We will use distance between test segments computed in 140926-test-signal-jump to find sequence of segments that were likely together. Armed with this fact we can take the individual proababilities of each segment and combine it to form one probability that will be used to update the probabilites of all the segments in the sequence

the sequences are found using a greedy algoirthm that stops when a conflict is detected

the probabilities of segments should be combined by multiplying them, however this did not work well. Probably because the probabilites are not well calibrated. Taking the mean had a better effect.

Suppose you have a chain of segments: $i \in 1 \ldots N $

Each segment predicts a seizure $P_i$ or not $Q_i=1-P_i$

if a chain is negative then the probability is $\prod Q_i$ if a chain is positive the situation is more complex. There is a chance $U$ that a seizure detection even has happened and $V=1-U$ it did not. I estimate $U$ to be around $0.2$. So the probability is $\prod ( U * P_i + V*Q_i)$

or $\prod Q_i \times \Pi ( U \frac{P_i}{Q_i} +V )$

the ratio of positive to negative probability is just $r = \prod ( U \frac{P_i}{Q_i} +V )$ and probability is $1/(1+1/r)$


In [46]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os

individual segment probablility file


In [47]:
FNAME_IN = '../submissions/141107-predict.15.csv'

updated probability file


In [48]:
FNAME_OUT = '../submissions/141107-predict.16.csv'

In [49]:
!head {FNAME_IN}


clip,preictal
Dog_1_test_segment_0001.mat,0.41382776305781244
Dog_1_test_segment_0002.mat,0.1786377131804057
Dog_1_test_segment_0003.mat,0.20832113257776458
Dog_1_test_segment_0004.mat,0.2188278559306834
Dog_1_test_segment_0005.mat,0.2153622954663622
Dog_1_test_segment_0006.mat,0.26781146891873614
Dog_1_test_segment_0007.mat,0.15561662127336293
Dog_1_test_segment_0008.mat,0.32447790735314
Dog_1_test_segment_0009.mat,0.14913332881708144

In [50]:
scores = pd.read_csv(FNAME_IN, index_col='clip', squeeze=True)
out_scores = scores.copy()

In [51]:
scores.hist()


Out[51]:
<matplotlib.axes._subplots.AxesSubplot at 0x11b808690>

In [52]:
scores['Dog_2_test_segment_0004.mat']


Out[52]:
0.30044343642584059

In [53]:
targets = set(['_'.join(f.split('_')[:2]) for f in scores.index.values])
targets


Out[53]:
{'Dog_1', 'Dog_2', 'Dog_3', 'Dog_4', 'Dog_5', 'Patient_1', 'Patient_2'}

In [54]:
W=0.25
T=0.1
D=-0.5

for target in targets:
    print
    d = np.load('/Users/udi/Downloads/kaggle/seizure-prediction/distance/%s-test-jump-distance.npy'%target)
    N = d.shape[0]
    print target, N
    dord = np.unravel_index(d.ravel().argsort(),d.shape)
    Nsequences = N/6
    
    # find good pairs of segments that are likely to be paired in time
    next_segment = [-1]*N
    previous_segment = [-1]*N
    for i,(s1,s2) in enumerate(np.array(dord).T):
        dist = d[s1,s2]
        if dist > D: # from 140926-train-signal-jump
            break
        if next_segment[s1] != -1:
            #print i,'right conflict',dist
            continue
        if previous_segment[s2] != -1:
            #print i,'left conflict',dist
            continue
        c = 1
        j = s1
        while previous_segment[j] != -1:
            j = previous_segment[j]
            c += 1
        j = s2
        c += 1
        while next_segment[j] != -1:
            j = next_segment[j]
            c += 1
        if c > 6:
            continue
        next_segment[s1] = s2
        previous_segment[s2] = s1
#     if i < Nsequences:
#         print 'skip'
#         continue
    # check code
    for i in range(N):
        if next_segment[i] != -1:
            assert previous_segment[next_segment[i]] == i

    # find good sequences
    sequences = []
    for i in range(N):
        if previous_segment[i] == -1 and next_segment[i] != -1:
            j = i
            sequence = [j]
            while next_segment[j] != -1:
                j = next_segment[j]
                sequence.append(j)
            sequences.append(sequence)
    len_sequences = [len(sequence) for sequence in sequences]
    print '#sequences',len(sequences), '%segments that was sequenced',sum(len_sequences)/float(N), 'longest sequence', max(len_sequences)
    print sequences

    #compute probability for sequences
    sequences_prb = []
    for sequence in sequences:
        probs = np.array([scores['%s_test_segment_%04d.mat'%(target,s+1)] for s in sequence])
        wgts = np.exp(probs/T)
        wgts /= np.sum(wgts)
        p = np.dot(wgts, probs)
        sequences_prb.append(p)
    # fix probability for segments in sequences
    for p,sequence in zip(sequences_prb,sequences):
        # all segments in the same sequence will be assigned the same probability
        n = 1./len(sequence)
        for i, s in enumerate(sequence):
            out_scores['%s_test_segment_%04d.mat'%(target,s+1)] = W*scores['%s_test_segment_%04d.mat'%(target,s+1)] +(1.-W)*p


Dog_2 1000
#sequences 177 %segments that was sequenced 0.993 longest sequence 6
[[11, 336, 161, 793, 310, 204], [13, 179, 925, 636, 444], [16, 862, 329, 618], [35, 175, 472, 152, 340, 606], [36, 480, 880, 304, 421, 569], [44, 346, 660, 383, 626, 21], [49, 902, 944, 490, 488, 337], [56, 559, 980, 287, 414, 464], [59, 234, 352, 820, 14, 42], [61, 297, 45, 504, 760, 630], [62, 859, 858, 785, 133, 30], [65, 755, 465, 459, 550, 871], [69, 68, 351, 830], [74, 302, 775, 588, 673, 184], [80, 776, 108, 293, 9, 47], [81, 141, 620, 573, 51, 930], [92, 306, 455, 101, 994, 331], [93, 598, 695, 699, 638, 33], [98, 223, 651, 440, 839], [99, 359, 326, 879, 813, 333], [104, 889, 798, 733, 50, 72], [106, 217, 250, 892, 702, 555], [109, 63, 404, 447, 365, 763], [114, 79, 87, 216, 469, 977], [115, 57, 979, 594, 185, 341], [129, 722, 116, 640], [146, 634, 281, 498, 535, 674], [158, 198, 658, 652, 566, 113], [166, 105, 371, 197, 338], [173, 954, 761, 370, 608, 909], [176, 662, 897, 117, 987, 539], [193, 38, 821, 429, 887], [209, 509, 697, 339, 846, 937], [214, 419, 357, 221, 764, 252], [225, 384, 582, 251, 289, 616], [230, 402, 121, 267, 347, 46], [236, 783, 291, 548, 6, 386], [237, 857, 515, 969, 266, 532], [238, 578, 112, 400, 139], [242, 639, 205, 322, 233, 292], [249, 202, 600, 277, 196, 296], [256, 393, 2, 220, 482, 523], [258, 531, 201, 965, 835, 385], [260, 593, 22, 424, 312, 160], [270, 100, 507, 589, 602, 525], [284, 663, 716, 282, 826, 833], [294, 305, 283, 917, 136, 510], [295, 332, 466, 24, 558, 853], [299, 685, 831, 334, 298, 452], [303, 194, 877, 922, 984, 715], [313, 408, 707, 752], [335, 467, 911, 103, 745, 561], [348, 240, 855, 836, 806, 503], [358, 164, 157, 731, 309, 723], [363, 711, 328, 586, 991], [374, 130, 10, 572, 60, 495], [376, 215, 789, 948, 327, 438], [394, 703, 19, 330, 269], [403, 95, 131, 941, 955, 574], [406, 748, 318, 533, 89, 111], [415, 841, 832, 255, 612, 581], [416, 76, 502, 777], [417, 982, 300, 700, 665, 538], [420, 725, 369, 570, 924, 373], [422, 547, 366, 534, 477], [425, 643, 647, 360, 413, 491], [432, 307, 445, 474, 471], [433, 200, 271, 617, 568, 468], [434, 720, 521, 993, 135], [436, 840, 856, 219, 536, 577], [437, 245, 546, 514, 657, 323], [449, 458, 661, 349], [450, 83, 920, 794, 751], [451, 58, 315, 772, 124, 91], [456, 874, 517, 943, 637, 957], [461, 423, 769, 321, 784], [486, 885, 805, 27, 378], [494, 147, 54, 850, 560, 929], [497, 900, 844, 738, 246, 625], [501, 278, 686, 718, 649, 726], [512, 401, 239, 122, 183, 967], [522, 809, 680, 319, 407, 819], [528, 189, 460, 981, 155], [530, 778, 933, 664, 232, 792], [537, 995, 77, 442], [551, 629, 31, 614, 361, 192], [553, 64, 435, 818, 165], [554, 153, 843, 544], [579, 144, 852, 986], [585, 261, 43, 754, 441, 687], [591, 903, 187, 48, 552, 542], [596, 996, 882, 782, 470], [601, 262, 653, 688, 747, 597], [603, 963, 757, 0], [610, 621, 759, 84, 235, 118], [628, 500, 997, 811, 485], [632, 623, 691, 908, 741, 156], [633, 273, 807, 150], [644, 375, 190, 427, 481, 120], [648, 453, 431, 824, 82, 132], [650, 983, 584, 549, 916, 285], [654, 186, 487, 395, 272], [655, 631, 125, 712, 484, 392], [656, 627, 873, 564, 959], [666, 177, 127, 998, 170, 32], [667, 950, 443, 354], [671, 694, 67, 254, 350], [678, 635, 208, 286, 575, 682], [681, 41, 167, 896, 780], [689, 492, 975, 364, 211, 96], [693, 705, 590, 15, 571, 599], [706, 692, 556, 607], [708, 3, 226, 140, 838, 301], [709, 290, 849, 88, 947, 827], [710, 624, 97, 907, 142], [713, 342, 730, 397, 749, 834], [717, 968, 324, 675, 288], [719, 345, 454, 412, 765, 188], [721, 123, 280, 439, 817], [727, 25, 446, 520, 936, 229], [735, 390, 802, 398, 526], [736, 696, 381, 473, 949, 279], [739, 734, 970, 866, 85, 684], [742, 428, 23, 956, 935, 457], [743, 499, 479, 904, 609], [756, 753, 379, 567, 75, 53], [758, 462, 174, 163, 893, 516], [766, 714, 418, 815, 316, 851], [768, 396, 808], [771, 932, 972, 191, 138, 524], [786, 888, 128, 732, 906, 669], [788, 367, 86, 387, 641, 781], [790, 677, 26, 37, 276, 355], [795, 690, 344, 946, 847, 698], [797, 222, 990, 203, 275, 962], [799, 430, 910, 181, 263, 145], [803, 362, 562, 767, 508, 541], [804, 576, 182, 886, 28, 489], [812, 382, 529, 274, 248, 227], [814, 878, 988, 864, 527, 800], [822, 40, 611, 210, 399, 259], [823, 729, 343, 583, 107, 905], [828, 180, 20, 923, 228], [829, 895, 311, 178], [837, 953, 356], [842, 921, 770, 377, 672, 476], [845, 505, 746, 172, 724, 320], [848, 372, 592, 872, 206, 71], [860, 563, 224, 162, 213, 5], [861, 989, 513, 883, 587, 154], [867, 7, 595, 791, 773], [869, 264, 317, 939, 645, 478], [870, 212, 496, 992, 159], [876, 448, 619, 810, 18, 974], [881, 668, 483], [884, 898, 137, 615, 353, 410], [891, 171, 391, 890, 580, 927], [894, 12, 875, 999, 90, 265], [899, 368, 110, 779, 389, 241], [901, 701, 8, 914, 642, 126], [912, 151, 825, 543, 646, 195], [913, 557, 169, 257, 73, 380], [915, 134, 854, 934, 231, 704], [918, 966, 39, 463, 960, 613], [919, 52, 737, 268, 728, 70], [926, 961, 4, 774, 816, 868], [928, 409, 218, 622, 796, 744], [931, 34, 143, 605, 253, 405], [940, 244, 670, 740, 519], [942, 683, 475, 787, 94, 973], [945, 676, 243, 411, 750, 511], [951, 493, 1, 565, 976, 314], [952, 540, 679, 119, 325, 545], [958, 506, 199, 426, 168], [964, 78, 102, 865, 604, 247], [971, 863, 148, 762, 978], [985, 29, 801, 66, 938, 17]]

Dog_3 907
#sequences 167 %segments that was sequenced 0.991179713341 longest sequence 6
[[3, 81, 539, 270, 702, 582], [13, 226, 111, 33, 645], [15, 286, 555, 680, 525, 41], [22, 211, 854, 889, 176, 486], [32, 396, 59, 569, 594, 296], [36, 714, 218, 630], [44, 456, 906, 820, 521, 538], [45, 453, 480, 215, 688, 150], [48, 728, 665, 363, 802, 762], [63, 432, 669, 664, 739, 483], [68, 522, 598, 37, 618, 54], [70, 368, 672, 600, 96], [75, 579, 113, 784, 441, 249], [76, 450, 704, 120, 380, 417], [78, 513, 187, 56, 302, 766], [83, 170, 868], [85, 497, 308, 718, 5, 751], [87, 847, 661, 720, 519, 327], [88, 16, 238, 581], [95, 19, 818, 458, 694, 528], [97, 49, 850, 378, 644, 797], [107, 851, 246, 683, 596, 485], [118, 72, 635, 481, 874, 89], [121, 34, 860, 679, 17, 684], [131, 599, 39, 434, 367, 52], [135, 603, 852, 873, 780, 243], [151, 615, 415, 400, 423, 748], [152, 40, 154, 839, 98, 756], [159, 210, 648, 698, 534, 791], [162, 863, 202, 307, 546, 742], [164, 427, 279, 160], [166, 901, 468, 487, 245, 342], [167, 244, 161, 666, 153, 605], [169, 779, 42, 588, 53, 275], [172, 355, 137, 656, 564, 696], [174, 82, 283, 188, 310, 811], [184, 35, 445, 580, 366, 51], [192, 631, 551, 12, 345, 786], [193, 145, 837, 454, 119], [197, 832, 626, 104, 325, 277], [199, 147, 2, 171, 182, 347], [201, 372, 565, 893, 710, 828], [209, 177, 770, 776, 231], [224, 848, 727, 690, 55, 821], [227, 808, 524, 11, 760, 701], [228, 394, 280, 31, 709, 282], [235, 625, 540, 252, 619, 735], [248, 476, 474, 822, 835], [251, 321], [253, 383], [255, 774, 681, 234, 767, 21], [256, 122, 510, 130, 27, 50], [259, 102, 526, 764, 382, 872], [263, 389, 498, 110, 117, 207], [264, 433, 844, 757, 262, 655], [267, 650, 562, 299, 712, 827], [271, 298, 38, 428, 388, 426], [273, 508, 721, 425, 717, 379], [289, 608, 689, 148, 447, 272], [293, 733, 198, 297, 418, 319], [300, 612, 305, 23], [301, 351, 149, 649], [306, 897, 361, 265], [309, 876, 375, 344, 94, 132], [313, 499, 18, 667, 755, 758], [315, 100], [324, 179, 303, 724, 489], [326, 14, 116, 537, 654], [329, 572, 217, 268, 203, 511], [331, 191, 260, 501, 369, 552], [334, 730], [338, 205, 559, 406, 333, 804], [339, 20, 143, 459, 846, 311], [343, 896, 741, 402, 640, 216], [346, 576, 587, 662], [350, 891, 129, 750, 529], [354, 413, 138, 348, 168, 359], [358, 92, 431, 890, 105, 813], [362, 841, 798, 561, 810, 189], [365, 532, 461, 291], [371, 376, 185, 250, 886, 77], [373, 606, 208, 787, 782, 71], [374, 115, 341, 639, 793], [386, 557, 765, 274, 647, 287], [390, 101, 230, 473, 254], [393, 407, 146, 693], [397, 505, 318, 337], [409, 805, 421, 530, 10, 660], [411, 697, 899, 183, 340, 642], [412, 575, 290, 531, 401, 477], [440, 25, 732, 212, 866, 336], [443, 479, 200, 678, 233, 180], [444, 220, 91, 429, 157, 294], [462, 370, 527, 584, 651], [466, 424, 139, 194, 549], [478, 883, 258, 550, 703, 57], [490, 853, 577], [492, 834, 28, 613, 836, 422], [500, 682, 628, 123], [504, 620, 126, 882, 384], [509, 74, 610, 520, 623, 391], [512, 436, 403, 633, 186, 364], [514, 24, 457, 106, 663], [517, 206, 114, 452, 794, 439], [535, 892, 885, 545, 591], [542, 178, 0, 796, 304], [543, 190, 229, 590, 112, 410], [544, 536, 506], [556, 257, 460, 488, 46, 395], [567, 455, 643, 515, 141, 566], [574, 800, 398, 317, 320, 699], [585, 223, 125, 496], [602, 745, 288, 595, 142], [604, 140, 795, 548, 586, 62], [614, 716, 158, 93, 888, 824], [616, 759, 204, 833, 442, 8], [617, 632, 788, 43, 624, 484], [622, 387, 695, 840, 686], [627, 773, 266, 589, 856, 747], [629, 518], [634, 219, 295, 335, 446, 181], [637, 641, 349, 451, 322, 247], [653, 7, 420, 173, 73, 865], [657, 467, 66], [658, 878, 475, 404, 578, 278], [668, 700, 502, 312, 905, 214], [670, 323], [673, 465, 109, 242, 838, 849], [685, 213, 175, 675, 674, 377], [691, 875, 330, 405, 124], [705, 692, 533, 4, 734, 292], [706, 570, 470, 858, 360, 65], [719, 144, 740, 746, 884, 90], [722, 713, 86, 155, 558, 240], [729, 269, 541, 807, 864, 790], [731, 469, 871], [736, 597, 601, 495, 753, 285], [738, 769, 103, 136, 659, 6], [743, 30, 563, 237, 408, 754], [744, 777, 99, 638, 471, 284], [749, 857, 571, 503, 895, 568], [752, 464, 789, 414, 353, 677], [761, 523, 785, 356, 726], [771, 768, 232, 225], [772, 163, 26], [778, 60, 281, 554, 801, 221], [781, 507, 493, 763, 1, 573], [799, 862, 806, 845, 646], [803, 817, 687, 449, 261, 195], [814, 47, 870, 609, 58, 887], [815, 357, 707, 636, 583], [816, 792, 783, 435, 61, 352], [819, 843, 671, 239, 128, 29], [825, 903, 861, 156, 328], [826, 314, 64, 775], [829, 472, 399, 236, 812, 416], [830, 607, 711, 165, 127, 560], [831, 9, 842, 438], [855, 84, 430, 463, 652, 69], [859, 494, 276, 79, 381, 332], [867, 737, 880, 133, 676, 809], [877, 547, 316, 621, 491, 725], [879, 80, 553, 196, 437, 894], [898, 67, 708, 241, 715], [900, 385, 392], [902, 108, 482, 723, 593, 419], [904, 448]]

Dog_1 502
#sequences 95 %segments that was sequenced 0.998007968127 longest sequence 6
[[3, 493, 475, 178], [6, 73, 384, 444, 216, 155], [10, 177, 271, 255, 60], [13, 231, 159], [14, 317, 276, 15, 123], [16, 453, 425, 285, 191], [21, 32, 236, 199, 218], [22, 291, 381, 92, 268, 86], [23, 359, 409, 491], [28, 124, 88, 215, 197, 242], [29, 398, 12, 224, 31, 0], [33, 390, 383, 309, 119, 396], [40, 256, 262, 361, 428], [41, 357, 339, 153, 174, 364], [46, 464, 135, 89, 264, 368], [47, 211, 117, 479, 185, 246], [53, 126, 401, 250, 9, 172], [68, 406, 282, 161, 468, 427], [71, 382, 192, 190, 463, 328], [72, 323, 351, 496, 385, 275], [74, 290], [76, 127, 146, 106, 389, 349], [77, 204, 347, 214, 380, 462], [78, 375, 227, 109, 202, 405], [79, 48, 244, 114, 415, 273], [81, 418, 208, 239, 67, 345], [93, 321, 186, 473, 210, 298], [95, 452, 407, 445, 115, 358], [103, 171, 252, 175, 412, 154], [105, 205, 187, 207, 82, 472], [110, 85, 7, 258], [128, 373, 477, 356, 50, 500], [133, 288, 260, 490, 331, 424], [137, 162, 287, 129, 344], [139, 18, 313, 65], [149, 116, 97, 107, 219, 284], [150, 148, 112, 253, 283], [152, 179, 194, 377, 99, 87], [158, 140, 411, 143, 352, 474], [160, 434, 267, 293, 442, 221], [169, 302, 343, 232], [184, 173, 485, 96, 156, 480], [203, 238, 492, 58, 371, 222], [225, 397, 228, 448, 35, 318], [226, 66, 134, 476, 44, 108], [234, 329, 438, 147, 136], [235, 37, 84, 336, 295], [237, 426, 118], [247, 223, 249, 102, 62, 42], [251, 266, 483, 125, 61], [257, 122, 326, 432, 332], [261, 248, 416, 132, 70, 495], [265, 144], [269, 327, 270, 52, 8, 98], [278, 36, 198, 387, 69, 11], [289, 470, 330], [294, 341, 176, 245, 142, 292], [299, 478, 90, 353, 272], [301, 366, 342, 30], [303, 19], [304, 230, 410, 471, 286, 201], [306, 421, 1], [311, 212, 56, 24, 138], [315, 163, 131, 80], [320, 57, 413, 75, 196, 27], [340, 281, 229, 333, 217, 233], [348, 213, 360, 441, 4, 220], [354, 181, 431, 338, 200], [355, 83, 39, 402], [365, 277, 322, 130, 2, 378], [367, 484, 180, 335, 296, 486], [369, 439, 488, 362, 312, 422], [370, 316, 300, 120, 141, 400], [374, 408, 447, 104, 297, 429], [379, 443, 449, 38, 399, 417], [388, 113, 280, 437, 168], [391, 94, 337], [393, 145, 350, 319, 324, 334], [414, 459, 45, 363, 55], [419, 195, 5, 420], [423, 465, 151, 386, 64], [450, 395, 455, 34, 307, 376], [451, 17, 454, 314, 254, 433], [457, 460, 310, 456, 372], [461, 193, 91, 167, 188, 259], [466, 209, 263, 346, 26, 170], [467, 243, 101, 54, 240, 394], [469, 51, 497, 43, 20], [481, 489, 430, 308, 121, 404], [482, 241, 440, 49, 111, 59], [487, 206, 25, 157, 435, 166], [494, 63, 189, 458], [498, 305, 403, 274, 100], [499, 446, 182, 392, 164], [501, 325, 436, 165, 279]]

Dog_4 990
#sequences 170 %segments that was sequenced 0.994949494949 longest sequence 6
[[0, 399, 297, 940, 455, 284], [1, 260, 101, 478, 415, 236], [7, 759, 635, 264, 216, 848], [12, 184, 479, 829, 139, 724], [14, 581, 429, 714, 660, 582], [15, 24, 960, 519, 931, 965], [25, 315, 527, 323, 595, 133], [31, 328, 740, 637, 167, 942], [33, 631, 493, 561, 421, 74], [34, 38, 978, 678], [36, 964, 75, 141, 790, 775], [37, 340, 532, 632, 883, 518], [40, 387, 810, 690, 930, 679], [44, 875, 116, 405, 118, 565], [46, 402, 971, 446, 506, 901], [55, 170, 319, 767, 925, 252], [56, 431, 566, 815, 124, 296], [60, 127, 847, 634, 778, 285], [63, 528, 362, 359, 346, 332], [67, 937, 987, 148, 948, 72], [85, 959, 897, 388, 962, 580], [87, 584, 902, 99, 289, 50], [92, 643, 212, 240, 335, 501], [103, 737, 721, 709, 131, 440], [112, 827, 155, 106, 890, 244], [120, 122, 281, 727, 406, 820], [123, 383, 809, 970, 82, 333], [125, 647, 374, 624, 312, 730], [128, 134, 437], [136, 853, 417, 230, 494, 966], [138, 235, 613, 208, 349, 413], [140, 499, 604, 696, 379, 720], [142, 341, 860, 409, 655, 791], [159, 628, 261, 921, 375, 586], [163, 817, 648, 540, 39, 626], [172, 680, 295, 68, 214, 194], [175, 976, 16, 688, 924, 262], [176, 743, 196, 972, 702, 173], [177, 795, 520, 713, 439, 433], [197, 545, 531, 17, 756, 674], [204, 749, 876, 471, 114, 866], [211, 638, 376, 102, 373, 259], [220, 502, 770, 908, 985, 828], [225, 813, 344, 907, 465, 652], [242, 881, 207, 878, 253, 956], [256, 516, 473, 983, 597, 485], [263, 288, 186, 22, 444, 859], [276, 291, 313, 662, 272, 305], [279, 222, 327, 448, 729, 504], [282, 957, 497, 269, 656, 426], [294, 156, 357, 733, 698, 891], [299, 152, 183, 456, 861, 880], [300, 239, 926, 851, 392, 474], [303, 11, 10, 191, 89, 364], [309, 361, 187, 585, 728, 154], [310, 377, 783, 830, 672, 412], [314, 974, 542, 741, 832, 164], [320, 507, 824, 895, 715, 378], [329, 685, 523, 673, 686, 543], [330, 98, 144, 747, 988, 554], [338, 768, 703, 927, 511, 893], [343, 951, 943, 203, 760, 608], [350, 766, 835, 807, 837, 365], [353, 107, 664, 546, 18, 571], [372, 165, 923, 961, 66, 464], [389, 355, 337, 805, 583, 569], [390, 578, 599, 706, 910, 742], [394, 51, 564, 739, 316, 487], [395, 110, 419, 606, 977, 217], [396, 984, 257, 658, 954, 663], [403, 162, 659, 754, 798, 53], [404, 846, 58, 318, 229, 731], [411, 401, 286, 514, 398, 657], [424, 900, 251, 618, 232, 691], [425, 722, 258, 93, 80, 271], [430, 894, 711, 23, 45, 462], [434, 27, 748, 787, 290, 933], [436, 734, 842, 348, 562, 416], [441, 619, 121, 573, 324, 544], [443, 794, 843, 77, 234, 808], [451, 449, 935, 873, 19, 592], [458, 687, 950, 629, 917, 854], [461, 906, 489, 322, 292, 552], [469, 796, 146, 226, 147, 200], [472, 958, 834, 761, 968, 109], [481, 877, 826, 973, 969, 247], [490, 919, 354, 90, 625, 548], [492, 188, 2, 505, 306, 3], [496, 273, 932, 73, 418], [498, 755, 718, 453, 168, 223], [500, 301, 233, 231, 459, 612], [509, 423, 13, 321, 132, 889], [513, 630, 366, 454, 428, 438], [515, 547, 605, 553, 52, 683], [524, 850, 670, 797, 525, 945], [535, 278, 475, 677, 205, 601], [536, 836, 869, 115, 503, 166], [537, 248, 572, 905, 886, 477], [538, 522, 182, 29], [551, 28, 8, 589, 725, 801], [555, 920, 967, 654, 468, 470], [558, 484, 266, 979, 181, 852], [559, 903, 675, 936, 97, 145], [570, 385, 726, 526, 250], [575, 151, 71, 574, 283, 717], [577, 81, 653, 550, 704, 482], [588, 530, 407, 339, 457, 363], [596, 694, 735, 35, 466, 275], [598, 447, 645], [602, 265, 255, 224, 47, 195], [610, 667, 594, 342, 360, 169], [614, 137, 135, 311, 157, 111], [615, 369, 228, 892, 784, 368], [616, 517, 408, 215, 849, 280], [620, 178, 567, 161, 896, 76], [623, 975, 627, 593, 331, 947], [636, 867, 946, 707, 84, 367], [641, 65, 888, 644, 757, 336], [642, 96, 665, 414, 270, 317], [651, 668, 736, 833, 510, 149], [661, 61], [684, 914, 79, 126, 249, 119], [692, 83, 245, 695, 746, 541], [697, 871, 100], [699, 622, 666, 307, 753, 862], [710, 386, 708, 911, 856, 792], [712, 671, 210], [719, 928, 435, 922, 237, 804], [723, 206, 639, 752, 776, 20], [738, 48, 70, 483, 840, 986], [745, 351, 391, 4, 774], [750, 982, 352, 744, 108, 590], [751, 287, 274, 5, 370, 432], [762, 865, 870, 302, 189, 855], [763, 193, 885, 676, 649, 32], [764, 86, 789, 213, 872, 913], [765, 646, 650, 158, 427, 371], [771, 944, 909, 380, 160, 788], [777, 912, 486, 825, 129, 915], [779, 732, 64, 603, 591, 803], [786, 533, 410, 939, 617, 839], [806, 780, 549, 609, 293, 452], [811, 938, 347, 450, 221, 521], [812, 326, 219, 989, 62, 420], [814, 802, 793, 700, 772, 201], [816, 400, 246, 277, 192, 334], [818, 304, 397, 874, 693, 238], [821, 6, 104, 105, 382], [822, 781, 705, 467, 701, 95], [823, 480, 180, 199, 57, 841], [831, 463, 539, 952, 785, 91], [838, 576, 579, 916, 568, 9], [844, 393, 113, 78, 356, 782], [845, 981, 254, 884, 381, 198], [858, 202], [863, 460, 21, 799, 179, 495], [864, 512, 43, 882, 267, 769], [868, 185, 30, 560, 209, 143], [879, 227, 358, 773, 669, 689], [887, 819, 563, 26, 243, 325], [898, 445, 633], [899, 556, 174, 508, 488, 529], [904, 963, 117, 587, 600, 69], [918, 268, 442, 934, 171, 241], [929, 476, 534, 218, 94, 59], [941, 758, 345, 491, 800, 681], [949, 150, 153, 88], [953, 42, 298, 857, 607, 41], [955, 621, 611, 190, 682, 49], [980, 422, 716, 130]]

Dog_5 191
#sequences 33 %segments that was sequenced 0.931937172775 longest sequence 6
[[1, 131, 105, 139, 147, 154], [3, 59, 30, 121, 12, 184], [9, 156], [11, 100, 79, 119, 55, 2], [17, 155, 28, 125, 98, 185], [29, 122, 71, 35, 22, 112], [31, 174], [34, 49, 27, 25, 165, 110], [41, 21], [47, 45], [50, 179, 187, 57, 133, 126], [56, 170, 13, 58, 144, 14], [60, 80, 96, 15, 152, 5], [65, 111, 8, 38, 84, 107], [67, 108, 52, 90, 159], [86, 82, 157, 24, 32, 74], [87, 183, 77, 113, 114, 135], [94, 161, 171, 46, 176, 39], [99, 43, 129, 75, 178, 88], [104, 162, 118, 66, 97, 76], [124, 93, 148, 136, 169, 132], [128, 48, 42, 160, 0, 73], [134, 85, 78, 158, 102, 189], [138, 92, 109, 44, 10, 7], [141, 95, 91, 115, 117, 163], [145, 130, 103, 123, 120, 180], [146, 149, 6, 36, 140], [153, 40, 150, 164, 142, 101], [166, 182, 33, 23, 190, 106], [167, 127, 69, 188], [168, 173, 151, 18, 63, 137], [175, 81, 172, 186, 83, 20], [177, 26, 143, 68, 62, 51]]

Patient_2 150
#sequences 30 %segments that was sequenced 0.94 longest sequence 6
[[4, 99, 78, 87, 0, 107], [6, 34, 129, 100, 10], [15, 52, 80], [28, 81, 82, 103, 25, 139], [29, 31], [37, 16, 54], [38, 127, 70, 110, 11], [42, 79, 66], [47, 146, 76, 59], [48, 149, 108, 67, 58, 35], [51, 105, 140, 57], [53, 63, 71, 120, 125, 40], [60, 96], [65, 106, 21, 56, 14, 1], [69, 91, 75], [77, 44, 119, 20, 55, 12], [84, 93, 45, 111, 94, 122], [85, 36], [92, 33, 86, 97], [95, 27, 141, 115, 89], [102, 24, 124, 22, 118, 137], [109, 43, 136, 138, 64, 18], [112, 98, 114, 143, 83, 147], [113, 126, 30, 101, 39, 7], [117, 62, 121, 49, 88], [123, 5, 61, 9, 116, 41], [128, 131, 72, 74, 13], [133, 2, 8, 17, 3, 68], [142, 32, 26], [148, 130, 145, 50, 144]]

Patient_1 195
#sequences 41 %segments that was sequenced 0.979487179487 longest sequence 6
[[1, 104, 158, 50, 166, 28], [3, 54, 27, 70, 161], [22, 170, 6, 57, 0], [24, 142], [26, 44, 65], [30, 157, 92, 21, 112], [32, 193, 189, 113, 109], [36, 61, 63, 84, 94, 165], [40, 42, 194, 64, 174], [49, 129, 37, 48, 23, 154], [56, 66, 53, 87], [58, 8, 143], [59, 139, 126, 88, 177], [60, 132, 14, 5, 71, 120], [67, 47, 149, 111], [73, 159, 156, 183, 160], [82, 121, 4, 12, 173, 7], [85, 16], [86, 15, 68, 51], [89, 110, 117, 13, 179, 19], [90, 133, 167], [97, 72, 93, 125], [99, 31, 136, 128, 185, 2], [102, 191, 137, 20, 145, 162], [106, 180, 105, 164], [107, 11, 41, 122, 108, 130], [116, 43, 148, 46, 35, 79], [119, 192, 181, 184, 91, 114], [123, 18, 176, 115], [124, 127, 131, 55, 39], [135, 186, 140, 101, 155, 80], [138, 81, 62], [141, 182, 10, 118, 25, 83], [144, 163], [146, 38, 153], [150, 45, 98, 17], [152, 29, 96, 76, 171, 75], [175, 169, 134, 168, 34], [178, 33], [187, 190, 78, 77, 147, 172], [188, 9, 151, 74, 69]]

In [55]:
out_scores = out_scores/out_scores.max()

In [56]:
out_scores.to_csv(FNAME_OUT, header=True)

In [57]:
!paste {FNAME_IN} {FNAME_OUT} | head


clip,preictal	clip,preictal
Dog_1_test_segment_0001.mat,0.41382776305781244	Dog_1_test_segment_0001.mat,0.6076076345291409
Dog_1_test_segment_0002.mat,0.1786377131804057	Dog_1_test_segment_0002.mat,0.36965358780420127
Dog_1_test_segment_0003.mat,0.20832113257776458	Dog_1_test_segment_0003.mat,0.4490801444595676
Dog_1_test_segment_0004.mat,0.2188278559306834	Dog_1_test_segment_0004.mat,0.30317617020195314
Dog_1_test_segment_0005.mat,0.2153622954663622	Dog_1_test_segment_0005.mat,0.3274777579617551
Dog_1_test_segment_0006.mat,0.26781146891873614	Dog_1_test_segment_0006.mat,0.36351809511803346
Dog_1_test_segment_0007.mat,0.15561662127336293	Dog_1_test_segment_0007.mat,0.3436817004167916
Dog_1_test_segment_0008.mat,0.32447790735314	Dog_1_test_segment_0008.mat,0.4185466357025891
Dog_1_test_segment_0009.mat,0.14913332881708144	Dog_1_test_segment_0009.mat,0.16751221981823092

In [58]:
out_scores['Dog_2_test_segment_0004.mat']


Out[58]:
0.38297837073086771

In [59]:
df = pd.DataFrame()
df['in'] = pd.read_csv(FNAME_IN, index_col='clip', squeeze=True) #64
df['out'] = pd.read_csv(FNAME_OUT, index_col='clip', squeeze=True)
df['best'] = pd.read_csv('../submissions/141106-predict.3.csv', index_col='clip', squeeze=True)

In [60]:
pd.scatter_matrix(df,figsize=(6, 6), diagonal='kde');



In [60]: