In [1]:
import numpy as np
import nsaba.nsaba as na
from copy import deepcopy
In [2]:
datdir = '../../data_dir'
na.Nsaba.aba_load(datdir)
na.Nsaba.ns_load(datdir)
na.Nsaba.ns_load_id_dict()
In [3]:
ei = na.Nsaba()
In [4]:
ei.load_ge_pickle('Nsaba_ABA_ge.pkl', datdir)
In [5]:
# Reference table
ei_table = {}
for i, key in enumerate(ei.ge.keys()):
ei_table[key] = i
In [ ]:
In [6]:
# Params
keys = ei.ge.keys()
mat_size = len(keys)
coord_num = len(ei.ge[1])
keys2 = deepcopy(keys)
In [7]:
%%time
# Test Run
n = 4000
keys_T = keys[:n]
key2T = keys2[:n]
p = np.zeros([n,n, coord_num])
for i, key_row in enumerate(keys_T):
for j, key_col in enumerate(key2T):
p[i][i+j] = ei.ge[key_row]/ei.ge[key_col]
key2T = key2T[1:]
In [ ]:
del p
In [ ]:
def make_ei_mat(EI):
for i, key_row in enumerate(keys):
for j, key_col in enumerate(keys2):
EI[i][j] = ei.ge[key_row]/ei.ge[key_col]
keys2 = key2[1:]
return EI
In [ ]:
In [ ]:
%%time
EI = np.zeros((mat_size, mat_size, coord_num))
EI = make_ei_mat(EI)