpgZlFFFABRRRQAUUUUAFFFFA\nBRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFaOn3/kfu5MlOx67f64rOooA63OahnuYr\ncZduf7o+8foKxINRmhjKA5/u5/g+lV2ZnJLEknuaQFm5vZLk88J2X/Gq1NzS0MApaSikMWikooEL\nRSCigYtFFJQAtFFJmgBaKTNLTAKKSikA0jFJTjTaaEFKDSUopgLRRRSAKKKKAFooopAFFFFMAooo\npAFFJRTAWikpaQBSgUmaXNAx1JSbqTNFgHE00mjNJTQmFFFFABRRRQAUUUUAFFFFABSGlptMBRS0\ngpaQADQaKbmgAzRRS4pgJRTwKGHFJO47DKKKKYhwpabTqTBAODUtRU9allIdRRRSGFFFFABRRRSE\nFFFFMYUUUUABwe1ROMVLTHGRTTYmiKiiirJCiiigAooooAKKKKACiiigBRV6Ntyg1Qq1bNnIzUTK\niT0UUVmUFFFFABRRRQAUUUUAFJS02gBaKSimAUUUUCCiiigAooo/woApONrEU2pJsF+KjrVEBRRR\nTAKKKKAFBwanFV6mjNS9hpj6gc81MTUB60RQ2JRRRVEkkY5qQ8g02MU8ipe5ZWopzCm1RBNGasE5\nFVEOKshsinc6aTVtzct/9WtS1Fb/AOrWpak5gooooAKKKKACsXWv9bF/un+dbVYutf6yL/dP86YG\nZRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAO\npAaSigB9FJS0rAFFFFABRRRSAKKKKACiiigAooooAKKKKACmU+kpgNopcUYpgLRRRSAKKKKACiii\ngAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKKACiiigAooooAKKKbQAUUUUwClzSUUAFFF\nKKAClpaAKQIcBS0UVJRCeKKe4plWJhThTacKBC04Gm0VLRRIDS00UoqQFooooAKKKKACiiigYUlL\nSUALUgXFIq06k2BTYYJFJUs64aoq1IYUUUUAFFFFABRRRQAUUUUAFSwNteoqUdaBo0OtFNjO5RTq\nxluWFFFFIAooooAKKKKAEzSUUUxBRRRQAUUUUAFFFFABTZG2qadVaZ8nFVFAyGigUVoQFFFFABRR\nRQAU5G2mm0UATM3FRGlNNoAKKKKAJFbFLvptJSGITmkoopgFL+VJSikB09v/AKtalqCCRPLHzCpP\nNj/vr+dAh9FN82P++v50nmx/31/OgB9FNMif3l/OkMiL1ZR+IoAfXP6qT9qYZPAAHt9K3fMj/vD8\n6wNSObqQg5+7/KmgKlFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRQA\nUUUUAFFFFABRRRQAUUUUAOFLSCikAtFJRQAUUUUAFFFFABRRRQAUUUUAFFFFABRRRRYAooooAKKK\nKACiiigAooooAKKKKACiiigAooopgFFFFIAooooAKKKKACiiigAooooAKKKKACiikoASiiimAUUU\nUAFFFFAC4paKKGAU8UgFPFQxiUUfnRQMRhkVFU1REYqkJiUopKBTsIfRQKKTGOFOpq06pGFLSUtI\nAooooAKKKKBhSgZpBzUoGKBXFpKM0nFSMbKu5aq1f25GKosMMR71pHYliUUUVQgooooAKKKKACii\nigAooooAtWz5BX05qeqcDYce9XKzmtS47BRRxRxUBcKKTI9aMigaFpDSE+9Ju96Yri0UmR6ij8aN\nQFoqNpgrYxTlcN0p2YrjqKQHikzRYY6ijNFFgGu21Sapk5NTXDdqgFaxRNxQKCMUgpxoENooooAK\nKKKACiiigAooooAKBRSigB1BpaQjikVYbSUtOC0xWGgUuKdS0yuU/9k=\n",
"output_type": "pyout",
"prompt_number": 251,
"text": [
"<IPython.core.display.Image at 0x8703d50>"
]
}
],
"prompt_number": 251
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%%ruby\n",
"puts 'hello from Ruby'"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"hello from Ruby\n"
]
}
],
"prompt_number": 254
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "SyntaxError",
"evalue": "invalid syntax (<ipython-input-253-3d0fcd71fcd2>, line 1)",
"output_type": "pyerr",
"traceback": [
"\u001b[0;36m File \u001b[0;32m\"<ipython-input-253-3d0fcd71fcd2>\"\u001b[0;36m, line \u001b[0;32m1\u001b[0m\n\u001b[0;31m puts 'hello from Ruby'\u001b[0m\n\u001b[0m ^\u001b[0m\n\u001b[0;31mSyntaxError\u001b[0m\u001b[0;31m:\u001b[0m invalid syntax\n"
]
}
],
"prompt_number": 253
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%pylab inline"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stdout",
"text": [
"\n",
"Welcome to pylab, a matplotlib-based Python environment [backend: module://IPython.zmq.pylab.backend_inline].\n",
"For more information, type 'help(pylab)'.\n"
]
}
],
"prompt_number": 255
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"x = linspace(0, 2*pi)"
],
"language": "python",
"metadata": {},
"outputs": [],
"prompt_number": 256
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"plot(x, cos(x), 'ro', label=r'$\\cos(x)$')\n",
"plot(x, sin(x), label=r'$\\sin(x)$')\n",
"legend();"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "display_data",
"png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD9CAYAAACyYrxEAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJzt3X18zfX/+PHHYVIustFcZOszbWLTaMXX51thLqfGEBUJ\nuUpK4vPpQiSUQtdYJMovJdKFaGMhhpRWSMp1yMasXExYjHn//njha7Zx3ufq9X6f87zfbufGtvc5\n7+fOeZ/n3uf1fr6eL4dhGAZCCCH8VindAQghhPAuSfRCCOHnJNELIYSfk0QvhBB+ThK9EEL4OUn0\nQgjh59xO9H369KFatWrExsaWuM3gwYOpXbs2DRo0YMOGDe7uUgghhAluJ/revXuTlpZW4s8XLVrE\nzp072bFjB++++y4DBw50d5dCCCFMcDvRN2nShJCQkBJ/vnDhQnr16gVA48aNyc3NJScnx93dCiGE\ncJLXx+j37dtHeHj4ha/DwsLIysry9m6FEEKcE+SLnVzaZcHhcBTZprjvCSGEuLIrdbLx+hl9zZo1\nyczMvPB1VlYWNWvWLHZb49ytZ0jIhf9ffHu4Xj2GR0YW+t7wyEhWpqRgGIbW26hRo9y6/+bNBl26\nGFSvbvDCCwbp6QbHjzt//0OHDN5+26BRI4MaNQyeesrgt998E7vum8Qv8btyW5mSwvDISEZdkk+G\nxMYWm3/uLyEvPZeQoPX3cIbXE31SUhKzZs0CYO3atQQHB1OtWrUStx8eGUmFiIhif5Z74AAv/f57\noe+99PvvLJ082WPx+tquXdCrFzRrBg0bws6dMHKk+rp8eecfp3JlePRRyMiAb76BUqWgZUt45BH4\n+2/vxS+EXS2ZNKnYfLJ///5it69YqxYjIiMLfW94ZCStH3/cazF6ittDN926dWPlypUcPHiQ8PBw\nxowZw+nTpwEYMGAAd999N4sWLSIqKory5cszc+bMEh9rZEICbc89aSOeeKLQizA8MpLry5WDQ4eK\n3K/0yZPu/ho+l5MDo0fDp5/CoEGwYwdUquSZx46OhvHjYdgw+O9/ITYWZsyA1q098/hC+IOgU6eK\n/X5w9eqMCA4ukn96vPACACMnT6b0yZMUXH01bR9/nKaJiT6J1x1uJ/o5c+ZccZvk5GSnHuvFS8o0\nL31Cl0yaBJs2FblfwdVXOxesF8XHxzu97dq10KUL3HcfbN0K113nnZiCg+G99yAtDfr2hbZt4bXX\n4NprC29nJnYrkvj1smv8Z8qWBSD+ku9XDQuj9eOPl5jQ7ZDYL+UwnB3k8TKHw3HF8aZVqal8XcyZ\nftuJEwH1USzo1CnOlC1Lm8GDLfmCvP++OtN+7z1o3953+/37b3jqKZX0330XEhJ8t28hdFuVmlok\nPwAl5hMr5o6SOJM7bZXoQb1gSy/6S3t+fOzSF2xEZCQJFnrBTp+GoUNh6VJYsADq1tUTx9Kl0K8f\nPPwwDB8OUuwkdKhcuTJHjhzRHYathISEcPjw4SLf98tEX5znEhIYu2RJke+PTEgoMhykw59/wr33\nQsWKMHu258biXZWdrcbrExPVWL4ke+Fr7rzfA1VJz5kzz6VfNDUr6aKKFS7SbtgAjRpBkyawcKH+\nJA9QowasXAnLl6tKnbNndUckhPAmv0j05y+qXEr3RdrffoO77oJXX4WxY1XJo1VUqaLKMDdvhp49\n1dCSEMI/WSj1uK7N4MGWq2/dvVtVubzxhqqusaJrr4XFi1XF6r33ggU+AAkhvMAvxuih+Iu0TRMT\ni73a7u0LtAcOwJ13qouvjz3m1V15RH4+dO8OR46oC8VmJmoJ4QoZozfPnTF6v0n0xSmuHNPb1Ti5\nuWpWa5cuaoarXZw5A717w7Fj8MUX1hpmEv5HEr15AX8xtiQlTXH2VsuEvDxo1w6aN4fnnvPKLrwm\nKEjV9h8+bK8/UEJY3e7duy/78+zsbPLy8rwag18nel9W4+Tnq7P4yEg1Lm/HksWrroLPP4c5c+Dj\nj3VHI4T97dq1i7Vr1152m9DQUF555RWvxuHXid5X1TiGAf37Q5ky6qzYzsMeoaFqnP6JJ1SDNCGE\n66ZNm0a3bt0uu01QUBCJiYkXmj96g41T0pX5qhpn+nRVLz93rhoCsbvYWPUH6557YN8+3dGIQLMq\nNZXnEhIYHR/PcwkJrEpN9en9PWXjxo2EhYU5tW2jRo1YtmyZ12Lxg7RUsvMXXL3ZbW7jRhgxAr79\nFq65xmMPq11Skqqx79hRTa4qV053RCIQFFtAce7/zrxv3b2/J6WkpNCxY0entw8NDWXnzp1ERUV5\nPBa/rrrxtmPH4LbbYNQoVZ7obwwDevRQFTlz5tjzuoOwppLe7+62M/FkO5QpU6Zw4sQJypUrR9my\nZenXrx8ff/wxhw8fpmzZspQqVYq+ffuyceNGMjIyqFKlCh988AELFiwAoGPHjsyfP9/p1fNmzZpF\n2bJluf/++4v9uTtVN359Rn857tbXGwYMGADx8f6Z5EEl9hkz1O/42muq+6UQ3uRuAYWnCjBWr15N\nSkoKixYtYsOGDUyZMoW4uDhWrFjB9OnTARg6dCirVq3i008/5emnnyY8PJxDF62XkZeXVyjJL1y4\nkNKlS7N69WpiY2NJS0tjxIgR1D3X4TAkJITt27ebitNZAZnoPfHxbvp0+PVX+OEHr4RoGVdfDfPm\nqdWvEhKgfn3dEQl/5m4BhacKML744guaNGkCQFxcHNOnT+eZZ56hXr16F7aJiYlhzpw53HvvvTRs\n2JAmTZowdOjQ/9tnQcGF/+/du5eYmBiioqJ4/vnnGTZsGJUqVeKGG264sM0111xDfn6+qTid5dcX\nY0vibn39+XH5Tz/1r3H5ktxwg+rX06MHlHDCJIRHuFtA4akCDMMwOHtJt79Tp05x6qI3QH5+PqdP\nnyYiIoLNmzfToUMH+vfvT05ODqCqac674YYbiIqKIicnh4oVKxIcHEy7du0od9HFr6NHj1K5cmVT\ncTorIM/o3fl4d+yY6l3z1ltQp46nI7Ounj3hyy/V8ofjxumORvgrdwsoPFWA0aFDB8aOHcuIESMA\n+Oqrr+jcuXOh1fI2btxI586dmTp1KmPHjqVHjx7k5eVx4MABqlWrRvXq1Tl+/DgVKlRg69atnDp1\nivXr19O0aVNAXaxt167dhcfLzs4mOjraVJzOCshE787Hu4EDoWlT/x2XL4nDAdOmQYMGavbvHXfo\njkj4q6aJiW5VyLh7f4DmzZuzadMmnn/+eSIjI6lbty6NGzdmx44dJCcnc/bsWRo0aMBdd93FmjVr\nmDFjBsHBwRw/fpwGDRoA0KxZMzIyMmjRogVLlizh2LFj1KhRg5MnTzJ//nxq1qxZaJ8///wz/fr1\ncyvuEhkW4ctQVqakGMMjIw1DXVM1DDCejYw0VqakXPZ+CxYYRlSUYZw44aNALejLLw0jMtIwjh3T\nHYmwMwulHq85cuSIMWLECKe2/eeff4yhQ4dedpuSnjNnnsuAPKN35ePd33+rTpSzZgV2TXmHDmoI\n56mnYOpU3dEIYV3BwcFcd911HDx4kOuuu+6y286dO5cBAwZ4LRapo3fSoEGqX/uMGboj0e/oUTWE\nM3WqWlhFCLOs/n73FMMwmDFjBv379y9xm8zMTNavX0+HDh0u+1jSptjLvv8eOndWK0aFhOiOxhpW\nrIAHH4RfflGrVQlhhpXf71Ylid7DLp5MdapMeeZun8uEVytadqUoXYYOhYMH4cMPdUci7MZK73e7\nkJmxHnTpZKoXGEmZcj9QrdwpwLe9Mqxu7FiIjoZVq1QlkhDCmgJywtTlXDyZagt1mczjfJPXm2XJ\n3lmsxM7Kl1etEQYNUv1whBDWJIn+EucnU53FwcO8yyjGEE6WVxYr8Qf33qt62E+ZojsSIURJJNFf\n4vxkqun0p4DSDETVEHp6sRJ/4XBAcjK8+CKcm/kthLAYSfSXaDN4MEP+1YjnGMt0+lOas15ZrMSf\nREfDQw/BM8/ojkQIURypuilGx7v/IHvzOu6KmETB1VfT2sOLlfijY8dUwp83D26/XXc0wuqs9H63\nCymv9KDffoPmzWHbNqmZN2vOHHjlFfjpJyhdWnc0wsqs8n63E3cSvQzdXOLJJ+G55yTJu6JrV6hU\nSTU/E0JYhyT6i6Slwa5dqkOlMO/8hdnRo+Gvv3RHI4Reu3fvvuI22dnZ5OXleT0WSfTnnDkD//2v\nWmCjTBnd0djXzTerFs7Dh+uORAh9du3axdq1a6+4XWhoKK+88orX45FEf86MGVCtGrRvX/I2q1JT\neS4hgdHx8TyXkMCq1FTfBWgjo0fDggWwebPuSITwjLNnzxIVFeXUWTrAtGnT6Nat2xW3CwoKIjEx\nkVmzZrkb4uX349VHt4mjR1VySktTww/F8cQ6s4GiUiVVajl8uGppLITdlSpVildffZWwsLArbrtx\n40antjuvUaNGTJ48mZ49e7oT4mXJGT1qabzERLjllpK3cXed2UDz2GOwfj18953uSITwjE6dOlHG\niXHdlJQUWrRoYeqxQ0ND2blzp6uhXVHAJ/rdu9WwzYsvXn47d9aZDURXXw1jxsCwYWoJLyHsZOPG\njUyfPp0vvviCDh06sHz5curXr8+aNWsAmDVrFqGhoXzzzTfMnTuXhx56iD/++AOAH3/8kZiYGFP7\na9CgAevWrfP473FewCf6YcPgiSfg+usvv50768wGqp494dAhWLRIdyTCjhwO92+umjFjBm3btuWe\ne+6hffv2tGjRgri4OM6c697Xs2dPoqOjyc/Pp2vXrtx666189tlnAOTl5eG4ZOcLFy4kNTWVYcOG\nMXv2bHr06MHWrVsv/DwkJISsrCzXA76CgE70GRmwZo2qtrmSNoMHMyIystD3pDXC5ZUuDS+/DM8+\nCwUFuqMRdlNoUWcXb67q1KkTDRs2pEuXLkRHRwNqnP5ipUuXpm7dugBUqlSJ48ePA1BwycG+d+9e\nYmJiSExMZOnSpSQmJnL//fdzww03XNjmmmuuIT8/3/WAryCgL8Y+/7yaHOXMGrCurDMrIClJzZb9\n+GPo0UN3NEI4JyIigs2bN7No0SL69+/P8uXLAYqcqZe+aAr4+Z8FBRVOq+cTek5ODhUrViQ4OJh2\n7doV2ubo0aNUrlzZ47/HeQGb6NesUW0O+vRx/j5NExMlsZvkcMD48WoY5777oIQRMCEsZerUqYwd\nO5YePXqQl5fHgQMHAIq0Gjj/tWEYF/5fvXp1jh8/ToUKFQDYunUrp06dYv369TQ9t0JPSkpKoWSf\nnZ194ZODNwTs0M3Ikep21VW6I/F/TZpAvXrwzju6IxHCOWXLlmXGjBnMnj2b48ePc+DAAb777jve\nfvtt8vLymDt3Llu2bGH8+PH8/PPPzJkzh8WLF/Pjjz/SrFkzMjIyLjzWkiVLSElJwTAMTp48yfz5\n86latWqh/f3888/ccccdXvt9ArKp2YoV8PDDsGULBAXsZxrf2rQJWrWCHTvg2mt1RyN08+emZrm5\nubz22muMHTvWqe1PnjzJ8OHDeeONNy67nTQ1M8Ew1Jn8qFGS5H0pNhYSEuD113VHIoR3BQcHc911\n13Hw4EGntp87dy4DBgzwakwBl+iXLIHDh8GJ2clOk9YIznnhBdX07NAh3ZEIHS5+n/i7J554gvnz\n519xu8zMTEJCQqhTp45X4wmooRvDgMaNVSvi++7zzGMW2xohMpKEiRPlwm0xHn5Y9RS60gQ14V8u\nfZ84KHphU1ye1qGbtLQ06tatS+3atZkwYUKRn6enp1OpUiXi4uKIi4tzetzKG1JS4NQp6NLFc48p\nrRHMefZZmDoVjhzRHYnwpeLeJ8J33BqlLigoYNCgQSxbtoyaNWvSqFEjkpKSipQJNWvWjIULF7oV\nqLvOnlV18y+8AKU8OGAlrRHMqVVL1dZPmqSuk4jAUNL7RPiGWykvIyODqKgoIiIiKFOmDF27dmXB\nggVFtrPCR7T589XF16Qkzz6utEYwb/hwNVZ/9KjuSISvlPQ+Eb7h1hn9vn37CA8Pv/B1WFgYP/zw\nQ6FtHA4H3333HQ0aNKBmzZq89tprJTb8GT169IX/x8fHE++hizYFBers8dVX3et/UZw2gwcz4vff\nC30sHR4ZSVtpjVCiqCi46y6V7EeM0B2N8IXi3ifCNenp6aSnp5u6j1uJ/tLpwMW59dZbyczMpFy5\ncixevJiOHTuyffv2Yre9ONF70uefQ8WK0Lat5x9bWiO4ZsQINZFq8GD12gj/dun7hJUrNUdkX5ee\nBI8ZM+aK93Gr6mbt2rWMHj2atLQ0AMaNG0epUqV45plnSrxPrVq1WLduXZG+Dt6qujEMiIuDl15S\nPeeFdTzwADRooBYpEYGlcuXKHJEr8qaEhIRw+PDhIt93Jne6dUbfsGFDduzYwZ49e7j++uv55JNP\nmDNnTqFtcnJyqFq1Kg6Hg4yMDAzD8GrznkstXqyS/d13+2yXwkkjRkCLFjBoEJQvrzsa4UvFJSzh\nPW4l+qCgIJKTk0lISKCgoIC+ffsSHR3NtGnTABgwYACfffYZU6dOJSgoiHLlyjF37lyPBO4Mw1Bn\n8sOHe35sXrivXj1o1kyVWz75pO5ohPBffj1hatUq6NsXtm5VvdGF9fzyC7RpA7t2OdcuWghRWMD3\nunn5ZbWClCR566pfH26/Hd59V3ckQvgvvz2jX7cOOnaE33+XVsRWt2EDtGunXiuZfiCEOc7kTr9N\n9F26wJ13wpAhHntI01alprJk0iSCTp3iTNmytBk8WMouS3D33dCpE/TvrzsS4S457n3L61U3VrVl\nixqf/+ADfTEU2+zs3P/loC/qmWdUw7M+fWSozc7kuLcmvxyjnzBBTcTRWbInzc7MadoUgoOhmA4a\nwkbkuLcmv0v0f/wBX30Fjz2mNw5pdmaOw6HO6idMUGWxwp7kuLcmv0v0r72mxnlDQvTGIc3OzOvQ\nQbUvXr1adyTCVXLcW5NfJfqcHJg9G4YO1R3JuSZOkZGFvjc8MpLW0uysRKVLw1NPqbN6YU9y3FuT\nX1XdjBihzginTPFQUG5alZrK0ouanbWWZmdXdPKk6lm/ZIlaZ1bYjxz3vhVQ5ZUnTkBEBHz/vWqD\nK+xr3DhVOTVrlu5IhLC+gEr0ycmwYoVqSSzsLTcXbrwRfv4ZbrhBdzRCWFvAJPqCAqhdW43P/+//\nejgwocWTT6rX9c03dUcihLUFTK+b+fOhenVJ8v5kyBA14U262QrhPtsnesNQJZXS5ta/hIWpcsup\nU3VHIoT92X7oZs0a6NULtm2TqfP+ZvNmtTDJ7t1wzTW6oxHCmgJijL5TJ2jdGh591AtBeYk0fXJe\n+/aQlCTNzqxIjmNr8PumZjt2qDP62bN1R+I8afpkztChaqnBfv1klTArkePYXmw9Rv/mmzBggL1W\nJpKmT+Y0b67WE/j6a92RiIvJcWwvtk30f/0Fc+aosz07kaZP5jgc6qxeyiytRY5je7Ftop86FTp3\nhmrVdEdijjR9Mq9rV7W27K+/6o5EnCfHsb3YMtGfPKn62fznP7ojMU+aPplXtqxqO/3WW7ojEefJ\ncWwvtqy6mT5dLVCRkuLloLxEmj6Zd/Cgmv28bRtUrao7GgFyHFuFX5ZXGgbcfDNMmgQtW/ogMGEZ\nAwbA9dfDqFG6IxHCOvyyBcKyZWpiVIsWuiMRvjZkiLo2I9f7hDDHdon+rbfgiSekpjoQRUfDrbfC\nxx/rjkQIe7HV0M22bdCkiVoXVqbEB6alS9VF+F9+kT/2QoAfDt1MmqTGaSXJB65WrdS/y5bpjUMI\nO7HNGf2RIxAZqWqpr7/eh4EJy3n/ffjsM1i0SHckQujnV2f0770HiYmS5AU88ACsX6+WGxRCXJkt\nzujPnFFn859/Dg0b+jgwH5JugM4bPRpycqRfvS/IcWltftO98ssvITzc/5O8dAN03iOPQEwMvPwy\nhITojsZ/yXHpH2wxdPPWW6qG2p9JN0BzqleHdu1gxgzdkfg3OS79g+UT/U8/QWYmdOyoOxLvkm6A\n5g0eDG+/rYb2hHfIcekfLJ/oJ06Exx+HIFsMMrlOugGa17Ah1KwJCxfqjsR/yXHpHyyd6PfvV43L\n+vbVHYn3STdA1zzxhDoZEN4hx6V/sHTVzciRcPiw+ngeCKQboHmnT8ONN8JXX8Ett+iOxj/JcWlt\ntu5eefIk/OtfsHIl1K2rMTBheePGqfWD339fdyRC+J6tE/0HH6ilAtPSNAYlbOHQIYiKgu3bITRU\ndzRC+JZtZ8Yahhp3HTxYdyTCDqpUgS5dYNo03ZEIYU2WPKNfswYeekh1qyxlyT9Fwmo2bYK2bWH3\nbrjqKt3RCOE7tj2jnzRJlVRKkhfOio2FOnVUmwwhRGGWO6PPyoL69WHPHrj2Wt1RCTtZsEBdmF27\nVnckQviOLc/op06FHj0kyQvz2rWDP/+EH37QHYkQ1mKpM/q8PIN//UuN0deurTsiYUdvvAHr1sHs\n2bojEcI3bFde+f77Bp99BqmpuqOxFmkT67zcXKhVCzZvhho1dEdjL3Kc2ZPt2hRPmgTjx+uOwlqk\nTaw5wcHQrZsqtRw9Wnc09iHHmX+z1Bj9P/9A69a6o7AWaRNr3qBBKtGX0HhRFEOOM//mdqJPS0uj\nbt261K5dmwkTJhS7zeDBg6lduzYNGjRgw4YNJT6WlFQWJW1izYuJgZtvhk8/1R2Jfchx5t/cSqsF\nBQUMGjSItLQ0Nm/ezJw5c9hyyUKeixYtYufOnezYsYN3332XgQMHlvh4PXu6E41/kjaxrhk8WM2u\ntsYVKOuT48y/uZXoMzIyiIqKIiIigjJlytC1a1cWLFhQaJuFCxfSq1cvABo3bkxubi45OTnFPl7F\niu5E45+kTaxr7r5bdT6VUkvnyHHmvNxc+O473VGY49bF2H379hEeHn7h67CwMH645J1V3DZZWVlU\nq1atyOONvujqWXx8PPHx8e6E5xfOXwgbeVGb2LbSJvaKSpdWY/WTJ8O//607GuuT48x577+vSnhv\nv13P/tPT00lPTzd1H7cSvcPhcGq7S0t/SrrfaCmTKFbTxER5w7mgd2948UW1gM311+uOxvrkOLuy\nggJITladdXW59CR4zJgxV7yPW0M3NWvWJDMz88LXmZmZhIWFXXabrKwsatas6c5uhXBKcDB07Spd\nLYXnpKaqVtiNG+uOxBy3En3Dhg3ZsWMHe/bsIT8/n08++YSkpKRC2yQlJTFr1iwA1q5dS3BwcLHD\nNkJ4g5RaCk+aNMme7dPdGroJCgoiOTmZhIQECgoK6Nu3L9HR0Uw7dwo1YMAA7r77bhYtWkRUVBTl\ny5dn5syZHglcCGfExKgmeZ9+Cg8+qDsaYWe//aZu996rOxLzLNUCwSKhCD+TkgJjxkBGBjh5WUmI\nIh55RLXVGDVKdySF2a7XjUVCEX6moABuukk1OpMKHOGKI0fUIvRbtkD16rqjKcyWbYqF8LTzpZYT\nJ+qORNjVe++pNthWS/LOkjN6G5Nug847elR1tdy0CQK96EuOG3MKCiAyUl3nadRIdzRF2a57pXCe\ndBs0p1IleOABtbDN2LG6o9FHjhvzvvpKjc1bMck7S4ZubEq6DZr3+OMwfToEcp8uOW7Ms2tJ5cUk\n0duUdBs0r04duO02vbMadZPjxpxff4WtW6FzZ92RuEcSvU1Jt0HXBHpXSzluzJk8GQYOhKuu0h2J\neyTR25R0G3RNmzZq6GbVKt2R6CHHjfMOH4Z58+Dhh3VH4j6purGxVampLL2o22Br6TbolClT4Jtv\n4PPPdUeihxw3znnlFTV0c66Di2XJhCkhinH8OPzrX6rVbESE7miEFZ0+rUoqv/wSbr1VdzSXJxOm\nhChGhQrw0EPw9tu6IxFWNX++OgmwepJ3lpzRi4C0e7eqi/7jDyhfXnc0wmpuvx2efBLuuUd3JFcm\nZ/RClKBWLbjzTvjwQ92RCKvJyIDsbOjQQXckniOJXgSsJ55Qk2Hkg6S42MSJanJd6dK6I/EcSfQi\nYMXHQ1AQLF2qOxJhFfv2weLF0Lev7kg8SxK9CFgOx/9NoBICVOntgw+q3kj+RC7G+inpUOicf/5R\n1RUrV0Ldurqj8Rx5/c3Ly1PHwpo1ULu27micJ90rA5R0KHTeNdeolYPeegveeUd3NJ4hr79rZs9W\ni37bKck7S4Zu/JB0KDTn0Ufhk0/g4EHdkXiGvP7mGYb6Yz9kiO5IvEMSvR+SDoXmVKsGnTrBuTXt\nbU9ef/OWLYNSpaBFC92ReIckej8kHQrNGzpUzZQtIUfairz+5p0/m/fXxeMl0fsh6VBoXmws1Kun\nhnDsTl5/c7Ztgx9/VCuQ+SupuvFT0qHQvEWLYMQIWL/e/md28vo777HHICTEvktMSvdKIUw4e1ad\n1U+ZAs2b645G+MLBg6rKZssWqF5ddzSukV43QphQqpQap33zTd2RCF+ZOlU1LrNrkneWnNELcZHz\nk2a+/RZuukl3NMKbTp5Ur/U336hPcnYlZ/RCmFSunFo6Ttoi+L+PPlKLxds5yTtLzuiFuER2tnrz\n79wJlSvrjkZ4w/nrMW+/bf/aeTmjF8IFNWpA+/bw7ru6IxHesnixan8RKBfd5YxeiGJs3Ah33w27\ndkEJ84+EjTVvDv37+0ftvJRXiiKkq6HzEhKga1fo3Vt3JCWT19O8detUy4vff4cyZXRH4z7pXikK\nka6G5jz9NAwaBL16qdJLq5HX0zWvv65WF/OHJO8sCx6+wlukq6E5LVqohcNTUnRHUjx5Pc3buxe+\n/loN2wQSSfQBRLoamuNwqLP6CRN0R1I8eT3NmzgR+vSBa6/VHYlvSaIPINLV0LzOneHAAbXqkNXI\n62lObi7MnKmWjww0kugDiHQ1NK90aXjySWue1cvrac706aqSKjxcdyS+J1U3AUa6Gpr3zz9QqxYs\nXw4xMbqjKUxeT+ecOgU33gipqXDLLbqj8SwprxTCQ8aOVeV4M2fqjkS44t13YcEClej9jSR6ITzk\n8GGIioJffoGwMN3RCDPOnIE6dWDWLLjjDt3ReJ60QBDCQypXVvX00uzMfubNU3+c/THJO0vO6IVw\n0t69EBdwx5laAAAQ90lEQVSnhnCCg3VHI5xx9iw0aACvvgpt2+qOxjvkjF4ID7rhBkhMhHfe0R2J\ncFZKipoBm5CgOxK95IxeCBM2bYI2bVSzs2uu0R2NuBzDgH//G556Crp00R2N90ivG+E0aY7lnNhY\naNwYZswAX5ary+tj3ooVcPSoamAW6CTRC2mOZdLIkdChg+qX4otJqPL6uGbcOBg2TE16C3QyRi+k\nOZZJt92mJt34qqZeXh/zMjJg+3bo3l13JNYgiV5IcywXjBypzhjz872/L3l9zBs3TrWuCKRWxJfj\ncqI/fPgwrVu35qabbqJNmzbk5uYWu11ERAT169cnLi6O//mf/3E5UOE90hzLvMaNVTuEDz7w/r7k\n9THnt9/g+++hb1/dkViHy4l+/PjxtG7dmu3bt9OyZUvGjx9f7HYOh4P09HQ2bNhARkaGy4EK75Hm\nWK55/nl4+WU4fdq7+5HXx5zx49XCIuXK6Y7EOlwur6xbty4rV66kWrVqHDhwgPj4eLZu3Vpku1q1\navHTTz9RpUqVywci5ZVaSXMs17RqpcaBvb3coLw+ztm6FZo0gZ07oVIl3dH4hld73YSEhHDkyBEA\nDMOgcuXKF76+2I033kilSpUoXbo0AwYMoH8JS7s4HA5GjRp14ev4+Hji4+NdCU0In1m1Si1ksXUr\nBEkNm3bduqkS2OHDdUfiPenp6aSnp1/4esyYMe4l+tatW3PgwIEi33/ppZfo1atXocReuXJlDh8+\nXGTb7OxsatSowV9//UXr1q2ZPHkyTZo0KRqInNELm4qPV+PBPXrojiSw/fortGypWlRUqKA7Gt9x\ne8LU0qVLS/zZ+SGb6tWrk52dTdWqVYvdrkaNGgCEhobSqVMnMjIyik30QtjV88/DwIHwwANSs63T\nqFFqFmwgJXlnuXwxNikpiQ/OlRx88MEHdOzYscg2eXl5HDt2DIATJ06wZMkSYmNjXd2lEJbUvDlU\nraq6JAo9NmxQlTaPPqo7EmtyeYz+8OHD3Hfffezdu5eIiAjmzZtHcHAw+/fvp3///qSmprJr1y7u\nueceAM6cOUP37t159tlniw9Ehm6EjS1dqio9Nm2Ss3od2reH1q0Dcz1YWXhEuE16rDjHMODOO+GR\nR9wbq5fn27wfflBNy3bs8E1LCquRpmbCLdJjxXkOh6rf7tkT7rsPSpjjdFnyfLvm+edhxIjATPLO\nkhYIokTSY8WcJk2gXj3X+9XL823et9+qnjZ9+uiOxNok0YsSSY8V88aNU7Nl//7b/H3l+TZv5Eh1\nu+oq3ZFYmyR6USLpsWJebKxazej1183fV55vc5Yvh6wsNVwmLk8SvSiR9FhxzQsvQHIy5OSYu588\n384zDHUmP2qUzEh2hlTdiMuSHiuuGTIECgrA7PC6PN/O+eILGD1a1c8HejmrlFcKoclff0F0tFoA\n48YbdUfjX06d+r+L3q1a6Y5GP2dypwzdCOEFoaFq8s7Ikboj8T/JyVC3riR5M+SMXggvOX4cateG\nxYvV0oPCfQcPqiS/erX6xCRk6EYI7ZKTITVVJXvhvscfVxdik5N1R2IdkuiF18hUfefk56szz2nT\nCg81yPNn3vlFRbZsgeuu0x2NdUgLBOEVMlXfeVddBW+8oc5EN25UX8vz55qnnoJhwyTJu0IuxgrT\nZKq+OUlJUKsWTJyovpbnz7xly2DzZhg0SHck9iSJXpgmU/XNcThUkp8wAfbtk+fPrIIC+O9/4ZVX\nXGsWJyTRCxfIVH3zateGAQPU8IM8f+bMnKkW+j63tIVwgSR6YZpM1XfN8OGwZg2ENh8tz5+Tjh5V\nbYjfeEN9MhKukaob4RKZqu+azz9X/VkmvbSIFVMnyfN3BY8+CqdPw/TpuiOxLimvFMJiDEN1t7zr\nLhg6VHc01rZmjVrE5ddfISREdzTWJYleCAvatk0tO/jLL1Cjhu5orOnUKYiLU51Au3TRHY21Sa8b\nISyoTh3o2xeeflp3JNY1bpy6gN25s+5I/IOc0QuPkhmfhZX0fBw/rmbMfvQRNGumO0pr2bxZPScb\nNkBYmO5orE9mxgqfkhmfhV3p+ZgyBXr3VjNmK1bUFaW1nD0L/fvDmDGS5D1Jhm6Ex8iMz8Ku9Hy0\nbw/Nm6vJQEKZNk39+8gjeuPwN5LohcfIjM/CnHk+3nwTli5VHS4DXVaWqpmfPh1KSWbyKHk6hcfI\njM/CnHk+rr0W/t//g4cfVr3WA5VhqD42jz0GMTG6o/E/kuiFx8iM2cKcfT6aNYNu3WDgQJXwAtFH\nH8H27fDss7oj8U9SdSM8SmbMFubs83HyJNx2m2qT0L27hkA12rIFmjaF5cshNlZ3NPYjE6aEsJH1\n66FtW/VvoFSc5OVB48YwZIiaWyDMk0QvhM2MHQsrV8LXXwfGBcl+/dQs2FmzpGmZqyTRC8vw94lU\nnvr9zpyBO+6Arl39vxfOhx/CSy/BTz9BhQq6o7EvmTAlLMHfJ1J58vcLCoK5c+H226FePWjTxqOh\nWsaWLfCf/8A330iS94UA+HAodPP3iVSe/v1q1YJPPoEHH1QN0PxNXp7qSjluHNSvrzuawCCJXnid\nv0+k8sbv17QpvPyyWm/2yBGXH8aSBg+GBg3k4qsvydCN8Dp/n0jlrd+vXz/Vi/3++2HRIjWsY3fv\nvAPffqvG5eXiq+/IGb3wOn+fSOXN3++111RCfPJJtx9Ku3nzVH/5lBQZl/c1qboRPuHvE6m8+fvl\n5qpa8yefVJ0d7ejrr6FnT1iyRA3bCM+R8kphC3YpvdQZ5/btalWqefMgPt4nu/SY779X1xq+/FKV\njgrPkvJKYXl2Kb3UHedNN8GcOapaZc4caNnS67v0iE2boGNHNSFKkrw+MkYvtLJL6aUV4mzZEj79\nVDVA++orn+3WZbt2qZYOb72lFkMX+kiiF1rZpfTSKnE2a6Z61/fvDx9/7NNdm5KdDa1bw3PPqT9M\nQi8ZuhFa2aX00kpxNmoEy5aps+Xjx1UveytZtw7uuQcefVS1Xhb6ycVYoVVxY9/DIyNpO3EigJaL\nn8VddAVKjFPXtYSdO9VZ82OPWaf8cvZs1YnynXegc2fd0QQGqboRtlBcaSIUTawjIiNJ8HJiLfai\n67n9ApYrEc3KglatVFXL2LFw1VV64jhzBp55BhYsUNU1N9+sJ45AJIle2NZzCQmMXbKkyPdHJiTw\nYlqa3+3XHX/+Cb17w759alnCW27x7f4PHVLdNh0O1ZCtcmXf7j/QOZM75WKssCRdFz+tctHVjKpV\n1WzToUNVt8tRoyA/3zf7XrdOXTOIi1NtGiTJW5NcjBWWdLmLn56auFTc41jpoqsZDgf06qWGcR55\nRCXfmTPh1lu9s79t22D0aFixAt58UyprLM9w0bx584yYmBijVKlSxrp160rcbvHixUadOnWMqKgo\nY/z48SVu50YolrBixQrdIbjMirGvTEkxhkdGGoZaL9swwHg2MtJ4e9SoIt/vfv31xsqUFLcff3gJ\nj/9sZKTpxzfD08//2bOG8eGHhhEaahhPP20Ye/Z47rH37DGM3r0N47rrDOOllwzj2DFrHj9m2D1+\nZ3Kny2f0sbGxzJ8/nwEDBpS4TUFBAYMGDWLZsmXUrFmTRo0akZSURHR0tKu7taz09HTi7TY3/Rwr\nxn7+DH3kRRc/2z7+eLETl6L2778wcam4M/3iztxLmgA1cu1aEiZOLLJfb1509fTz73CoXvYtW6oV\nnG67TfV979VLVcK40lAsMxMmTFCzcgcOhB07IDjYO/H7mt3jd4bLib5u3bpX3CYjI4OoqCgiIiIA\n6Nq1KwsWLPDLRC88r2liYpEEu/zVV4vd9s+srGJbFPz644/s++ijIt/PK1eu2McpffJksfu1oxo1\nIDkZXn9dzaT94ANV+tihgxpqqVULqlSBkJDC69OeOaNaF3z/PXz3nfr38GF1wXfLFnVNQNiLV8fo\n9+3bR3h4+IWvw8LC+OGHH7y5S+HnShpDzz1wgGmHDhX63ku//879ycl8Utz3q1Qp9nGsPhbvirJl\noUsXdcvJUbXuY8eq2auHDsGxY+rsvEoVqFhRjb+Hh8P//i80bw7Dh0PduoGxWLnfuty4TqtWrYyb\nb765yG3hwoUXtomPjy9xjP6zzz4z+vXrd+HrDz/80Bg0aFCJ40xyk5vc5CY38ze3xuiXLl16uR9f\nUc2aNcnMzLzwdWZmJmFhYcVua0gNvRBCeIVHPoyVlKQbNmzIjh072LNnD/n5+XzyySckJSV5YpdC\nCCGc5HKinz9/PuHh4axdu5bExETuOteHdP/+/SSeu5AVFBREcnIyCQkJxMTEcP/998uFWCGE8DHt\nLRDS0tIYMmQIBQUF9OvXj2eeeUZnOKb06dOH1NRUqlatyqZNm3SHY1pmZiY9e/bkzz//xOFw8PDD\nDzP4XAMvOzh58iTNmjXj1KlT5Ofn06FDB8aNG6c7LFMKCgpo2LAhYWFhfGWHJvOXiIiI4Nprr6V0\n6dKUKVOGjIwM3SE5LTc3l379+vHbb7/hcDh4//33+fe//607LKds27aNrl27Xvh6165dvPjiiyW/\nf684iu9FZ86cMSIjI43du3cb+fn5RoMGDYzNmzfrDMmUVatWGevXrzduvvlm3aG4JDs729iwYYNh\nGIZx7Ngx46abbrLV828YhnHixAnDMAzj9OnTRuPGjY3Vq1drjsic119/3XjggQeM9u3b6w7FJRER\nEcahQ4d0h+GSnj17Gu+9955hGOr4yc3N1RyRawoKCozq1asbe/fuLXEbrQVTF9fZlylT5kKdvV00\nadKEkJAQ3WG4rHr16txyrgNWhQoViI6OZv/+/ZqjMqfcuXr4/Px8CgoKqGyjZitZWVksWrSIfv36\n2boYwY6xHz16lNWrV9OnTx9ADTNXqlRJc1SuWbZsGZGRkYVK2S+lNdEXV2e/b98+jREFrj179rBh\nwwYaN26sOxRTzp49yy233EK1atVo3rw5MTExukNy2tChQ3n11VcpZeMCdYfDQatWrWjYsCHTp0/X\nHY7Tdu/eTWhoKL179+bWW2+lf//+5OXl6Q7LJXPnzuWBBx647DZajzCHw6Fz9+Kc48eP06VLFyZO\nnEgFV+bHa1SqVCl+/vlnsrKyWLVqFenp6bpDckpKSgpVq1YlLi7OlmfE561Zs4YNGzawePFi3n77\nbVavXq07JKecOXOG9evX8+ijj7J+/XrKly/P+PHjdYdlWn5+Pl999RX33nvvZbfTmujN1NkL7zh9\n+jSdO3fmwQcfpGPHjrrDcVmlSpVITEzkp59+0h2KU7777jsWLlxIrVq16NatG8uXL6dnz566wzKt\nRo0aAISGhtKpUyfbXIwNCwsjLCyMRo0aAdClSxfWr1+vOSrzFi9ezG233UZoaOhlt9Oa6KXOXi/D\nMOjbty8xMTEMGTJEdzimHTx4kNzcXAD++ecfli5dSlxcnOaonPPyyy+TmZnJ7t27mTt3Li1atGDW\nrFm6wzIlLy+PY8eOAXDixAmWLFlCbGys5qicU716dcLDw9m+fTugxrnr1aunOSrz5syZQzcnekRr\n7Ud/cZ19QUEBffv2tVWdfbdu3Vi5ciWHDh0iPDycF154gd69e+sOy2lr1qzho48+on79+hcS5Lhx\n42jbtq3myJyTnZ1Nr169OHv2LGfPnqVHjx60bNlSd1guseMwZk5ODp06dQLUUEj37t1p06aN5qic\nN3nyZLp3705+fj6RkZHMnDlTd0imnDhxgmXLljl1bUR7Hb0QQgjvsu/lfiGEEE6RRC+EEH5OEr0Q\nQvg5SfRCCOHnJNELIYSfk0QvhBB+7v8DdGpNt9cTOxoAAAAASUVORK5CYII=\n"
}
],
"prompt_number": 260
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"\n",
"\n",
"%load_ext sympyprinting\n",
"import sympy as sym\n",
"from sympy import *\n",
"x, y, z = sym.symbols(\"x y z\")\n",
"\n"
],
"language": "python",
"metadata": {},
"outputs": [
{
"output_type": "stream",
"stream": "stderr",
"text": [
"/usr/lib/python2.7/dist-packages/IPython/extensions/sympyprinting.py:119: UserWarning: The sympyprinting extension in IPython is deprecated, use sympy.interactive.ipythonprinting\n",
" warnings.warn(\"The sympyprinting extension in IPython is deprecated, \"\n"
]
}
],
"prompt_number": 261
},
{
"cell_type": "code",
"collapsed": false,
"input": [
"%load_ext rmagic "
],
"language": "python",
"metadata": {},
"outputs": [
{
"ename": "ImportError",
"evalue": "No module named rpy2.rinterface",
"output_type": "pyerr",
"traceback": [
"\u001b[0;31m---------------------------------------------------------------------------\u001b[0m\n\u001b[0;31mImportError\u001b[0m Traceback (most recent call last)",
"\u001b[0;32m<ipython-input-262-67efefd52de2>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mget_ipython\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmagic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34mu'load_ext rmagic'\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/interactiveshell.pyc\u001b[0m in \u001b[0;36mmagic\u001b[0;34m(self, arg_s)\u001b[0m\n\u001b[1;32m 2134\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0m_\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0marg_s\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mpartition\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m' '\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2135\u001b[0m \u001b[0mmagic_name\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mmagic_name\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mlstrip\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mprefilter\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mESC_MAGIC\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2136\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrun_line_magic\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmagic_name\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmagic_arg_s\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2137\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2138\u001b[0m \u001b[0;31m#-------------------------------------------------------------------------\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/interactiveshell.pyc\u001b[0m in \u001b[0;36mrun_line_magic\u001b[0;34m(self, magic_name, line)\u001b[0m\n\u001b[1;32m 2060\u001b[0m \u001b[0margs\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mappend\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_getframe\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mstack_depth\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mf_locals\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2061\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mbuiltin_trap\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m-> 2062\u001b[0;31m \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mfn\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0margs\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 2063\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mresult\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 2064\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/magics/extension.pyc\u001b[0m in \u001b[0;36mload_ext\u001b[0;34m(self, module_str)\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/magic.pyc\u001b[0m in \u001b[0;36m<lambda>\u001b[0;34m(f, *a, **k)\u001b[0m\n\u001b[1;32m 189\u001b[0m \u001b[0;31m# but it's overkill for just that one bit of state.\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 190\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mmagic_deco\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 191\u001b[0;31m \u001b[0mcall\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0;32mlambda\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m*\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m:\u001b[0m \u001b[0mf\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0;34m*\u001b[0m\u001b[0ma\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m**\u001b[0m\u001b[0mk\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 192\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 193\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mcallable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0marg\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/magics/extension.pyc\u001b[0m in \u001b[0;36mload_ext\u001b[0;34m(self, module_str)\u001b[0m\n\u001b[1;32m 57\u001b[0m \u001b[0;32mdef\u001b[0m \u001b[0mload_ext\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mmodule_str\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 58\u001b[0m \u001b[0;34m\"\"\"Load an IPython extension by its module name.\"\"\"\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 59\u001b[0;31m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mshell\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mextension_manager\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mload_extension\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule_str\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 60\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 61\u001b[0m \u001b[0;34m@\u001b[0m\u001b[0mline_magic\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/IPython/core/extensions.pyc\u001b[0m in \u001b[0;36mload_extension\u001b[0;34m(self, module_str)\u001b[0m\n\u001b[1;32m 88\u001b[0m \u001b[0;32mif\u001b[0m \u001b[0mmodule_str\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0;32min\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodules\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 89\u001b[0m \u001b[0;32mwith\u001b[0m \u001b[0mprepended_to_syspath\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mipython_extension_dir\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 90\u001b[0;31m \u001b[0m__import__\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmodule_str\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 91\u001b[0m \u001b[0mmod\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0msys\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mmodules\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0mmodule_str\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 92\u001b[0m \u001b[0;32mreturn\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_call_load_ipython_extension\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mmod\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;32m/usr/lib/python2.7/dist-packages/IPython/extensions/rmagic.py\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[1;32m 45\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mnp\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 46\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m---> 47\u001b[0;31m \u001b[0;32mimport\u001b[0m \u001b[0mrpy2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrinterface\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mri\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m 48\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mrpy2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrobjects\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0mro\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m 49\u001b[0m \u001b[0;32mfrom\u001b[0m \u001b[0mrpy2\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mrobjects\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mnumpy2ri\u001b[0m \u001b[0;32mimport\u001b[0m \u001b[0mnumpy2ri\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
"\u001b[0;31mImportError\u001b[0m: No module named rpy2.rinterface"
]
}
],
"prompt_number": 262
},
{
"cell_type": "code",
"collapsed": false,
"input": [],
"language": "python",
"metadata": {},
"outputs": []
}
],
"metadata": {}
}
]
}
In [148]:
wireFormat = wireInfo.format
In [149]:
wireFormat()
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-149-f815167a40dc> in <module>()
----> 1 wireFormat()
ValueError: unmatched '{' in format
In [138]:
In [138]:
In [138]:
In [138]:
In [138]:
In [138]:
In [ ]:
Content source: wcmckee/wirepil
Similar notebooks: