In [1]:
import ensembles as en
import pandas as pd
In [2]:
Data = pd.read_csv('/home/prajwal/Desktop/bank-additional/bank-additional-full.csv',delimiter=';',header=0)
In [3]:
data_test = en.data_import(Data,label_output='y')
In [4]:
%%time
data_test = en.data_import(Data,label_output='y')
en.metric_set('roc_auc_score')
param_gb_1 = en.parameter_set_gradient_boosting(eval_metric = ['auc'], objective = ['binary:logistic'])
param_dt = en.parameter_set_decision_tree(max_depth = [6])
param_rf = en.parameter_set_random_forest()
param_lr = en.parameter_set_linear_regression()
param_l2 = en.parameter_set_logistic_regression()
param_l1 = en.parameter_set_logistic_regression(penalty = ['l1'])
param_gb_2 = en.parameter_set_gradient_boosting(eval_metric = ['auc'], objective = ['binary:logistic'],
booster=['gblinear'], eta = [0.1,0.3,0.5,0.7],
hyper_parameter_optimisation = True)
en.train_base_models(['gradient_boosting','decision_tree',\
'random_forest','linear_regression','logistic_regression',\
'logistic_regression','gradient_boosting'],[param_gb_1, param_dt, param_rf
,param_lr, param_l2, param_l1,
param_gb_2])
weights = en.assign_weights(weights = 'default', hyper_parameter_optimisation = True)
en.train_ensemble_models(['linear_regression', 'gradient_boosting'], [param_lr, param_gb_1],
['gradient_boosting','logistic_regression'],[param_gb_1,param_l2],
perform_weighted_average = True, weights_list = weights)
en.test_models(data_test)
In [ ]: