In [1]:
import pandas as pd
import numpy as np
import matplotlib.pylab as plt
from statsmodels.tsa.seasonal import seasonal_decompose
%matplotlib inline
plt.rcParams['figure.figsize']=(20,10)
plt.style.use('ggplot')
In [3]:
data = pd.read_csv('DEOK_hourly.csv')
data['Datetime']=pd.to_datetime(data['Datetime'])
data.set_index('Datetime', inplace=True)
In [4]:
data.head()
Out[4]:
In [5]:
data.plot()
Out[5]:
In [7]:
decomposed = seasonal_decompose(data['DEOK_MW'], model='additive', freq=1)
x =decomposed.plot() #See note below about this
In [14]:
data['stationary']=data['AEP_MW'].diff()
In [15]:
data.head()
Out[15]:
In [16]:
data['stationary'].plot()
Out[16]:
In [17]:
decomposed = seasonal_decompose(data['stationary'].dropna(), model='additive', freq=1)
x =decomposed.plot() #See note below about this
In [18]:
pd.tools.plotting.lag_plot(data['AEP_MW'])
Out[18]:
In [19]:
pd.tools.plotting.lag_plot(data['stationary'])
Out[19]:
In [ ]: