In [2]:
using Pkg
In [3]:
Pkg.add("SymPy")
Pkg.build("SymPy")
In [4]:
using SymPy
In [1]:
using SymPy
In [2]:
@syms a b c
a,b,c = Sym("a,b,c")
Out[2]:
In [3]:
u = symbols("u")
x = symbols("x", real=true)
y1, y2 = symbols("y1, y2", positive=true)
alpha = symbols("alpha", integer=true, positive=true)
Out[3]:
In [4]:
x,y,z = symbols("x,y,z")
ex = x + y + z
subs(ex, (x,1), (y,pi))
Out[4]:
In [5]:
ex |> subs(x, 1) |> subs(y, π)
Out[5]:
In [6]:
N(PI, 100)
Out[6]:
In [7]:
N(π, 100)
In [8]:
π == PI
Out[8]:
In [9]:
solve(cos(x) - sin(x))
Out[9]:
In [10]:
x, h = symbols("x,h")
f(x) = exp(x)*sin(x)
limit((f(x+h) - f(x)) / h, h, 0)
Out[10]:
In [11]:
diff(f(x), x)
Out[11]:
In [12]:
# using PyCall
# @pyimport sympy
# @pyimport mpmath
# @pyimport sys
# sys.modules["sympy.mpmath"] = mpmath
In [13]:
# locals = PyDict(Dict(
# :x => sympy.symbols("x"),
# :Integral => sympy.Integral,
# :cos => sympy.cos,
# :exp => sympy.exp
# ))
# PyCall.pyeval_("""
# Integral(cos(x)*exp(x), x)
# """, locals, PyCall.Py_eval_input)
In [ ]: