In [1]:
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from statsmodels.tsa.seasonal import seasonal_decompose
%matplotlib inline
 
plt.rcParams['figure.figsize']=(20,10)
plt.style.use('ggplot')

In [3]:
data = pd.read_csv('DEOK_hourly.csv')
data['Datetime']=pd.to_datetime(data['Datetime'])
data.set_index('Datetime', inplace=True)

In [4]:
data.head()


Out[4]:
DEOK_MW
Datetime
2012-12-31 01:00:00 2945.0
2012-12-31 02:00:00 2868.0
2012-12-31 03:00:00 2812.0
2012-12-31 04:00:00 2812.0
2012-12-31 05:00:00 2860.0

In [5]:
data.plot()


Out[5]:
<matplotlib.axes._subplots.AxesSubplot at 0x7efbc832db50>

In [7]:
decomposed = seasonal_decompose(data['DEOK_MW'], model='additive', freq=1)
x =decomposed.plot() #See note below about this



In [14]:
data['stationary']=data['AEP_MW'].diff()

In [15]:
data.head()


Out[15]:
AEP_MW stationary
Datetime
2004-12-31 01:00:00 13478.0 NaN
2004-12-31 02:00:00 12865.0 -613.0
2004-12-31 03:00:00 12577.0 -288.0
2004-12-31 04:00:00 12517.0 -60.0
2004-12-31 05:00:00 12670.0 153.0

In [16]:
data['stationary'].plot()


Out[16]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f2d84eda810>

In [17]:
decomposed = seasonal_decompose(data['stationary'].dropna(), model='additive', freq=1)
x =decomposed.plot() #See note below about this



In [18]:
pd.tools.plotting.lag_plot(data['AEP_MW'])


/vagrant/pythondata/env/lib/python2.7/site-packages/ipykernel_launcher.py:1: FutureWarning: 'pandas.tools.plotting.lag_plot' is deprecated, import 'pandas.plotting.lag_plot' instead.
  """Entry point for launching an IPython kernel.
Out[18]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f2d7f394b90>

In [19]:
pd.tools.plotting.lag_plot(data['stationary'])


/vagrant/pythondata/env/lib/python2.7/site-packages/ipykernel_launcher.py:1: FutureWarning: 'pandas.tools.plotting.lag_plot' is deprecated, import 'pandas.plotting.lag_plot' instead.
  """Entry point for launching an IPython kernel.
Out[19]:
<matplotlib.axes._subplots.AxesSubplot at 0x7f2d8c67c890>

In [ ]: