In [1]:
import predictor as pr
import pandas as pd
from sklearn import linear_model

In [2]:
import os

In [3]:
names=[]
for file in os.listdir():
    if file.endswith('.csv'):
        names.append(file)

In [7]:
names[45]


Out[7]:
'UT.csv'

In [2]:
data=pd.read_csv('WA.csv')

In [3]:
data


Out[3]:
Year HYTCP WYTCP SOEGP NUETP GDP CLPRB EMFDB ENPRP NGMPB PAPRB PCP ZNDX Nominal Price Inflation Adjusted Price
0 1960.0 34349.0 0.0 0.0 0.0 NaN 3713.0 0.00000 0.00000 0.0 5.8 42.38 0.13 2.91 23.72
1 1961.0 37360.0 0.0 0.0 0.0 NaN 3111.0 0.00000 0.00000 0.0 0.0 48.75 5.43 2.85 22.96
2 1962.0 39553.0 0.0 0.0 0.0 NaN 3827.0 0.00000 0.00000 0.0 0.0 40.23 -0.71 2.85 22.69
3 1963.0 43117.0 0.0 0.0 0.0 11171.0 3094.0 0.00000 0.00000 0.0 0.0 39.34 -3.35 2.91 22.90
4 1964.0 47036.0 0.0 0.0 0.0 11392.0 1107.0 0.00000 0.00000 0.0 0.0 45.11 6.09 3.00 23.30
5 1965.0 49295.0 0.0 0.0 0.0 12330.0 895.0 0.00000 0.00000 0.0 0.0 36.53 -8.67 3.01 23.00
6 1966.0 52821.0 989.0 0.0 0.0 14270.0 960.0 0.00000 0.00000 0.0 0.0 41.66 -2.74 3.10 23.01
7 1967.0 58899.0 2015.0 0.0 0.0 15659.0 960.0 0.00000 0.00000 0.0 0.0 42.83 -4.42 3.12 22.53
8 1968.0 64336.0 3903.0 0.0 0.0 17014.0 2899.0 0.00000 0.00000 0.0 0.0 49.96 10.12 3.18 21.99
9 1969.0 67541.0 3667.0 0.0 0.0 18091.0 944.0 0.00000 0.00000 0.0 0.0 37.24 -6.95 3.32 21.81
10 1970.0 69525.0 2614.0 0.0 0.0 18112.0 602.0 0.00000 0.00000 0.0 0.0 42.24 -4.34 3.39 21.04
11 1971.0 71589.0 2553.0 0.0 0.0 18761.0 18470.0 0.00000 0.00000 0.0 0.0 48.87 9.64 3.60 21.42
12 1972.0 75883.0 2919.0 0.0 0.0 20483.0 42902.0 0.00000 0.00000 0.0 0.0 49.95 11.60 3.60 20.74
13 1973.0 69016.0 4432.0 0.0 0.0 23342.0 52974.0 0.00000 0.00000 0.0 0.0 41.42 -4.63 4.75 25.56
14 1974.0 82491.0 3889.0 0.0 0.0 26240.0 63390.0 0.00000 0.00000 0.0 0.0 47.30 4.63 9.35 45.60
15 1975.0 83708.0 3308.0 0.0 0.0 29282.0 60636.0 0.00000 0.00000 0.0 0.0 50.93 10.82 12.21 54.61
16 1976.0 94457.0 2405.0 0.0 0.0 32735.0 66565.0 0.00000 0.00000 0.0 0.0 33.18 -7.35 13.10 55.46
17 1977.0 66617.0 4315.0 0.0 0.0 36826.0 81923.0 0.00000 0.00000 0.0 0.0 41.56 0.12 14.40 57.20
18 1978.0 88906.0 4140.0 0.0 0.0 42668.0 76269.0 0.00000 0.00000 0.0 0.0 35.99 -3.08 14.95 55.24
19 1979.0 79511.0 3613.0 0.0 0.0 48713.0 82166.0 0.00000 0.00000 0.0 0.0 38.21 -6.98 25.10 82.51
20 1980.0 83111.0 2041.0 0.0 0.0 52682.0 83268.0 0.00000 0.00000 0.0 0.0 44.74 4.14 37.42 109.51
21 1981.0 93701.0 2042.0 0.0 0.0 58918.0 75087.0 87.95543 13.67742 0.0 0.0 43.80 6.59 35.75 94.83
22 1982.0 87705.0 3631.0 0.0 0.0 62933.0 67456.0 293.39871 45.78573 0.0 0.0 47.39 5.16 31.83 79.50
23 1983.0 85564.0 3494.0 0.0 0.0 67949.0 63034.0 551.20453 86.33290 0.0 0.0 51.84 12.22 29.08 70.34
24 1984.0 83431.0 5313.0 0.0 0.0 74170.0 62726.0 658.12346 103.44214 0.0 0.0 46.97 8.90 28.75 66.67
25 1985.0 77053.0 8038.0 0.0 0.0 77341.0 71895.0 705.63778 111.30457 0.0 0.0 29.99 -12.88 26.92 60.27
26 1986.0 78960.0 8439.0 0.0 0.0 84015.0 74536.0 745.81485 118.06341 0.0 0.0 41.63 -3.08 14.44 31.72
27 1987.0 69827.0 5528.0 0.0 0.0 90325.0 72073.0 815.28221 129.52203 0.0 0.0 34.39 -13.14 17.75 37.62
28 1988.0 68508.0 6000.0 0.0 0.0 99051.0 84209.0 817.79657 130.38967 0.0 0.0 39.95 -2.79 14.87 30.33
29 1989.0 71528.0 6118.0 0.0 0.0 108064.0 81690.0 770.70820 123.32352 0.0 0.0 36.56 -7.57 18.33 35.60
30 1990.0 87467.0 5742.0 0.0 0.0 118640.0 81056.0 645.53862 103.65362 0.0 0.0 50.93 9.27 23.19 42.62
31 1991.0 89342.0 4230.0 0.0 0.0 125895.0 82320.0 754.71555 121.62240 0.0 0.0 40.48 0.06 20.20 35.73
32 1992.0 68325.0 5692.0 0.0 0.0 134469.0 83183.0 671.61402 108.62593 0.0 0.0 37.13 -12.79 19.25 33.04
33 1993.0 67312.0 7135.0 0.0 0.0 142500.0 74932.0 730.51855 118.56642 0.0 0.0 33.68 -3.94 16.75 27.94
34 1994.0 65575.0 6740.0 0.0 0.0 150805.0 77210.0 697.87933 113.68483 0.0 0.0 42.51 -3.15 15.66 25.44
35 1995.0 82500.0 6942.0 0.0 0.0 155069.0 78433.0 598.81009 97.89021 0.0 0.0 51.09 7.43 16.75 26.48
36 1996.0 98518.0 5588.0 0.0 0.0 166540.0 72089.0 217.46874 35.67635 0.0 0.0 54.95 14.28 20.46 31.40
37 1997.0 104171.0 6244.0 0.0 0.0 179639.0 71253.0 336.25741 55.35976 0.0 0.0 51.07 15.06 18.64 27.98
38 1998.0 79815.0 6916.0 0.0 0.0 209988.0 72809.0 341.71558 56.45877 0.0 0.0 48.61 1.89 11.91 17.60
39 1999.0 96989.0 6086.0 0.0 0.0 230752.0 63996.0 268.28949 44.39189 0.0 0.0 49.30 7.73 16.56 23.89
40 2000.0 80263.0 8605.0 0.0 0.0 237381.0 66520.0 265.89493 44.05283 0.0 0.0 34.21 -7.78 27.39 38.29
41 2001.0 54734.0 8250.0 0.0 0.0 239397.0 72134.0 232.12790 38.50841 0.0 0.0 39.16 -2.94 23.00 31.30
42 2002.0 78167.0 9048.0 0.0 417.0 248879.0 91334.0 238.25380 39.57612 0.0 0.0 36.51 -8.24 22.81 30.52
43 2003.0 71757.0 7615.0 0.0 604.0 258388.0 97712.0 191.41752 31.93656 0.0 0.0 43.48 -5.87 27.69 36.26
44 2004.0 71576.0 8982.0 0.0 737.0 270385.0 89958.0 96.51025 16.17340 0.0 0.0 37.65 -7.25 37.66 47.98
45 2005.0 72075.0 8242.0 0.0 498.0 296403.0 82684.0 61.58859 10.36541 0.0 0.0 38.64 -3.40 50.04 61.65
46 2006.0 82008.0 9328.0 0.0 1038.0 316801.0 40267.0 0.00000 0.00000 0.0 0.0 50.26 3.08 58.30 69.64
47 2007.0 78829.0 8109.0 0.0 2438.0 345971.0 0.0 0.00000 0.00000 0.0 0.0 40.24 -4.88 64.20 74.44
48 2008.0 77637.0 9270.0 0.0 3657.0 354210.0 0.0 0.00000 0.00000 0.0 0.0 37.39 -6.55 91.48 102.00
49 2009.0 72933.0 6634.0 0.0 3572.0 348465.0 0.0 0.00000 0.00000 0.0 0.0 39.90 -4.19 53.48 59.93
50 2010.0 68288.0 9241.0 0.0 4745.0 359694.0 0.0 NaN NaN NaN NaN 47.33 9.62 71.21 78.65
51 2011.0 91818.0 4806.0 1.0 6262.0 370149.0 0.0 NaN NaN NaN NaN 43.82 4.94 87.04 93.21
52 2012.0 89464.0 9334.0 1.0 6600.0 388922.0 0.0 NaN NaN NaN NaN 52.87 14.65 86.46 90.72
53 2013.0 78155.0 8461.0 1.0 7004.0 404540.0 0.0 NaN NaN NaN NaN 35.68 -4.02 91.17 94.25
54 2014.0 79463.0 9497.0 1.0 7268.0 423795.0 0.0 NaN NaN NaN NaN 48.81 5.31 85.60 87.05
55 2015.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 43.25 -9.98 41.85 42.53
56 2016.0 NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 49.44 0.85 NaN NaN

In [4]:
data=pr.future_df(data,range(2017,2021))

In [ ]: