In [ ]:
from nltk.corpus import stopwords
import string

# load doc into memory
def load_doc(filename):
    # open the file as read only
    file = open(filename, 'r')
    # read all text
    text = file.read()
    # close the file
    file.close()
    return text

# turn a doc into clean tokens
def clean_doc(doc):
    # split into tokens by white space
    tokens = doc.split()
    # remove punctuation from each token
    table = str.maketrans('', '', string.punctuation)
    tokens = [w.translate(table) for w in tokens]
    # remove remaining tokens that are not alphabetic
    tokens = [word for word in tokens if word.isalpha()]
    # filter out stop words
    stop_words = set(stopwords.words('english'))
    tokens = [w for w in tokens if not w in stop_words]
    # filter out short tokens
    tokens = [word for word in tokens if len(word) > 1]
    return tokens

# load the document
filename = 'txt_sentoken/pos/cv000_29590.txt'
text = load_doc(filename)
tokens = clean_doc(text)
print(tokens)