OLS Regression Results
==============================================================================
Dep. Variable: y R-squared: 0.992
Model: OLS Adj. R-squared: 0.992
Method: Least Squares F-statistic: 1.593e+05
Date: Wed, 08 Jul 2015 Prob (F-statistic): 0.00
Time: 19:24:48 Log-Likelihood: 7047.7
No. Observations: 1256 AIC: -1.409e+04
Df Residuals: 1254 BIC: -1.408e+04
Df Model: 1
Covariance Type: nonrobust
==============================================================================
coef std err t P>|t| [95.0% Conf. Int.]
------------------------------------------------------------------------------
const -0.0002 2.51e-05 -8.615 0.000 -0.000 -0.000
x1 -0.3340 0.001 -399.144 0.000 -0.336 -0.332
==============================================================================
Omnibus: 765.986 Durbin-Watson: 2.533
Prob(Omnibus): 0.000 Jarque-Bera (JB): 473228.381
Skew: -1.441 Prob(JB): 0.00
Kurtosis: 98.049 Cond. No. 33.5
==============================================================================
Warnings:
[1] Standard Errors assume that the covariance matrix of the errors is correctly specified.