In [3]:
%matplotlib inline
import pandas as pd
from SCB import SCB
import geopandas as gpd
In [4]:
scb = SCB('http://api.scb.se/OV0104/v1/doris/sv/ssd/BE/BE0101/BE0101H/FoddaK')
In [5]:
boros = gpd.GeoDataFrame.from_file('Kommuner_SCB/kommuner.shp')
In [13]:
boros['AREA'] = boros['AREA'] * 3
In [18]:
boros.loc[5].geometry
Out[18]:
In [19]:
p1 = gpd.Polygon([(0, 0), (1, 0), (1, 1)])
In [ ]:
In [ ]:
In [ ]:
In [3]:
scb.filter(code='Region', kind='item', values=['00'])
scb.filter(code='Tid', kind='all', values=['*'])
Out[3]:
In [13]:
df = scb.get()
In [14]:
df
Out[14]:
In [ ]:
In [5]:
scb2 = SCB('http://api.scb.se/OV0104/v1/doris/sv/ssd/OE/OE0101/Kommunalskatter2000')
In [6]:
scb2.filter(code='Region', kind='item', values=['00'])
scb2.filter(code='Tid', kind='all', values=['*'])
scb2.filter(code='ContentsCode', kind='item', values=['OE0101D1'])
Out[6]:
In [7]:
df2 = scb2.get()
In [8]:
df2
Out[8]:
In [9]:
df.set_index('region', inplace=True)
df2.set_index('region', inplace=True)
In [99]:
df2.columns = [x[-4:] for x in df2.columns]
In [102]:
df2 = df2.T
In [108]:
df2.rename(columns={'00 Riket': 'skattesats'}, inplace=True)
In [12]:
df
Out[12]:
In [ ]:
In [ ]: