In [3]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os

In [4]:
def prb2logit(x):
    return np.log(x/(1.-x))
def logit2prb(x):
    return 1./(1+np.exp(-x))

In [12]:
df = pd.DataFrame()
df['gb'] = pd.read_csv('../submissions/141107-predict.4.csv', index_col='clip', squeeze=True)
df['rf'] = pd.read_csv('../submissions/141107-predict.2.csv', index_col='clip', squeeze=True)
df['best'] = pd.read_csv('../submissions/141106-predict.3.csv', index_col='clip', squeeze=True)

In [13]:
df['preictal'] = prb2logit(df['gb'])
df['preictal'] = logit2prb(0.1*df['preictal'])

In [14]:
df['preictal'].to_csv('../submissions/141107-predict.11.csv', header=True)

In [17]:
pd.scatter_matrix(df[['best','rf','preictal']]);



In [16]: