In [3]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os
In [4]:
def prb2logit(x):
return np.log(x/(1.-x))
def logit2prb(x):
return 1./(1+np.exp(-x))
In [12]:
df = pd.DataFrame()
df['gb'] = pd.read_csv('../submissions/141107-predict.4.csv', index_col='clip', squeeze=True)
df['rf'] = pd.read_csv('../submissions/141107-predict.2.csv', index_col='clip', squeeze=True)
df['best'] = pd.read_csv('../submissions/141106-predict.3.csv', index_col='clip', squeeze=True)
In [13]:
df['preictal'] = prb2logit(df['gb'])
df['preictal'] = logit2prb(0.1*df['preictal'])
In [14]:
df['preictal'].to_csv('../submissions/141107-predict.11.csv', header=True)
In [17]:
pd.scatter_matrix(df[['best','rf','preictal']]);
In [16]: