In [42]:
import predict_rainfall as rain
import load_rainfall as load
import numpy as np
import plotly.plotly as py
import plotly.graph_objs as go
from plotly.offline import init_notebook_mode, plot, iplot
In [43]:
init_notebook_mode(connected=True)
In [163]:
X14, y = load.load_training_data(t=14, height_span=[0, 1], downsample_size=2, image_size=21)
X13, y = load.load_training_data(t=13, height_span=[0, 1], downsample_size=2, image_size=21)
X12, y = load.load_training_data(t=12, height_span=[0, 1], downsample_size=2, image_size=21)
X1, y = load.load_training_data(t=1, height_span=[0, 1], downsample_size=2, image_size=21)
In [162]:
sorted_idx = np.argsort(y, axis=0)
for X in [X14, X12, X1]:
rank = 8001
print(y[sorted_idx[rank]])
z = X[sorted_idx[rank, 0], :, :, 0]
trace = go.Heatmap(z=z)
data = [trace]
iplot(data, filename='radar heat map')
In [193]:
low_thres = 20
high_thres = 80
X14_high = np.count_nonzero(X14[:,:,:,0] > high_thres, axis=(1,2))
X13_high = np.count_nonzero(X13[:,:,:,0] > high_thres, axis=(1,2))
X12_high = np.count_nonzero(X12[:,:,:,0] > high_thres, axis=(1,2))
X1_high = np.count_nonzero(X1[:,:,:,0] > high_thres, axis=(1,2))
X14_low = np.count_nonzero(X14[:,:,:,0] < low_thres, axis=(1,2))
X13_low = np.count_nonzero(X13[:,:,:,0] < low_thres, axis=(1,2))
X12_low = np.count_nonzero(X13[:,:,:,0] < low_thres, axis=(1,2))
X1_low = np.count_nonzero(X1[:,:,:,0] < low_thres, axis=(1,2))
diff_X_high = X14_high - X12_high
diff_X_low = X14_low - X12_low
y_flatten = y.flatten()
print(diff_X_high)
print(diff_X_low)
print(y_flatten)
trace = go.Scatter(x = diff_X_high, y = y_flatten, mode = 'markers')
data = [trace]
iplot(data, filename='diff vs y')