In [18]:
function fill_twos(a)
    for i =1:length(a)
        a[i]=2
    end
end
function strange_twos(n)
    a=Array(rand(Bool) ? Int64 : Float64,n)
    fill_twos(a)
    print(a)
end
strange_twos(10)


[2,2,2,2,2,2,2,2,2,2]

In [17]:
x=[1 2 ; 3 4]
print(x)


[1 2
 3 4]

In [21]:
##Project _Euler 1:
## Description:If we list all the natural numbers below 10 that are multiples of 3 or 5, we get 3, 5, 6 and 9. 
#The sum of these multiples is 23.
#Find the sum of all the multiples of 3 or 5 below 1000.

function getMul(a,n)
  ##a is the array, n is the number upto which we need the sum ##
  i,j=0,0
  li=[]
    for j in 1:n
        if j%a[1] == 0 || j%a[2]==0
        push!(li,j)
      end
    end
  return li
end

function getSum(li)
  sum=0
    for i in li
        if i < li[length(li)]
            sum+=i
        end
  end
    return sum
end

function main(a,n)
  li=getMul(a,n)
    sum=getSum(li)
    @show(sum)
end
println("::the Project euler problem 1::")
main([3,5],1000)


::the Project euler problem 1::
Out[21]:
233168
sum = 233168

In [4]:
##Project _Euler 2:
## Description:Each new term in the Fibonacci sequence is generated by adding the previous two terms.
##By starting with 1 and 2, the first 10 terms will be:
##1, 2, 3, 5, 8, 13, 21, 34, 55, 89, ...
##By considering the terms in the Fibonacci sequence whose values do not exceed four million, 
##find the sum of the even-valued terms.


function getFib(k) 
    #n is the limit of the fibonacci series...
    a=[]
    i=0
    fib(n)=n<2 ? n : fib(n-1) + fib(n-2)
    while true
        i+=1
        m=fib(i)
        if m<k
            push!(a,m)
        else
            return a
        end
    end
end

function getFibEvenSum(n)
    li=getFib(n)
  sum=0
    for i in li
        if i%2 ==0 
            sum+=i
        end
    end
    return sum    
end
function main()
    println(getFibEvenSum(4000000))
end
println("::the Project euler problem 2::")
main()


::the Project euler problem 2::
4613732

In [10]:
##Project _Euler 3:
## Description:The prime factors of 13195 are 5, 7, 13 and 29.
##What is the largest prime factor of the number 600851475143 ?

function getFactor(num)
    a=[]
    for i in 1:num
        if num%i ==0 
            push!(a,i)
        end
    end
    return a ### returns the factors of the given numbers.
end

function getPrimeNum(li)
    cnt=0
    l=[]
    for i in li
        for j in 2:i-1
            if i%j != 0
                cnt+=1
            end
        end
        if cnt == 0
            push!(l,i)
        end
    end
    return l ## returns the prime numbers in the given list.
end
function main()
    li=getFactor(600851475143)
    p=getPrimeNum(li)
    larg=maximum(p)
    println(large)
end
println("::the Project euler problem 3::")
main()


::the Project euler problem 3::
LoadError: InterruptException:
while loading In[10], in expression starting on line 41

 in getFactor at In[10]:8
 in main at In[10]:35

In [27]:
fib(n) = n < 2 ? n : fib(n-1) + fib(n-2)
for i in 1:10 println(fib(i)) end


1
1
2
3
5
8
13
21
34
55