In [1]:
%matplotlib inline
from matplotlib import pylab as pl
import cPickle as pickle
import pandas as pd
import numpy as np
import os

In [6]:
df = pd.DataFrame()
df['gb'] = pd.read_csv('../submissions/140928-predict.1.csv', index_col='clip', squeeze=True) #64
df['rf'] = pd.read_csv('../submissions/140926-predict.2.csv', index_col='clip', squeeze=True)

In [7]:
pd.scatter_matrix(df[['gb','rf']],figsize=(6, 6), diagonal='kde');



In [8]:
w_gb  = 0.4
w_rf = 1

s = w_gb + w_rf

w_gb /= s
w_rf /= s

In [9]:
w_gb, w_rf


Out[9]:
(0.28571428571428575, 0.7142857142857143)

In [10]:
df['preictal'] = w_gb * df['gb'] + w_rf * df['rf']

In [11]:
df['preictal'].to_csv('../submissions/140928-predict.2.csv', header=True)

In [12]:
!head ../submissions/140928-predict.2.csv


clip,preictal
Dog_1_test_segment_0001.mat,0.4133467551486389
Dog_1_test_segment_0002.mat,0.09224539061095215
Dog_1_test_segment_0003.mat,0.131194537821495
Dog_1_test_segment_0004.mat,0.18514265287316242
Dog_1_test_segment_0005.mat,0.1418730267251374
Dog_1_test_segment_0006.mat,0.14158106558901232
Dog_1_test_segment_0007.mat,0.05703624983301842
Dog_1_test_segment_0008.mat,0.194975158567898
Dog_1_test_segment_0009.mat,0.07618983261021842

In [95]: