In [3]:
%cd /home/wallar/projects/ridesharing/c++/data-sim/
%cd v1000-c4-w300-p0-2-18-2013-1489260474


/home/wallar/projects/ridesharing/c++/data-sim
/home/wallar/projects/ridesharing/c++/data-sim/v1000-c4-w300-p0-2-18-2013-1489260474

In [4]:
import pandas as pd

In [5]:
df = pd.read_csv("metrics_its.csv")

In [6]:
df.describe()


/usr/local/lib/python2.7/dist-packages/numpy/lib/function_base.py:4116: RuntimeWarning: Invalid value encountered in percentile
  interpolation=interpolation)
Out[6]:
Unnamed: 0 active_taxis capacity empty_moving_to_pickup empty_rebalancing empty_waiting is_long mean_delay mean_km_travelled mean_passengers ... time_pass_2 time_pass_3 time_pass_4 time_pass_5 time_pass_6 time_pass_7 time_pass_8 time_pass_9 total_km_travelled total_passengers
count 2879.000000 2879.000000 2879.0 2879.000000 2879.000000 2879.0 2879.0 2875.000000 2879.000000 2879.000000 ... 2879.000000 2879.000000 2879.000000 2879.0 2879.0 2879.0 2879.0 2879.0 2879.000000 2879.000000
mean 1439.000000 516.654047 4.0 8.907954 474.437999 0.0 1.0 378.750128 107.316655 1.450488 ... 115.453630 158.415769 167.183050 0.0 0.0 0.0 0.0 0.0 107316.654862 66261.895102
std 831.240038 197.212540 0.0 12.796784 194.915030 0.0 0.0 50.263893 73.871705 0.658665 ... 39.050579 76.416595 97.219471 0.0 0.0 0.0 0.0 0.0 73871.704820 50952.802306
min 0.000000 0.000000 4.0 0.000000 272.000000 0.0 1.0 0.000000 0.000000 0.000000 ... 0.000000 0.000000 0.000000 0.0 0.0 0.0 0.0 0.0 0.000000 0.000000
25% 719.500000 415.000000 4.0 4.000000 331.500000 0.0 1.0 NaN 34.237299 0.998000 ... 100.000000 108.500000 68.000000 0.0 0.0 0.0 0.0 0.0 34237.298537 13933.000000
50% 1439.000000 610.000000 4.0 6.000000 383.000000 0.0 1.0 NaN 96.345406 1.772000 ... 123.000000 189.000000 215.000000 0.0 0.0 0.0 0.0 0.0 96345.405890 57417.000000
75% 2158.500000 663.000000 4.0 10.000000 570.000000 0.0 1.0 NaN 174.157404 1.982000 ... 142.000000 219.500000 246.000000 0.0 0.0 0.0 0.0 0.0 174157.403520 113267.000000
max 2878.000000 721.000000 4.0 198.000000 902.000000 0.0 1.0 585.600000 240.990336 2.166000 ... 209.000000 271.000000 314.000000 0.0 0.0 0.0 0.0 0.0 240990.336000 155717.000000

8 rows × 42 columns


In [15]:
sp = df["n_pickups"].sum() / (df["n_pickups"].sum() + df["n_ignored"].sum())

In [17]:
df["serviced_percentage"]


0.396620055526

In [18]:
mtd = df["mean_delay"] - df["mean_waiting_time"]

In [19]:
print mtd.mean()


195.505325818

In [ ]: