In [1]:
import pandas as pd
import numpy as np
%matplotlib inline
import seaborn as sns
import matplotlib.pyplot as plt
sns.set()
pd.set_option('display.precision', 4)
np.set_printoptions(precision=3)

In [12]:
raw_scores = pd.read_csv('../results_olda_reduced.csv', index_col='track_id')

In [13]:
del raw_scores['Unnamed: 0']

In [14]:
scores = raw_scores.dropna()

In [15]:
scores.head(5)


Out[15]:
t_measure10 t_measure15 t_measure30 t_precision10 t_precision15 t_precision30 t_recall10 t_recall15 t_recall30
track_id
SALAMI_10 0.337 0.354 0.213 0.242 0.244 0.126 0.558 0.644 0.698
SALAMI_100 0.387 0.503 0.520 0.317 0.438 0.407 0.496 0.592 0.721
SALAMI_1000 0.374 0.377 0.394 0.331 0.306 0.290 0.430 0.491 0.611
SALAMI_1002 0.430 0.418 0.054 0.361 0.317 0.028 0.531 0.614 0.689
SALAMI_1004 0.192 0.162 0.120 0.119 0.093 0.065 0.498 0.640 0.791

In [16]:
scores.columns = ['T_F @ 10','T_F @ 15', 'T_F @ 30', 'T_P @ 10', 'T_P @ 15', 'T_P @ 30', 'T_R @ 10', 'T_R @ 15', 'T_R @ 30']

In [17]:
scores = scores[['T_F @ 10',  'T_P @ 10', 'T_R @ 10',
                 'T_F @ 15',  'T_P @ 15', 'T_R @ 15',
                 'T_F @ 30', 'T_P @ 30', 'T_R @ 30']]

In [18]:
scores.describe()


Out[18]:
T_F @ 10 T_P @ 10 T_R @ 10 T_F @ 15 T_P @ 15 T_R @ 15 T_F @ 30 T_P @ 30 T_R @ 30
count 738.000 738.000 738.000 738.000 738.000 738.000 738.000 738.000 738.000
mean 0.363 0.344 0.466 0.391 0.333 0.570 0.367 0.282 0.681
std 0.149 0.194 0.092 0.156 0.180 0.090 0.173 0.176 0.099
min 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
25% 0.282 0.207 0.420 0.300 0.208 0.529 0.244 0.149 0.635
50% 0.381 0.336 0.462 0.405 0.322 0.571 0.357 0.247 0.689
75% 0.462 0.461 0.512 0.495 0.446 0.621 0.491 0.391 0.739
max 0.820 1.000 0.857 0.817 0.986 0.855 0.871 0.935 0.922

In [21]:
sns.set_style('darkgrid')
plt.figure(figsize=(6,3))
sns.boxplot(scores[['T_F @ 10', 'T_F @ 15', 'T_F @ 30']], color=sns.color_palette('Greens')[3])
plt.ylabel('$\mathcal{T}_F$')
plt.xticks([1,2,3], [10, 15, 30])
plt.ylim([0, 1])
plt.xlabel('$w$ (seconds)')
plt.tight_layout()
plt.savefig('../paper/figs/salami-olda-stats.pdf', pad_inches=0.0, bbox_inches='tight')
!convert ../paper/figs/salami-olda-stats.pdf ../paper/figs/salami-olda-stats.eps



In [20]:
sns.set_style('darkgrid')
plt.figure(figsize=(6,3))
#sns.boxplot(scores[['T_F @ 10', 'T_F @ 15', 'T_F @ 30']], color=sns.color_palette('Greens')[3])
sns.boxplot(scores)#, color=sns.color_palette('Greens')[3])
#plt.ylabel('$\mathcal{T}_F$')
#plt.xticks([1,2,3], [10, 15, 30])
#plt.xlabel('$w$ (seconds)')
plt.tight_layout()
#plt.savefig('../paper/figs/salami-olda-stats.pdf', pad_inches=0.0, bbox_inches='tight')
#!convert ../paper/figs/salami-olda-stats.pdf ../paper/figs/salami-olda-stats.eps