In [1]:
import numpy as np
np.__version__
Out[1]:
In [3]:
# Create a simple numpy array
ar1 = np.array([1,2,3,4,5])
ar1
Out[3]:
In [4]:
# Find the type
type(ar1)
Out[4]:
In [6]:
np.size(ar1)
Out[6]:
In [9]:
ar1.dtype
Out[9]:
In [10]:
ar2 = np.array([1.0,2.0,3.0])
ar2.dtype
Out[10]:
In [11]:
ar3 = np.array([1,1.0])
ar3.dtype
Out[11]:
In [12]:
ar3
Out[12]:
In [14]:
ar4 = np.array([1,1.0,'Hello'])
ar4.dtype
ar4
Out[14]:
In [15]:
# shorthand to repeat a sequence n times
ar5 = np.array([0]*10)
ar5
Out[15]:
In [17]:
# Convert Python range to np array
ar6 = np.array(range(10))
ar6
Out[17]:
In [20]:
# create a numpy of zeroes
np.zeros(10)
Out[20]:
In [21]:
# force to get only integers
np.zeros(10,dtype='int')
Out[21]:
In [25]:
# make a range starting at 1 for 10 values
np.arange(1,11)
Out[25]:
In [23]:
# range value but increment by 2
np.arange(0,10,2)
Out[23]:
In [28]:
# integers in reverse order
np.arange(15,10,-1)
Out[28]:
In [34]:
# linspace similar to array but produces exact number of items between start and end values
np.linspace(0,5,2)
Out[34]:
In [37]:
# multiply array elements
ar7 = np.arange(0,10)
ar7 * 2
Out[37]:
In [38]:
# addition of 2 arrays
ar8 = np.arange(10,20)
ar7 + ar8
Out[38]:
In [40]:
# create a matrix
np.array([[1,2,3],[4,5,6]])
Out[40]:
In [44]:
m = np.arange(0,20).reshape(5,4)
m
Out[44]:
In [45]:
# Get the size of the matrix
np.size(m)
Out[45]:
In [46]:
# Get the size of the row (0 -> row)
np.size(m,0)
Out[46]:
In [47]:
# Get the size of the column (1 -> Col)
np.size(m,1)
Out[47]:
In [48]:
# select an element -> row 1 col2
m[1,2]
Out[48]:
In [49]:
# select a row
m[2,]
Out[49]:
In [51]:
# select a column
m[:,3]
Out[51]:
In [52]:
# which items are less than 2
arr8 = np.arange(10)
arr8 < 2
Out[52]:
In [54]:
(arr8 < 2) | (arr8 > 5)
Out[54]:
In [ ]: