In [1]:
import pandas as pd
import numpy as np
In [2]:
df=pd.read_hdf('./data/tables_of_fgm.h5')
df.columns
Out[2]:
In [3]:
# Plotly
import plotly.offline as pyoff
import plotly.plotly as py
import plotly.tools as tls
In [35]:
list(set(df['zeta']))[5]
Out[35]:
In [55]:
# df_s=df.sample(frac=0.02)
df_s=df.loc[df['zeta']==list(set(df['zeta']))[4]].sample(frac=0.1)
# sp='CH2OH'
sp='PVs'
fig_db = {
'data': [
{'x': df_s['f'],
'y': df_s['pv'],
'z': df_s[sp],
'type':'scatter3d',
'mode': 'markers',
'marker':{
'size':1
}
}
],
'layout': {
'scene':{
'xaxis':{'title':'mixture fraction'},
'yaxis': {'title': "progress variable"},
'zaxis': {'title': sp}
}
}
}
pyoff.iplot(fig_db, filename='multiple-scatter')
In [5]:
df_test=pd.read_hdf('sim_check.h5',key='test')
df_pred=pd.read_hdf('sim_check.h5',key='pred')
In [6]:
zeta_level=list(set(df_test['zeta']))
zeta_level.sort()
In [9]:
df_t=df_test.loc[df_test['zeta']==zeta_level[1]].sample(frac=0.5)
# df_p=df_pred.loc[df_pred['zeta']==zeta_level[1]].sample(frac=0.1)
df_p=df_pred.loc[df_t.index]
sp='PVs'
error=df_p[sp]-df_t[sp]
fig_db = {
'data': [
{'name':'test',
'x': df_t['f'],
'y': df_t['pv'],
'z': df_t[sp],
'type':'scatter3d',
'mode': 'markers',
'marker':{
'size':1
}
},
{'name':'predict',
'x': df_p['f'],
'y': df_p['pv'],
'z': df_p[sp],
'type':'scatter3d',
'mode': 'markers',
'marker':{
'size':1
},
},
{'name':'error',
'x': df_p['f'],
'y': df_p['pv'],
'z': error,
'type':'scatter3d',
'mode': 'markers',
'marker':{
'size':1
},
}
],
'layout': {
'scene':{
'xaxis':{'title':'mixture fraction'},
'yaxis': {'title': "progress variable"},
'zaxis': {'title': sp}
}
}
}
pyoff.iplot(fig_db, filename='multiple-scatter')
In [9]:
import matplotlib.pyplot as plt
In [58]:
plt.scatter(df_pred[sp],df_test[sp])
Out[58]:
In [59]:
from scipy.interpolate import griddata
df_new=df_t
x=df_new['f']
y=df_new['pv']
z=df_new[sp]
resX=200
resY=200
xi = np.linspace(min(x), max(x), resX)
yi = np.linspace(min(y), max(y), resY)
grid_x,grid_y = np.meshgrid(xi,yi)
Z = griddata(df_new[['f','pv']],df_new[sp], (grid_x, grid_y), method='linear')
In [60]:
import plotly.graph_objs as go
data=[
go.Contour(
z=np.nan_to_num(Z),
x=xi,
y=yi
)
]
pyoff.iplot(data)
In [61]:
df_new=df_p
x=df_new['f']
y=df_new['pv']
z=df_new[sp]
resX=200
resY=200
xi = np.linspace(min(x), max(x), resX)
yi = np.linspace(min(y), max(y), resY)
grid_x,grid_y = np.meshgrid(xi,yi)
Z = griddata(df_new[['f','pv']],df_new[sp], (grid_x, grid_y), method='linear')
import plotly.graph_objs as go
data=[
go.Contour(
z=np.nan_to_num(Z),
x=xi,
y=yi
)
]
pyoff.iplot(data)
In [ ]: