Train set: 106
Test set: 44
[5.1, 3.5, 1.4, 0.2, 'Iris-setosa']
[5.1, 3.5, 1.4, 0.3, 'Iris-setosa']
[5.0, 3.5, 1.3, 0.3, 'Iris-setosa']
[5.1, 3.4, 1.5, 0.2, 'Iris-setosa']
[5.2, 3.5, 1.5, 0.2, 'Iris-setosa']
[5.1, 3.8, 1.5, 0.3, 'Iris-setosa']
[5.1, 3.7, 1.5, 0.4, 'Iris-setosa']
> predicted='Iris-setosa', actual='Iris-setosa'
[5.1, 3.4, 1.5, 0.2, 'Iris-setosa']
[5.0, 3.3, 1.4, 0.2, 'Iris-setosa']
[5.1, 3.5, 1.4, 0.2, 'Iris-setosa']
[5.1, 3.5, 1.4, 0.3, 'Iris-setosa']
[5.0, 3.4, 1.6, 0.4, 'Iris-setosa']
[4.8, 3.4, 1.6, 0.2, 'Iris-setosa']
[5.2, 3.5, 1.5, 0.2, 'Iris-setosa']
> predicted='Iris-setosa', actual='Iris-setosa'
[5.5, 4.2, 1.4, 0.2, 'Iris-setosa']
[5.4, 3.9, 1.3, 0.4, 'Iris-setosa']
[5.7, 4.4, 1.5, 0.4, 'Iris-setosa']
[5.7, 3.8, 1.7, 0.3, 'Iris-setosa']
[5.4, 3.7, 1.5, 0.2, 'Iris-setosa']
[5.5, 3.5, 1.3, 0.2, 'Iris-setosa']
[5.3, 3.7, 1.5, 0.2, 'Iris-setosa']
> predicted='Iris-setosa', actual='Iris-setosa'
[5.4, 3.4, 1.7, 0.2, 'Iris-setosa']
[5.2, 3.5, 1.5, 0.2, 'Iris-setosa']
[5.2, 3.4, 1.4, 0.2, 'Iris-setosa']
[5.5, 3.5, 1.3, 0.2, 'Iris-setosa']
[5.1, 3.5, 1.4, 0.3, 'Iris-setosa']
[5.4, 3.7, 1.5, 0.2, 'Iris-setosa']
[5.1, 3.4, 1.5, 0.2, 'Iris-setosa']
> predicted='Iris-setosa', actual='Iris-setosa'
[4.9, 3.1, 1.5, 0.1, 'Iris-setosa']
[4.9, 3.0, 1.4, 0.2, 'Iris-setosa']
[4.8, 3.1, 1.6, 0.2, 'Iris-setosa']
[4.8, 3.0, 1.4, 0.1, 'Iris-setosa']
[5.0, 3.0, 1.6, 0.2, 'Iris-setosa']
[5.0, 3.3, 1.4, 0.2, 'Iris-setosa']
[4.7, 3.2, 1.6, 0.2, 'Iris-setosa']
> predicted='Iris-setosa', actual='Iris-setosa'
[4.9, 3.1, 1.5, 0.1, 'Iris-setosa']
[4.9, 3.0, 1.4, 0.2, 'Iris-setosa']
[4.8, 3.1, 1.6, 0.2, 'Iris-setosa']
[4.8, 3.0, 1.4, 0.1, 'Iris-setosa']
[5.0, 3.0, 1.6, 0.2, 'Iris-setosa']
[5.0, 3.3, 1.4, 0.2, 'Iris-setosa']
[4.7, 3.2, 1.6, 0.2, 'Iris-setosa']
> predicted='Iris-setosa', actual='Iris-setosa'
[5.0, 3.4, 1.6, 0.4, 'Iris-setosa']
[5.1, 3.3, 1.7, 0.5, 'Iris-setosa']
[5.1, 3.7, 1.5, 0.4, 'Iris-setosa']
[5.1, 3.5, 1.4, 0.3, 'Iris-setosa']
[5.0, 3.5, 1.3, 0.3, 'Iris-setosa']
[5.1, 3.4, 1.5, 0.2, 'Iris-setosa']
[5.1, 3.8, 1.5, 0.3, 'Iris-setosa']
> predicted='Iris-setosa', actual='Iris-setosa'
[4.6, 3.1, 1.5, 0.2, 'Iris-setosa']
[4.7, 3.2, 1.3, 0.2, 'Iris-setosa']
[4.4, 3.2, 1.3, 0.2, 'Iris-setosa']
[4.6, 3.4, 1.4, 0.3, 'Iris-setosa']
[4.7, 3.2, 1.6, 0.2, 'Iris-setosa']
[4.4, 3.0, 1.3, 0.2, 'Iris-setosa']
[4.8, 3.0, 1.4, 0.1, 'Iris-setosa']
> predicted='Iris-setosa', actual='Iris-setosa'
[7.0, 3.2, 4.7, 1.4, 'Iris-versicolor']
[6.7, 3.1, 4.7, 1.5, 'Iris-versicolor']
[6.7, 3.0, 5.0, 1.7, 'Iris-versicolor']
[6.8, 2.8, 4.8, 1.4, 'Iris-versicolor']
[6.7, 3.1, 4.4, 1.4, 'Iris-versicolor']
[6.5, 2.8, 4.6, 1.5, 'Iris-versicolor']
[6.4, 3.2, 4.5, 1.5, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[5.5, 2.6, 4.4, 1.2, 'Iris-versicolor']
[5.7, 2.9, 4.2, 1.3, 'Iris-versicolor']
[6.0, 2.9, 4.5, 1.5, 'Iris-versicolor']
[5.7, 3.0, 4.2, 1.2, 'Iris-versicolor']
[5.7, 2.8, 4.1, 1.3, 'Iris-versicolor']
[5.4, 3.0, 4.5, 1.5, 'Iris-versicolor']
[6.1, 2.8, 4.7, 1.2, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[6.4, 3.2, 4.5, 1.5, 'Iris-versicolor']
[6.1, 3.0, 4.6, 1.4, 'Iris-versicolor']
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[6.7, 3.1, 4.7, 1.5, 'Iris-versicolor']
[6.0, 3.0, 4.8, 1.8, 'Iris-virginica']
[6.1, 2.9, 4.7, 1.4, 'Iris-versicolor']
[6.0, 2.9, 4.5, 1.5, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[6.5, 2.8, 4.6, 1.5, 'Iris-versicolor']
[6.7, 3.1, 4.4, 1.4, 'Iris-versicolor']
[6.8, 2.8, 4.8, 1.4, 'Iris-versicolor']
[6.7, 3.1, 4.7, 1.5, 'Iris-versicolor']
[6.4, 2.9, 4.3, 1.3, 'Iris-versicolor']
[6.4, 3.2, 4.5, 1.5, 'Iris-versicolor']
[6.2, 2.9, 4.3, 1.3, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[5.0, 2.3, 3.3, 1.0, 'Iris-versicolor']
[4.9, 2.4, 3.3, 1.0, 'Iris-versicolor']
[5.5, 2.4, 3.7, 1.0, 'Iris-versicolor']
[5.5, 2.4, 3.8, 1.1, 'Iris-versicolor']
[5.5, 2.3, 4.0, 1.3, 'Iris-versicolor']
[5.6, 2.5, 3.9, 1.1, 'Iris-versicolor']
[5.5, 2.5, 4.0, 1.3, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[5.8, 2.6, 4.0, 1.2, 'Iris-versicolor']
[5.6, 2.5, 3.9, 1.1, 'Iris-versicolor']
[5.5, 2.4, 3.8, 1.1, 'Iris-versicolor']
[5.5, 2.3, 4.0, 1.3, 'Iris-versicolor']
[6.3, 2.3, 4.4, 1.3, 'Iris-versicolor']
[5.5, 2.4, 3.7, 1.0, 'Iris-versicolor']
[5.5, 2.5, 4.0, 1.3, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[5.7, 2.6, 3.5, 1.0, 'Iris-versicolor']
[5.6, 3.0, 4.1, 1.3, 'Iris-versicolor']
[5.7, 2.8, 4.1, 1.3, 'Iris-versicolor']
[5.6, 2.5, 3.9, 1.1, 'Iris-versicolor']
[5.2, 2.7, 3.9, 1.4, 'Iris-versicolor']
[5.8, 2.6, 4.0, 1.2, 'Iris-versicolor']
[5.5, 2.5, 4.0, 1.3, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[5.4, 3.0, 4.5, 1.5, 'Iris-versicolor']
[5.7, 2.9, 4.2, 1.3, 'Iris-versicolor']
[6.0, 2.9, 4.5, 1.5, 'Iris-versicolor']
[5.9, 3.0, 4.2, 1.5, 'Iris-versicolor']
[5.7, 3.0, 4.2, 1.2, 'Iris-versicolor']
[5.6, 3.0, 4.1, 1.3, 'Iris-versicolor']
[5.7, 2.8, 4.1, 1.3, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[5.8, 2.6, 4.0, 1.2, 'Iris-versicolor']
[5.7, 2.8, 4.1, 1.3, 'Iris-versicolor']
[5.6, 2.5, 3.9, 1.1, 'Iris-versicolor']
[5.7, 3.0, 4.2, 1.2, 'Iris-versicolor']
[5.7, 2.9, 4.2, 1.3, 'Iris-versicolor']
[6.1, 2.8, 4.0, 1.3, 'Iris-versicolor']
[5.6, 3.0, 4.1, 1.3, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[6.0, 3.0, 4.8, 1.8, 'Iris-virginica']
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[5.9, 3.0, 5.1, 1.8, 'Iris-virginica']
[6.1, 3.0, 4.6, 1.4, 'Iris-versicolor']
[6.0, 2.9, 4.5, 1.5, 'Iris-versicolor']
[6.1, 2.9, 4.7, 1.4, 'Iris-versicolor']
[5.6, 2.8, 4.9, 2.0, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-versicolor'
[6.5, 2.8, 4.6, 1.5, 'Iris-versicolor']
[6.1, 2.9, 4.7, 1.4, 'Iris-versicolor']
[6.1, 2.8, 4.7, 1.2, 'Iris-versicolor']
[6.2, 2.2, 4.5, 1.5, 'Iris-versicolor']
[6.3, 2.3, 4.4, 1.3, 'Iris-versicolor']
[6.8, 2.8, 4.8, 1.4, 'Iris-versicolor']
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[6.7, 3.1, 4.4, 1.4, 'Iris-versicolor']
[6.4, 2.9, 4.3, 1.3, 'Iris-versicolor']
[6.4, 3.2, 4.5, 1.5, 'Iris-versicolor']
[6.5, 2.8, 4.6, 1.5, 'Iris-versicolor']
[6.7, 3.1, 4.7, 1.5, 'Iris-versicolor']
[6.2, 2.9, 4.3, 1.3, 'Iris-versicolor']
[6.8, 2.8, 4.8, 1.4, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[5.8, 2.6, 4.0, 1.2, 'Iris-versicolor']
[5.7, 2.8, 4.1, 1.3, 'Iris-versicolor']
[5.6, 2.5, 3.9, 1.1, 'Iris-versicolor']
[6.1, 2.8, 4.0, 1.3, 'Iris-versicolor']
[5.5, 2.5, 4.0, 1.3, 'Iris-versicolor']
[5.7, 2.9, 4.2, 1.3, 'Iris-versicolor']
[5.6, 3.0, 4.1, 1.3, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[5.8, 2.7, 5.1, 1.9, 'Iris-virginica']
[5.9, 3.0, 5.1, 1.8, 'Iris-virginica']
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[6.0, 3.0, 4.8, 1.8, 'Iris-virginica']
[6.1, 2.9, 4.7, 1.4, 'Iris-versicolor']
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
[6.1, 2.6, 5.6, 1.4, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-versicolor'
[6.4, 3.2, 4.5, 1.5, 'Iris-versicolor']
[6.1, 3.0, 4.6, 1.4, 'Iris-versicolor']
[6.0, 2.9, 4.5, 1.5, 'Iris-versicolor']
[5.9, 3.0, 4.2, 1.5, 'Iris-versicolor']
[6.0, 3.0, 4.8, 1.8, 'Iris-virginica']
[6.1, 2.9, 4.7, 1.4, 'Iris-versicolor']
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[5.7, 2.8, 4.1, 1.3, 'Iris-versicolor']
[5.7, 2.9, 4.2, 1.3, 'Iris-versicolor']
[5.5, 2.6, 4.4, 1.2, 'Iris-versicolor']
[5.5, 2.5, 4.0, 1.3, 'Iris-versicolor']
[5.6, 3.0, 4.1, 1.3, 'Iris-versicolor']
[5.8, 2.6, 4.0, 1.2, 'Iris-versicolor']
[5.7, 3.0, 4.2, 1.2, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[4.9, 2.4, 3.3, 1.0, 'Iris-versicolor']
[5.0, 2.3, 3.3, 1.0, 'Iris-versicolor']
[5.7, 2.6, 3.5, 1.0, 'Iris-versicolor']
[5.5, 2.4, 3.7, 1.0, 'Iris-versicolor']
[5.5, 2.4, 3.8, 1.1, 'Iris-versicolor']
[5.2, 2.7, 3.9, 1.4, 'Iris-versicolor']
[5.6, 2.5, 3.9, 1.1, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-versicolor'
[6.4, 2.8, 5.6, 2.2, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.1, 'Iris-virginica']
[6.8, 3.2, 5.9, 2.3, 'Iris-virginica']
[6.8, 3.0, 5.5, 2.1, 'Iris-virginica']
[6.9, 3.2, 5.7, 2.3, 'Iris-virginica']
[6.7, 3.3, 5.7, 2.5, 'Iris-virginica']
[6.5, 3.0, 5.5, 1.8, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[7.4, 2.8, 6.1, 1.9, 'Iris-virginica']
[7.2, 3.2, 6.0, 1.8, 'Iris-virginica']
[7.6, 3.0, 6.6, 2.1, 'Iris-virginica']
[7.1, 3.0, 5.9, 2.1, 'Iris-virginica']
[7.2, 3.0, 5.8, 1.6, 'Iris-virginica']
[7.7, 2.8, 6.7, 2.0, 'Iris-virginica']
[7.7, 3.0, 6.1, 2.3, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.7, 3.0, 5.0, 1.7, 'Iris-versicolor']
[6.7, 3.0, 5.2, 2.3, 'Iris-virginica']
[6.5, 3.0, 5.5, 1.8, 'Iris-virginica']
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[6.8, 3.0, 5.5, 2.1, 'Iris-virginica']
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
[6.2, 3.4, 5.4, 2.3, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[5.8, 2.7, 5.1, 1.9, 'Iris-virginica']
[5.6, 2.8, 4.9, 2.0, 'Iris-virginica']
[5.8, 2.8, 5.1, 2.4, 'Iris-virginica']
[5.9, 3.0, 5.1, 1.8, 'Iris-virginica']
[6.0, 3.0, 4.8, 1.8, 'Iris-virginica']
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.2, 3.4, 5.4, 2.3, 'Iris-virginica']
[6.7, 3.0, 5.2, 2.3, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.2, 'Iris-virginica']
[6.8, 3.0, 5.5, 2.1, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.1, 'Iris-virginica']
[6.7, 3.3, 5.7, 2.5, 'Iris-virginica']
[6.5, 3.0, 5.5, 1.8, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.2, 2.2, 4.5, 1.5, 'Iris-versicolor']
[5.8, 2.7, 5.1, 1.9, 'Iris-virginica']
[6.3, 2.3, 4.4, 1.3, 'Iris-versicolor']
[6.1, 2.6, 5.6, 1.4, 'Iris-virginica']
[6.1, 2.8, 4.7, 1.2, 'Iris-versicolor']
[6.1, 2.9, 4.7, 1.4, 'Iris-versicolor']
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
> predicted='Iris-versicolor', actual='Iris-virginica'
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
[6.0, 3.0, 4.8, 1.8, 'Iris-virginica']
[6.5, 2.8, 4.6, 1.5, 'Iris-versicolor']
[6.7, 3.0, 5.0, 1.7, 'Iris-versicolor']
[6.1, 2.9, 4.7, 1.4, 'Iris-versicolor']
[5.9, 3.0, 5.1, 1.8, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.9, 3.2, 5.7, 2.3, 'Iris-virginica']
[6.8, 3.2, 5.9, 2.3, 'Iris-virginica']
[6.8, 3.0, 5.5, 2.1, 'Iris-virginica']
[6.7, 3.3, 5.7, 2.5, 'Iris-virginica']
[6.5, 3.0, 5.5, 1.8, 'Iris-virginica']
[7.1, 3.0, 5.9, 2.1, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.1, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[6.0, 3.0, 4.8, 1.8, 'Iris-virginica']
[6.1, 2.9, 4.7, 1.4, 'Iris-versicolor']
[5.9, 3.0, 5.1, 1.8, 'Iris-virginica']
[6.5, 2.8, 4.6, 1.5, 'Iris-versicolor']
[6.0, 2.9, 4.5, 1.5, 'Iris-versicolor']
[6.1, 3.0, 4.6, 1.4, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-virginica'
[7.7, 3.8, 6.7, 2.2, 'Iris-virginica']
[7.6, 3.0, 6.6, 2.1, 'Iris-virginica']
[7.7, 3.0, 6.1, 2.3, 'Iris-virginica']
[7.2, 3.6, 6.1, 2.5, 'Iris-virginica']
[7.2, 3.2, 6.0, 1.8, 'Iris-virginica']
[7.7, 2.8, 6.7, 2.0, 'Iris-virginica']
[7.4, 2.8, 6.1, 1.9, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[6.1, 2.9, 4.7, 1.4, 'Iris-versicolor']
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
[6.7, 3.0, 5.0, 1.7, 'Iris-versicolor']
[6.1, 2.8, 4.7, 1.2, 'Iris-versicolor']
[5.9, 3.0, 5.1, 1.8, 'Iris-virginica']
[6.5, 2.8, 4.6, 1.5, 'Iris-versicolor']
> predicted='Iris-versicolor', actual='Iris-virginica'
[6.2, 3.4, 5.4, 2.3, 'Iris-virginica']
[6.3, 3.3, 6.0, 2.5, 'Iris-virginica']
[6.7, 3.3, 5.7, 2.5, 'Iris-virginica']
[6.8, 3.2, 5.9, 2.3, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.2, 'Iris-virginica']
[6.9, 3.2, 5.7, 2.3, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.1, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.5, 3.0, 5.5, 1.8, 'Iris-virginica']
[6.3, 2.9, 5.6, 1.8, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.1, 'Iris-virginica']
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
[6.8, 3.0, 5.5, 2.1, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.2, 'Iris-virginica']
[6.7, 3.0, 5.0, 1.7, 'Iris-versicolor']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.8, 3.0, 5.5, 2.1, 'Iris-virginica']
[6.7, 3.0, 5.2, 2.3, 'Iris-virginica']
[6.9, 3.2, 5.7, 2.3, 'Iris-virginica']
[6.5, 3.0, 5.5, 1.8, 'Iris-virginica']
[7.1, 3.0, 5.9, 2.1, 'Iris-virginica']
[6.8, 3.2, 5.9, 2.3, 'Iris-virginica']
[6.7, 3.3, 5.7, 2.5, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.7, 3.3, 5.7, 2.5, 'Iris-virginica']
[6.9, 3.2, 5.7, 2.3, 'Iris-virginica']
[6.8, 3.0, 5.5, 2.1, 'Iris-virginica']
[6.8, 3.2, 5.9, 2.3, 'Iris-virginica']
[6.7, 3.0, 5.2, 2.3, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.2, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.1, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.7, 3.0, 5.2, 2.3, 'Iris-virginica']
[6.8, 3.0, 5.5, 2.1, 'Iris-virginica']
[6.9, 3.2, 5.7, 2.3, 'Iris-virginica']
[6.7, 3.0, 5.0, 1.7, 'Iris-versicolor']
[6.7, 3.3, 5.7, 2.5, 'Iris-virginica']
[6.5, 3.0, 5.5, 1.8, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.2, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[5.8, 2.7, 5.1, 1.9, 'Iris-virginica']
[5.6, 2.8, 4.9, 2.0, 'Iris-virginica']
[5.9, 3.0, 5.1, 1.8, 'Iris-virginica']
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[6.0, 3.0, 4.8, 1.8, 'Iris-virginica']
[5.8, 2.8, 5.1, 2.4, 'Iris-virginica']
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
[5.8, 2.7, 5.1, 1.9, 'Iris-virginica']
[6.1, 3.0, 4.9, 1.8, 'Iris-virginica']
[6.0, 3.0, 4.8, 1.8, 'Iris-virginica']
[5.9, 3.0, 5.1, 1.8, 'Iris-virginica']
[6.5, 2.8, 4.6, 1.5, 'Iris-versicolor']
[6.7, 3.0, 5.0, 1.7, 'Iris-versicolor']
> predicted='Iris-virginica', actual='Iris-virginica'
[6.4, 2.7, 5.3, 1.9, 'Iris-virginica']
[6.5, 3.0, 5.5, 1.8, 'Iris-virginica']
[6.7, 3.0, 5.2, 2.3, 'Iris-virginica']
[6.7, 3.0, 5.0, 1.7, 'Iris-versicolor']
[6.8, 3.0, 5.5, 2.1, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.1, 'Iris-virginica']
[6.4, 2.8, 5.6, 2.2, 'Iris-virginica']
> predicted='Iris-virginica', actual='Iris-virginica'
Accuracy: 88.63636363636364%