In [1]:
import pandas as pd
import numpy as np
%matplotlib inline
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
pd.set_option('display.precision', 4)
np.set_printoptions(precision=3)
In [12]:
raw_scores = pd.read_csv('../results_olda_reduced.csv', index_col='track_id')
In [13]:
del raw_scores['Unnamed: 0']
In [14]:
scores = raw_scores.dropna()
In [15]:
scores.head(5)
Out[15]:
In [16]:
scores.columns = ['T_F @ 10','T_F @ 15', 'T_F @ 30', 'T_P @ 10', 'T_P @ 15', 'T_P @ 30', 'T_R @ 10', 'T_R @ 15', 'T_R @ 30']
In [17]:
scores = scores[['T_F @ 10', 'T_P @ 10', 'T_R @ 10',
'T_F @ 15', 'T_P @ 15', 'T_R @ 15',
'T_F @ 30', 'T_P @ 30', 'T_R @ 30']]
In [18]:
scores.describe()
Out[18]:
In [21]:
sns.set_style('darkgrid')
plt.figure(figsize=(6,3))
sns.boxplot(scores[['T_F @ 10', 'T_F @ 15', 'T_F @ 30']], color=sns.color_palette('Greens')[3])
plt.ylabel('$\mathcal{T}_F$')
plt.xticks([1,2,3], [10, 15, 30])
plt.ylim([0, 1])
plt.xlabel('$w$ (seconds)')
plt.tight_layout()
plt.savefig('../paper/figs/salami-olda-stats.pdf', pad_inches=0.0, bbox_inches='tight')
!convert ../paper/figs/salami-olda-stats.pdf ../paper/figs/salami-olda-stats.eps
In [20]:
sns.set_style('darkgrid')
plt.figure(figsize=(6,3))
#sns.boxplot(scores[['T_F @ 10', 'T_F @ 15', 'T_F @ 30']], color=sns.color_palette('Greens')[3])
sns.boxplot(scores)#, color=sns.color_palette('Greens')[3])
#plt.ylabel('$\mathcal{T}_F$')
#plt.xticks([1,2,3], [10, 15, 30])
#plt.xlabel('$w$ (seconds)')
plt.tight_layout()
#plt.savefig('../paper/figs/salami-olda-stats.pdf', pad_inches=0.0, bbox_inches='tight')
#!convert ../paper/figs/salami-olda-stats.pdf ../paper/figs/salami-olda-stats.eps