---------------------------------------------------------------------------
KeyboardInterrupt Traceback (most recent call last)
<ipython-input-17-7a605a1240a5> in <module>()
2 scorer = ciderEval(gts, res, df_mode)
3 # scores: dict of list with key = metric and value = score given to each candidate
----> 4 scores = scorer.evaluate()
/Users/rama/Research/code/cider/pyciderevalcap/eval.py in evaluate(self)
35 for scorer, method in scorers:
36 print 'computing %s score...' % (scorer.method())
---> 37 score, scores = scorer.compute_score(self.gts, self.res)
38 print "Mean %s score: %0.3f" % (method, score)
39 metric_scores[method] = list(scores)
/Users/rama/Research/code/cider/pyciderevalcap/cider/cider.py in compute_score(self, gts, res)
53 cider_scorer += (hypo[0], ref)
54
---> 55 (score, scores) = cider_scorer.compute_score(self._df)
56
57 return score, scores
/Users/rama/Research/code/cider/pyciderevalcap/cider/cider_scorer.py in compute_score(self, df_mode, option, verbose)
192 # import json for now and write the corresponding files
193 else:
--> 194 self.document_frequency = pickle.load(open(os.path.join('data', df_mode + '.p'),'r'))
195 # compute cider score
196 score = self.compute_cider(df_mode)
/Users/rama/anaconda2/lib/python2.7/pickle.pyc in load(file)
1382
1383 def load(file):
-> 1384 return Unpickler(file).load()
1385
1386 def loads(str):
/Users/rama/anaconda2/lib/python2.7/pickle.pyc in load(self)
862 while 1:
863 key = read(1)
--> 864 dispatch[key](self)
865 except _Stop, stopinst:
866 return stopinst.value
/Users/rama/anaconda2/lib/python2.7/pickle.pyc in load_tuple(self)
998
999 def load_tuple(self):
-> 1000 k = self.marker()
1001 self.stack[k:] = [tuple(self.stack[k+1:])]
1002 dispatch[TUPLE] = load_tuple
/Users/rama/anaconda2/lib/python2.7/pickle.pyc in marker(self)
878 mark = self.mark
879 k = len(stack)-1
--> 880 while stack[k] is not mark: k = k-1
881 return k
882
KeyboardInterrupt: