In [2]:
require 'image';
In [3]:
itorch.image({image.lena(), image.lena(), image.lena()})
Out[3]:
In [4]:
require 'nn'
m=nn.SpatialConvolution(3,32,25,25)
itorch.image(m.weight)
In [5]:
itorch.audio('volkswagen.mp3')
Out[5]:
In [6]:
itorch.video('small.mp4')
Out[6]:
In [7]:
itorch.html('<p><b>Hi there!</b> this is arbitrary HTML</p>');
In [8]:
x1 = torch.randn(40):mul(100)
y1 = torch.randn(40):mul(100)
x2 = torch.randn(40):mul(100)
y2 = torch.randn(40):mul(100)
x3 = torch.randn(40):mul(200)
y3 = torch.randn(40):mul(200)
In [9]:
Plot = require 'itorch.Plot'
In [10]:
?torch.cmul
Out[10]:
In [11]:
plot = Plot():circle(x1, y1, 'red', 'hi'):circle(x2, y2, 'blue', 'bye'):draw()
plot:circle(x3,y3,'green', 'yolo'):redraw()
plot:title('Scatter Plot Demo'):redraw()
plot:xaxis('length'):yaxis('width'):redraw()
plot:legend(true)
plot:redraw()
In [12]:
-- line plots
plot = Plot():line(x1, y1,'red','example'):legend(true):title('Line Plot Demo'):draw()
In [13]:
-- segment plots
plot = Plot():segment(x1, y1, x1+10,y1+10, 'red','demo'):title('Segment Plot Demo'):draw()
In [14]:
-- quiver plots
xx = torch.linspace(-3,3,10)
yy = torch.linspace(-3,3,10)
local function meshgrid(x,y)
local xx = torch.repeatTensor(x, y:size(1),1)
local yy = torch.repeatTensor(y:view(-1,1), 1, x:size(1))
return xx, yy
end
Y, X = meshgrid(xx, yy)
U = -torch.pow(X,2) + Y -1
V = X - torch.pow(Y,2) +1
plot = Plot():quiver(U,V,'red','',10):title('Quiver Plot Demo'):draw()
In [15]:
-- quads/rectangles
x1=torch.randn(10)
y1=torch.randn(10)
plot = Plot():quad(x1,y1,x1+1,y1+1,'red',''):draw()
In [18]:
-- histogram
x=torch.randn(10000)
lx = torch.log(x):add(1)
plot = Plot():histogram(x):histogram(lx):title('Histogram of a gaussian draw'):draw()
In [17]:
Out[17]:
In [ ]: