Train on 60000 samples, validate on 10000 samples
Epoch 1/10
60000/60000 [==============================] - 4s 59us/sample - loss: 0.1396 - accuracy: 0.9481 - val_loss: 0.4028 - val_accuracy: 0.8866
Epoch 2/10
60000/60000 [==============================] - 4s 68us/sample - loss: 0.1360 - accuracy: 0.9491 - val_loss: 0.4250 - val_accuracy: 0.8854
Epoch 3/10
60000/60000 [==============================] - 4s 68us/sample - loss: 0.1324 - accuracy: 0.9499 - val_loss: 0.4453 - val_accuracy: 0.8875
Epoch 4/10
60000/60000 [==============================] - 4s 69us/sample - loss: 0.1307 - accuracy: 0.9505 - val_loss: 0.4311 - val_accuracy: 0.8859
Epoch 5/10
60000/60000 [==============================] - 4s 73us/sample - loss: 0.1281 - accuracy: 0.9513 - val_loss: 0.4369 - val_accuracy: 0.8830
Epoch 6/10
60000/60000 [==============================] - 4s 68us/sample - loss: 0.1253 - accuracy: 0.9529 - val_loss: 0.4291 - val_accuracy: 0.8850
Epoch 7/10
60000/60000 [==============================] - 4s 59us/sample - loss: 0.1231 - accuracy: 0.9541 - val_loss: 0.4488 - val_accuracy: 0.8847
Epoch 8/10
60000/60000 [==============================] - 4s 61us/sample - loss: 0.1216 - accuracy: 0.9548 - val_loss: 0.4614 - val_accuracy: 0.8821
Epoch 9/10
60000/60000 [==============================] - 4s 72us/sample - loss: 0.1176 - accuracy: 0.9559 - val_loss: 0.4667 - val_accuracy: 0.8814
Epoch 10/10
60000/60000 [==============================] - 4s 65us/sample - loss: 0.1167 - accuracy: 0.9570 - val_loss: 0.4593 - val_accuracy: 0.8854