Train on 60000 samples, validate on 10000 samples
Epoch 1/12
60000/60000 [==============================] - 124s - loss: 0.2407 - acc: 0.9261 - val_loss: 0.0632 - val_acc: 0.9799
Epoch 2/12
60000/60000 [==============================] - 129s - loss: 0.0904 - acc: 0.9728 - val_loss: 0.0531 - val_acc: 0.9826
Epoch 3/12
60000/60000 [==============================] - 124s - loss: 0.0682 - acc: 0.9792 - val_loss: 0.0380 - val_acc: 0.9878
Epoch 4/12
60000/60000 [==============================] - 123s - loss: 0.0569 - acc: 0.9828 - val_loss: 0.0324 - val_acc: 0.9888
Epoch 5/12
60000/60000 [==============================] - 132s - loss: 0.0501 - acc: 0.9848 - val_loss: 0.0348 - val_acc: 0.9880
Epoch 6/12
60000/60000 [==============================] - 125s - loss: 0.0443 - acc: 0.9863 - val_loss: 0.0276 - val_acc: 0.9907
Epoch 7/12
60000/60000 [==============================] - 136s - loss: 0.0392 - acc: 0.9879 - val_loss: 0.0312 - val_acc: 0.9903
Epoch 8/12
60000/60000 [==============================] - 144s - loss: 0.0364 - acc: 0.9881 - val_loss: 0.0281 - val_acc: 0.9906
Epoch 9/12
60000/60000 [==============================] - 140s - loss: 0.0335 - acc: 0.9895 - val_loss: 0.0317 - val_acc: 0.9901
Epoch 10/12
60000/60000 [==============================] - 128s - loss: 0.0312 - acc: 0.9905 - val_loss: 0.0266 - val_acc: 0.9914
Epoch 11/12
60000/60000 [==============================] - 128s - loss: 0.0282 - acc: 0.9913 - val_loss: 0.0292 - val_acc: 0.9909
Epoch 12/12
60000/60000 [==============================] - 137s - loss: 0.0266 - acc: 0.9914 - val_loss: 0.0317 - val_acc: 0.9903
Test score: 0.0316715610399
Test accuracy: 0.9903
1 loop, best of 1: 26min 24s per loop