測試 tensorflow
Code 來源
http://mropengate.blogspot.tw/2016/10/ai-ch165-tensorflow.html
In [1]:
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt
def add_layer(inputs, in_size, out_size, activation_function=None):
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases #matrix multiply
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs
### Create Data : poly. + noise
x_data = np.linspace(-2,2,600)[:,np.newaxis]
noise = np.random.normal(0,0.8,x_data.shape)
y_data_ori = 1.5*np.power(x_data,3) + 2*np.power(x_data,2) + 1
# y_data_ori = 2*x_data + 2 * np.sin(x_data/0.5)
y_data = y_data_ori + noise
xs = tf.placeholder(tf.float32,[None,1])
ys = tf.placeholder(tf.float32,[None,1])
### Create NN graph
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.sigmoid)
prediction = add_layer(l1 , 10 , 1 , activation_function=None)
# Set Learning Parameter
loss = tf.reduce_mean(tf.reduce_sum(tf.square(y_data - prediction),reduction_indices=[1]))
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss)
# initial tensorflow variables
init = tf.global_variables_initializer()
# initial graph
fig = plt.figure()
ax = fig.add_subplot(1,1,1)
ax.scatter(x_data, y_data)
plt.ion()
with tf.Session() as sess:
sess.run(init)
for i in range(1500):
sess.run(train_step, feed_dict={xs:x_data, ys:y_data})
# predict and plot the result
if i % 50 ==0:
#print(sess.run(loss,feed_dict={xs:x_data, ys:y_data}))
try:
ax.lines.remove(lines[0])
except Exception:
pass
prediction_value = sess.run(prediction, feed_dict={xs: x_data})
# plot the prediction
lines = ax.plot(x_data, prediction_value, 'r-', lw=2)
lines = ax.plot(x_data, y_data_ori,'y-', lw=2)
plt.show()