In [8]:
import numpy as np
import matplotlib.pyplot as plt
from sklearn.metrics import mean_squared_error, mean_absolute_error
In [24]:
N=100000000
sigma=3.14159
xg=np.arange(N)
xp=xg+np.random.randn(N)*sigma
rmse=np.sqrt(mean_squared_error(xg,xp))
mae=mean_absolute_error(xg,xp)
print "rmse: %f mae:%f"%(sigma2,u)
In [13]:
Out[13]:
In [15]:
Out[15]:
In [ ]: