In [1]:
# script to process the intermediate legacy files to get the R square values and a/b coeff
import os
import glob
import pandas as pd
# files are located in heatmap folder
intermediate_folder = r"Z:\\Arc_Intermediate_Files" # moved to z drive to change filename of few files without gain
In [2]:
def extract_date_gain(path):
# get the date and gain setting from the filename
basename = os.path.basename(path) # ie Arc_010713_gn0_r2.csv
basename = os.path.splitext(basename)[0] # removes .csv
baseparts = basename.split("_") # splits name into separate parts
date = baseparts[1]
gain = baseparts[2]
return [date, gain]
In [3]:
#r2_csv = ex_r2
#r2_pd = pd.read_csv(r2_csv)
#r2_value = r2["x"][0]
#print(r2_value)
def extract_rsquare(rsquare_file):
r2_pd = pd.read_csv(rsquare_file)
r2_value = r2_pd["x"][0]
return r2_value
def extract_coeffs(coeff_file):
coeff_pd = pd.read_csv(coeff_file)
a_coeff = coeff_pd["x"][0]
b_coeff = coeff_pd["x"][1]
return [a_coeff, b_coeff]
In [4]:
# get list of all csv files in intermediate_folder
all_r2_csvs = glob.glob(os.path.join(intermediate_folder, "*r2.csv"))
list_results = []
for path in all_r2_csvs:
dategain = extract_date_gain(path)
date = dategain[0]
gain = dategain[1]
r2_value = extract_rsquare(path)
# build path to coeff file
coeff_path = path.replace("r2", "coeffs")
coeffs = extract_coeffs(coeff_path)
a_coeff = coeffs[0]
b_coeff = coeffs[1]
print("Date: {} Gain Setting: {} R2: {}, A: {}, B: {}".format(date, gain, r2_value, a_coeff, b_coeff))
list_results.append([date, gain, r2_value, a_coeff, b_coeff])
Date: 010713 Gain Setting: gn0 R2: 0.999913452106, A: -0.700480071906, B: 0.911512370843
Date: 010813 Gain Setting: gn0 R2: 0.712038046822, A: 0.353666429071, B: 0.190055423761
Date: 011013 Gain Setting: gn0 R2: 0.175292257503, A: 2.31933396825, B: -1.0721551944
Date: 011314 Gain Setting: gn10 R2: 0.987127460968, A: -1.77156121034, B: 1.01214030496
Date: 011314 Gain Setting: gn1 R2: 0.881928349698, A: -2.19331177439, B: 1.77889434406
Date: 011714 Gain Setting: gn10 R2: 0.920366244266, A: 3.36516051977, B: 1.27952205282
Date: 011714 Gain Setting: gn1 R2: 0.853855159012, A: 1.05690933222, B: 1.32446472745
Date: 020513 Gain Setting: gn0 R2: 0.778968833036, A: -0.473173257346, B: 1.04349079808
Date: 020713 Gain Setting: gn0 R2: 0.00105487054216, A: 1.91086040612, B: 0.13669383583
Date: 021716 Gain Setting: gn100 R2: 0, A: 1.099160486, B: nan
Date: 021716 Gain Setting: gn10 R2: 0.505658622463, A: -2.72449087627, B: 1.00779712313
Date: 022414 Gain Setting: gn10 R2: 0.901367317061, A: 2.38738946558, B: 0.640148332635
Date: 022414 Gain Setting: gn1 R2: 0.958379627474, A: 1.44755236375, B: 0.75575527435
Date: 022514 Gain Setting: gn10 R2: 0.0875528346389, A: 1.30569522004, B: 0.524964784217
Date: 022514 Gain Setting: gn1 R2: 0.12658432064, A: 1.95385057303, B: 0.174847905936
Date: 022714 Gain Setting: gn10 R2: 0.898669177185, A: 0.394931227818, B: 0.701313706974
Date: 022714 Gain Setting: gn1 R2: 0.995815034603, A: -0.0180983965822, B: 0.851067923344
Date: 030413 Gain Setting: gn0 R2: 0.998113338217, A: 1.68790489767, B: 0.99071193858
Date: 030513 Gain Setting: gn0 R2: 0.976574372718, A: 1.35838133984, B: 1.02481796938
Date: 030713 Gain Setting: gn0 R2: 0.051910477909, A: 2.21932776367, B: 0.258361656032
Date: 031714 Gain Setting: gn10 R2: 0.920980231869, A: 0.936988801293, B: 0.907442078467
Date: 031714 Gain Setting: gn1 R2: 0.928182497586, A: 1.73084574996, B: 0.843443466746
Date: 031914 Gain Setting: gn10 R2: 0.77675986987, A: 2.51967533038, B: 0.749362248966
Date: 031914 Gain Setting: gn1 R2: 0.653472215909, A: 4.9504227882, B: 0.44532915173
Date: 032014 Gain Setting: gn10 R2: 0.0792812966267, A: 2.43860060436, B: 0.362726438334
Date: 032014 Gain Setting: gn1 R2: 0.111799243451, A: 5.14896769449, B: -0.239290508607
Date: 040113 Gain Setting: gn0 R2: 0.905741728745, A: 2.40409447312, B: 1.59179024205
Date: 040213 Gain Setting: gn0 R2: 0.0351525183415, A: -2.98194343155, B: 4.50249633292
Date: 040413 Gain Setting: gn0 R2: 0.120940834118, A: -8.35752343794, B: 3.29255207959
Date: 042114 Gain Setting: gn10 R2: 0.992931806372, A: -0.644807854718, B: 0.98635123122
Date: 042114 Gain Setting: gn1 R2: 0.993906366042, A: 0.2222426321, B: 0.983411947794
Date: 042214 Gain Setting: gn10 R2: 0.987211586555, A: -0.78426768125, B: 1.40951995736
Date: 042214 Gain Setting: gn1 R2: 0.954442697807, A: 0.669905817168, B: 1.03555088363
Date: 042414 Gain Setting: gn10 R2: 0.975334124828, A: -0.955241343256, B: 1.49571480959
Date: 042414 Gain Setting: gn1 R2: 0.928030566175, A: 2.06299882768, B: 1.37673431599
Date: 050613 Gain Setting: gn0 R2: 0.993984288183, A: 1.22059402534, B: 0.976734681048
Date: 050713 Gain Setting: gn0 R2: 0.652341792206, A: -11.3285065553, B: 4.94735759597
Date: 050813 Gain Setting: gn0 R2: 0.925671897715, A: -0.315436195766, B: 1.9943772483
Date: 051013 Gain Setting: gn0 R2: 0.943442771854, A: 0.785013670095, B: 1.40164456706
Date: 051914 Gain Setting: gn10 R2: 0.872564142002, A: 2.25918650571, B: 1.41348477607
Date: 051914 Gain Setting: gn1 R2: 0.887952047717, A: 3.47472426959, B: 1.04163838305
Date: 052014 Gain Setting: gn10 R2: 0.943523385466, A: -1.64618247883, B: 1.11141590329
Date: 052014 Gain Setting: gn1 R2: 0.883346753827, A: -0.789092435688, B: 1.04900366112
Date: 052114 Gain Setting: gn10 R2: 0.967887760373, A: -1.57945284079, B: 1.14838223227
Date: 052114 Gain Setting: gn1 R2: 0.972875379764, A: -0.578566016689, B: 0.979986403749
Date: 052214 Gain Setting: gn10 R2: 0.985772977355, A: 0.805179174632, B: 0.406669103242
Date: 052214 Gain Setting: gn1 R2: 0.980373156294, A: 0.749258453337, B: 0.429227817367
Date: 060313 Gain Setting: gn0 R2: 0.97232667118, A: -1.15149455254, B: 2.06116736445
Date: 060314 Gain Setting: gn10 R2: 0.939994133914, A: -0.457248860037, B: 1.13983451766
Date: 060314 Gain Setting: gn1 R2: 0.860134040134, A: 3.58437139895, B: 0.809251474285
Date: 060513 Gain Setting: gn0 R2: 0.411427353184, A: 1.25219972616, B: 1.04076454234
Date: 060514 Gain Setting: gn10 R2: 0.930297043608, A: 0.391255346926, B: 1.29705005942
Date: 060514 Gain Setting: gn1 R2: 0.871959352223, A: 1.59796548019, B: 1.29319982639
Date: 060713 Gain Setting: gn0 R2: 0.402622595067, A: -4.94187153355, B: 3.08507405319
Date: 062314 Gain Setting: gn10 R2: 0.912568434451, A: -0.608780358434, B: 0.921180422228
Date: 062314 Gain Setting: gn1 R2: 0.909753539495, A: 0.17965840713, B: 0.813433467698
Date: 070213 Gain Setting: gn10 R2: 0.691888107485, A: 1.4830094301, B: 1.85810989088
Date: 070213 Gain Setting: gn1 R2: 0.512783823016, A: -0.20535786245, B: 2.88793106896
Date: 070513 Gain Setting: gn0 R2: 0.0409134430998, A: 1.25219972616, B: 1.04076454234
Date: 070813 Gain Setting: gn0 R2: 0.982505444556, A: -0.177991748588, B: 2.07751650072
Date: 070814 Gain Setting: gn10 R2: 0.946438950806, A: -7.04308164047, B: 3.6239558351
Date: 070814 Gain Setting: gn1 R2: 0.997246808514, A: -0.908138558015, B: 1.69406236518
Date: 071014 Gain Setting: gn10 R2: 0.976075034139, A: -2.18132812759, B: 1.765071868
Date: 071014 Gain Setting: gn1 R2: 0.98041198071, A: -0.874829286425, B: 1.48528915732
Date: 071714 Gain Setting: gn10 R2: 0.971833967796, A: 1.9137824909, B: -0.0956470657854
Date: 071714 Gain Setting: gn1 R2: 0.944533590512, A: 1.87336736026, B: -0.0975967889623
Date: 080513 Gain Setting: gn10 R2: 0.971695851197, A: -1.48802468104, B: 2.27219305644
Date: 080513 Gain Setting: gn1 R2: 0.289460959061, A: 2.56880906755, B: 2.0449133718
Date: 080613 Gain Setting: gn10 R2: 0.940081095546, A: -0.828104989082, B: 1.79329119693
Date: 080613 Gain Setting: gn1 R2: 0.898501427133, A: -1.40723600489, B: 1.73369712348
Date: 082014 Gain Setting: gn10 R2: 0.996437404867, A: -1.6936628116, B: 1.49702352488
Date: 082014 Gain Setting: gn1 R2: 0.998315496822, A: -1.00544147378, B: 1.45564379959
Date: 082213 Gain Setting: gn10 R2: 0.0282673229838, A: 1.63858038724, B: 0.126041763112
Date: 082213 Gain Setting: gn1 R2: 0.120762835809, A: 2.14909046546, B: -0.197315309975
Date: 082514 Gain Setting: gn10 R2: 0.965120231242, A: 3.99990902087, B: 0.726781492806
Date: 082514 Gain Setting: gn1 R2: 0.950233282784, A: 4.76339348894, B: 0.717936984531
Date: 082614 Gain Setting: gn10 R2: 0.846382961683, A: 2.25011380872, B: 0.608405377069
Date: 082614 Gain Setting: gn1 R2: 0.815335108653, A: 2.53344822768, B: 0.579735453007
Date: 082814 Gain Setting: gn100 R2: 0.978386515234, A: -1.27592807595, B: 2.46505944772
Date: 082814 Gain Setting: gn10 R2: 0.650228349651, A: -0.70320210103, B: 1.54570624924
Date: 082814 Gain Setting: gn1 R2: 0.787315636493, A: -3.15750256685, B: 3.21550989653
Date: 091514 Gain Setting: gn100 R2: 0.642080532899, A: -9.92657197006, B: 6.33297294932
Date: 091514 Gain Setting: gn10 R2: 0.949780101636, A: 2.25779665214, B: 1.17280024027
Date: 091514 Gain Setting: gn1 R2: 0.96060784242, A: 2.73893071927, B: 1.10730052579
Date: 091613 Gain Setting: gn10 R2: 0.912558982039, A: 0.273915586287, B: 0.864768291382
Date: 091613 Gain Setting: gn1 R2: 0.541147660494, A: 0.943585666017, B: 0.659465195598
Date: 091614 Gain Setting: gn100 R2: 0.901128927601, A: -4.12735096256, B: 3.78735462682
Date: 091614 Gain Setting: gn10 R2: 0.984747548256, A: 0.677664136885, B: 1.08537913444
Date: 091614 Gain Setting: gn1 R2: 0.967007225535, A: 1.44182931508, B: 0.946826905085
Date: 091813 Gain Setting: gn10 R2: 0.152037859341, A: 1.87836282987, B: -0.378486554873
Date: 091813 Gain Setting: gn1 R2: 0.462409056389, A: 1.78415825142, B: -0.377461539228
Date: 091814 Gain Setting: gn100 R2: 0.792842499024, A: -3.06172823977, B: 1.77689278967
Date: 091814 Gain Setting: gn10 R2: 0.997070392173, A: 0.986955019899, B: 0.63352476122
Date: 091814 Gain Setting: gn1 R2: 0.867888353013, A: 1.30233412497, B: 0.295819649458
Date: 092013 Gain Setting: gn10 R2: 0.877644526605, A: -2.54972081187, B: 2.08710259039
Date: 092013 Gain Setting: gn1 R2: 0.405304056752, A: -1.14118304136, B: 2.89845078654
Date: 101314 Gain Setting: gn100 R2: 0.88781526301, A: 2.65855743946, B: 0.658772172886
Date: 101314 Gain Setting: gn10 R2: 0.920572816179, A: 1.77381482377, B: 0.835622373681
Date: 101314 Gain Setting: gn1 R2: 0.912519681929, A: 2.35339948027, B: 0.722389890221
Date: 101413 Gain Setting: gn10 R2: 0.842330683072, A: -1.52177496564, B: 1.49884899283
Date: 101413 Gain Setting: gn1 R2: 0.924001868647, A: -0.165328783584, B: 1.18276075264
Date: 101414 Gain Setting: gn100 R2: 0.358163702969, A: -11.4102958166, B: 5.55864113507
Date: 101414 Gain Setting: gn10 R2: 0.994876637263, A: 1.00795822313, B: 0.686229345066
Date: 101414 Gain Setting: gn1 R2: 0.994303834837, A: 1.41619707879, B: 0.664250043291
Date: 101613 Gain Setting: gn10 R2: 0.501020054079, A: 1.81644836648, B: -0.41894319163
Date: 101613 Gain Setting: gn1 R2: 0.0121260859331, A: 1.07184535517, B: 0.174970176191
Date: 101714 Gain Setting: gn100 R2: 0.960067165121, A: -0.76048723564, B: 0.830542140785
Date: 101714 Gain Setting: gn10 R2: 0.974086201055, A: 1.1446586072, B: 0.159725427313
Date: 101714 Gain Setting: gn1 R2: 0.995381837005, A: 0.465030214655, B: 0.457364974107
Date: 101813 Gain Setting: gn10 R2: 0.942749174575, A: -1.05584853398, B: 1.91932038831
Date: 101813 Gain Setting: gn1 R2: 0.721680845868, A: -4.19577281047, B: 1.57672601153
Date: 110314 Gain Setting: gn100 R2: 0.485409028146, A: -0.763909349308, B: 1.65519536001
Date: 110314 Gain Setting: gn10 R2: 0.076935443292, A: 1.38746123186, B: -0.0102918096138
Date: 110314 Gain Setting: gn1 R2: 0.635614377961, A: -0.00628924110141, B: 1.55424796409
Date: 110414 Gain Setting: gn100 R2: 0.606324911091, A: -9.45430229528, B: 5.66698243768
Date: 110414 Gain Setting: gn10 R2: 0.65625630754, A: 4.12060168357, B: 0.604432847608
Date: 110414 Gain Setting: gn1 R2: 0.697949075086, A: 4.29933543043, B: 0.549697676669
Date: 110614 Gain Setting: gn100 R2: 0.369889913251, A: -9.11037486532, B: 6.10082656529
Date: 110614 Gain Setting: gn10 R2: 0.975530714183, A: -0.474490709653, B: 0.846314546886
Date: 110614 Gain Setting: gn1 R2: 0.931412816687, A: 2.71033473402, B: 0.655026962639
Date: 111213 Gain Setting: gn10 R2: 0.987335904336, A: -0.498260421835, B: 0.681921491452
Date: 111213 Gain Setting: gn1 R2: 0.973521531199, A: -0.24865674658, B: 0.63297721732
Date: 111214 Gain Setting: gn100 R2: 0.997714690346, A: -0.445151358831, B: 0.631053935793
Date: 111214 Gain Setting: gn10 R2: 0.72258170287, A: 0.480871618588, B: 0.352280077655
Date: 111214 Gain Setting: gn1 R2: 0.833508747018, A: 0.617434580833, B: 0.330900407241
Date: 111413 Gain Setting: gn10 R2: 0.10410650971, A: 2.02241883517, B: -0.381292795848
Date: 111413 Gain Setting: gn1 R2: 0.0106045591484, A: 1.32181297301, B: 0.147950768097
Date: 111513 Gain Setting: gn10 R2: 0.949356254183, A: -1.77154600109, B: 1.62428450152
Date: 111513 Gain Setting: gn1 R2: 0.997260827451, A: 0.0921208656277, B: 0.862220974068
Date: 120214 Gain Setting: gn100 R2: 0.505979559584, A: -48.008879746, B: 15.2302758936
Date: 120214 Gain Setting: gn10 R2: 0.990719593218, A: -0.791418211563, B: 1.16115135537
Date: 120214 Gain Setting: gn1 R2: 0.984465134376, A: 0.320390928942, B: 1.08840113024
Date: 120414 Gain Setting: gn100 R2: 0.407596279083, A: -28.4748069108, B: 14.0905279951
Date: 120414 Gain Setting: gn10 R2: 0.99503771179, A: -3.74494522546, B: 1.80341821249
Date: 120414 Gain Setting: gn1 R2: 0.998574141924, A: -1.42169451383, B: 1.40458241535
Date: 121012 Gain Setting: gn0 R2: 0.907602480978, A: -0.590886073481, B: 0.595595523721
Date: 121112 Gain Setting: gn0 R2: 0.930672417171, A: 0.128785770062, B: 0.290755427594
Date: 121113 Gain Setting: gn10 R2: 0.996896557792, A: 0.532020328997, B: 0.94944470258
Date: 121113 Gain Setting: gn1 R2: 0.997530012823, A: 0.35630324306, B: 1.4069016743
Date: 121312 Gain Setting: gn0 R2: 0.565262709143, A: 0.0896456108522, B: 0.137713416664
Date: 121313 Gain Setting: gn10 R2: 0.771559555732, A: 0.981980845681, B: 0.414757135905
Date: 121313 Gain Setting: gn1 R2: 0.0613519058266, A: 1.5745855446, B: 0.189484666762
Date: 121412 Gain Setting: gn0 R2: 1, A: -0.975310683841, B: 0.747451692884
Date: 121614 Gain Setting: gn100 R2: 0.348815495802, A: -0.694778107822, B: 0.38898715224
Date: 121614 Gain Setting: gn10 R2: 0.775606555452, A: 0.0452114283037, B: 0.208585144057
Date: 121614 Gain Setting: gn1 R2: 0.945603764551, A: -0.392040233583, B: 0.316596129622
In [5]:
print(list_results)
[['010713', 'gn0', 0.99991345210583493, -0.70048007190619899, 0.91151237084268588], ['010813', 'gn0', 0.712038046822288, 0.35366642907134099, 0.19005542376068105], ['011013', 'gn0', 0.17529225750318098, 2.3193339682549601, -1.07215519440455], ['011314', 'gn10', 0.98712746096777504, -1.7715612103444101, 1.01214030496408], ['011314', 'gn1', 0.88192834969768708, -2.19331177438904, 1.7788943440609], ['011714', 'gn10', 0.920366244266279, 3.3651605197736298, 1.2795220528165201], ['011714', 'gn1', 0.85385515901185305, 1.0569093322157701, 1.3244647274487999], ['020513', 'gn0', 0.77896883303571907, -0.47317325734557897, 1.0434907980823001], ['020713', 'gn0', 0.00105487054215861, 1.9108604061237202, 0.136693835829648], ['021716', 'gn100', 0, 1.0991604859999999, nan], ['021716', 'gn10', 0.50565862246311799, -2.7244908762666999, 1.0077971231349698], ['022414', 'gn10', 0.90136731706070405, 2.3873894655799104, 0.64014833263535109], ['022414', 'gn1', 0.95837962747373084, 1.4475523637499699, 0.75575527434982193], ['022514', 'gn10', 0.087552834638922702, 1.30569522003676, 0.52496478421658099], ['022514', 'gn1', 0.12658432063974698, 1.9538505730309201, 0.17484790593555599], ['022714', 'gn10', 0.89866917718476991, 0.394931227817788, 0.70131370697394702], ['022714', 'gn1', 0.99581503460290088, -0.018098396582187499, 0.8510679233442241], ['030413', 'gn0', 0.99811333821705905, 1.6879048976670399, 0.99071193858018802], ['030513', 'gn0', 0.97657437271827596, 1.35838133984133, 1.0248179693783901], ['030713', 'gn0', 0.051910477909040201, 2.2193277636702597, 0.25836165603222599], ['031714', 'gn10', 0.92098023186859801, 0.93698880129259998, 0.90744207846718294], ['031714', 'gn1', 0.92818249758595306, 1.7308457499623, 0.84344346674554493], ['031914', 'gn10', 0.77675986987016077, 2.5196753303816202, 0.74936224896586789], ['031914', 'gn1', 0.65347221590880999, 4.9504227881996403, 0.44532915173033605], ['032014', 'gn10', 0.0792812966266941, 2.4386006043627204, 0.36272643833421203], ['032014', 'gn1', 0.11179924345106501, 5.1489676944872995, -0.23929050860724502], ['040113', 'gn0', 0.90574172874450787, 2.4040944731230001, 1.5917902420524499], ['040213', 'gn0', 0.035152518341529403, -2.9819434315485398, 4.5024963329229601], ['040413', 'gn0', 0.120940834117857, -8.3575234379403405, 3.29255207958508], ['042114', 'gn10', 0.9929318063722421, -0.64480785471813995, 0.98635123121956092], ['042114', 'gn1', 0.99390636604204907, 0.22224263210007, 0.98341194779350782], ['042214', 'gn10', 0.98721158655509711, -0.78426768125014212, 1.4095199573603201], ['042214', 'gn1', 0.95444269780691804, 0.66990581716799902, 1.0355508836305301], ['042414', 'gn10', 0.97533412482825099, -0.95524134325612708, 1.49571480959243], ['042414', 'gn1', 0.92803056617523294, 2.0629988276826698, 1.3767343159870202], ['050613', 'gn0', 0.993984288183139, 1.2205940253429299, 0.97673468104786987], ['050713', 'gn0', 0.65234179220635791, -11.328506555306699, 4.9473575959667402], ['050813', 'gn0', 0.92567189771545311, -0.315436195766018, 1.9943772483020499], ['051013', 'gn0', 0.94344277185417014, 0.78501367009478296, 1.40164456706139], ['051914', 'gn10', 0.87256414200224908, 2.25918650570974, 1.4134847760743801], ['051914', 'gn1', 0.88795204771702585, 3.4747242695940299, 1.04163838304802], ['052014', 'gn10', 0.94352338546589509, -1.6461824788296699, 1.1114159032900901], ['052014', 'gn1', 0.88334675382747097, -0.78909243568818588, 1.0490036611163001], ['052114', 'gn10', 0.96788776037301494, -1.5794528407930299, 1.14838223226631], ['052114', 'gn1', 0.97287537976362604, -0.57856601668863605, 0.97998640374906199], ['052214', 'gn10', 0.98577297735495995, 0.80517917463225408, 0.40666910324172206], ['052214', 'gn1', 0.98037315629353505, 0.74925845333690788, 0.42922781736672105], ['060313', 'gn0', 0.97232667117998406, -1.1514945525391298, 2.06116736445269], ['060314', 'gn10', 0.93999413391430708, -0.45724886003679105, 1.1398345176626599], ['060314', 'gn1', 0.86013404013368289, 3.58437139895454, 0.80925147428489907], ['060513', 'gn0', 0.41142735318366602, 1.25219972615746, 1.040764542344], ['060514', 'gn10', 0.93029704360775711, 0.39125534692629099, 1.2970500594197099], ['060514', 'gn1', 0.87195935222292409, 1.5979654801866698, 1.2931998263875901], ['060713', 'gn0', 0.40262259506655396, -4.9418715335478804, 3.0850740531916805], ['062314', 'gn10', 0.91256843445072988, -0.60878035843353095, 0.92118042222774299], ['062314', 'gn1', 0.90975353949485604, 0.179658407130137, 0.81343346769762592], ['070213', 'gn10', 0.69188810748475504, 1.4830094300996599, 1.8581098908837399], ['070213', 'gn1', 0.51278382301601289, -0.20535786245000698, 2.8879310689567403], ['070513', 'gn0', 0.040913443099794201, 1.25219972615746, 1.040764542344], ['070813', 'gn0', 0.98250544455572797, -0.17799174858796499, 2.0775165007156295], ['070814', 'gn10', 0.94643895080631701, -7.0430816404721197, 3.6239558351030898], ['070814', 'gn1', 0.99724680851353409, -0.90813855801537902, 1.6940623651831102], ['071014', 'gn10', 0.97607503413886398, -2.1813281275944099, 1.76507186800185], ['071014', 'gn1', 0.98041198070956792, -0.87482928642450009, 1.4852891573212299], ['071714', 'gn10', 0.97183396779584597, 1.9137824909023602, -0.095647065785406493], ['071714', 'gn1', 0.94453359051162411, 1.8733673602630299, -0.097596788962323794], ['080513', 'gn10', 0.97169585119717194, -1.4880246810448798, 2.2721930564408703], ['080513', 'gn1', 0.28946095906115399, 2.5688090675519799, 2.0449133718047001], ['080613', 'gn10', 0.94008109554627106, -0.82810498908214913, 1.7932911969300203], ['080613', 'gn1', 0.898501427132543, -1.4072360048891499, 1.7336971234776797], ['082014', 'gn10', 0.99643740486735299, -1.6936628116026398, 1.4970235248751398], ['082014', 'gn1', 0.99831549682176901, -1.0054414737843198, 1.45564379958751], ['082213', 'gn10', 0.028267322983837599, 1.6385803872373501, 0.12604176311211901], ['082213', 'gn1', 0.12076283580948, 2.1490904654601199, -0.19731530997517102], ['082514', 'gn10', 0.9651202312415601, 3.9999090208699397, 0.72678149280561], ['082514', 'gn1', 0.95023328278366193, 4.7633934889374405, 0.71793698453146104], ['082614', 'gn10', 0.84638296168317917, 2.25011380871564, 0.60840537706869702], ['082614', 'gn1', 0.81533510865273695, 2.53344822768064, 0.57973545300662799], ['082814', 'gn100', 0.97838651523393194, -1.2759280759471201, 2.4650594477232404], ['082814', 'gn10', 0.650228349650669, -0.7032021010296321, 1.5457062492434299], ['082814', 'gn1', 0.78731563649288505, -3.1575025668492698, 3.21550989653436], ['091514', 'gn100', 0.64208053289946998, -9.9265719700594097, 6.3329729493153097], ['091514', 'gn10', 0.94978010163619997, 2.2577966521415997, 1.1728002402689199], ['091514', 'gn1', 0.96060784241995589, 2.7389307192726804, 1.1073005257898703], ['091613', 'gn10', 0.91255898203942509, 0.27391558628734497, 0.86476829138222799], ['091613', 'gn1', 0.54114766049423302, 0.94358566601734084, 0.65946519559784611], ['091614', 'gn100', 0.90112892760107088, -4.1273509625568501, 3.78735462681616], ['091614', 'gn10', 0.98474754825591082, 0.67766413688518001, 1.0853791344399999], ['091614', 'gn1', 0.96700722553488794, 1.4418293150844299, 0.94682690508515788], ['091813', 'gn10', 0.152037859340936, 1.87836282986986, -0.37848655487303601], ['091813', 'gn1', 0.46240905638884711, 1.7841582514216203, -0.37746153922789699], ['091814', 'gn100', 0.79284249902399406, -3.06172823977283, 1.7768927896712898], ['091814', 'gn10', 0.99707039217273707, 0.98695501989930401, 0.63352476122014001], ['091814', 'gn1', 0.8678883530130771, 1.3023341249741001, 0.29581964945790601], ['092013', 'gn10', 0.87764452660529513, -2.5497208118688399, 2.0871025903907499], ['092013', 'gn1', 0.40530405675228998, -1.14118304135661, 2.8984507865403701], ['101314', 'gn100', 0.88781526301022307, 2.6585574394602101, 0.65877217288635792], ['101314', 'gn10', 0.92057281617889797, 1.77381482377218, 0.83562237368101211], ['101314', 'gn1', 0.91251968192948107, 2.35339948026563, 0.722389890220695], ['101413', 'gn10', 0.84233068307214409, -1.5217749656389998, 1.49884899283075], ['101413', 'gn1', 0.92400186864728306, -0.16532878358436601, 1.1827607526428798], ['101414', 'gn100', 0.35816370296897398, -11.410295816564201, 5.5586411350729206], ['101414', 'gn10', 0.99487663726307707, 1.00795822312939, 0.68622934506605004], ['101414', 'gn1', 0.99430383483681306, 1.4161970787863001, 0.66425004329104198], ['101613', 'gn10', 0.50102005407938111, 1.81644836648195, -0.41894319163035298], ['101613', 'gn1', 0.012126085933059999, 1.07184535516829, 0.17497017619098001], ['101714', 'gn100', 0.96006716512138401, -0.76048723564000908, 0.83054214078472], ['101714', 'gn10', 0.97408620105524091, 1.1446586072040201, 0.15972542731293699], ['101714', 'gn1', 0.99538183700530503, 0.46503021465504102, 0.45736497410729399], ['101813', 'gn10', 0.94274917457458407, -1.0558485339789301, 1.9193203883086301], ['101813', 'gn1', 0.72168084586835402, -4.19577281046947, 1.5767260115287802], ['110314', 'gn100', 0.48540902814630998, -0.76390934930758003, 1.6551953600063702], ['110314', 'gn10', 0.076935443292026506, 1.3874612318620601, -0.010291809613835299], ['110314', 'gn1', 0.63561437796084208, -0.0062892411014112701, 1.5542479640889499], ['110414', 'gn100', 0.60632491109050901, -9.4543022952816695, 5.6669824376758902], ['110414', 'gn10', 0.65625630753996, 4.1206016835680401, 0.60443284760773797], ['110414', 'gn1', 0.69794907508581494, 4.29933543042688, 0.54969767666869196], ['110614', 'gn100', 0.36988991325092896, -9.1103748653179899, 6.1008265652870799], ['110614', 'gn10', 0.97553071418264703, -0.47449070965289503, 0.84631454688550989], ['110614', 'gn1', 0.93141281668667297, 2.7103347340196495, 0.655026962638807], ['111213', 'gn10', 0.98733590433555407, -0.49826042183458902, 0.68192149145195502], ['111213', 'gn1', 0.97352153119880791, -0.24865674658010897, 0.63297721732045897], ['111214', 'gn100', 0.99771469034572091, -0.44515135883064894, 0.63105393579311708], ['111214', 'gn10', 0.72258170286988599, 0.48087161858823901, 0.35228007765524799], ['111214', 'gn1', 0.83350874701801603, 0.61743458083286407, 0.33090040724138697], ['111413', 'gn10', 0.10410650971049001, 2.02241883516868, -0.38129279584760206], ['111413', 'gn1', 0.0106045591484449, 1.3218129730141899, 0.14795076809666899], ['111513', 'gn10', 0.94935625418321001, -1.77154600109075, 1.6242845015169498], ['111513', 'gn1', 0.99726082745076206, 0.092120865627729601, 0.86222097406798404], ['120214', 'gn100', 0.50597955958402696, -48.008879746011708, 15.230275893641698], ['120214', 'gn10', 0.99071959321755798, -0.79141821156271097, 1.1611513553663999], ['120214', 'gn1', 0.98446513437593419, 0.32039092894205895, 1.0884011302437999], ['120414', 'gn100', 0.40759627908289797, -28.4748069108153, 14.0905279950739], ['120414', 'gn10', 0.99503771179023204, -3.7449452254623998, 1.8034182124864298], ['120414', 'gn1', 0.99857414192363803, -1.4216945138347701, 1.40458241534581], ['121012', 'gn0', 0.90760248097821594, -0.59088607348057898, 0.59559552372110902], ['121112', 'gn0', 0.93067241717077298, 0.12878577006231098, 0.29075542759401002], ['121113', 'gn10', 0.99689655779223507, 0.53202032899706497, 0.94944470257953406], ['121113', 'gn1', 0.99753001282267917, 0.35630324305971101, 1.4069016742968401], ['121312', 'gn0', 0.56526270914279397, 0.089645610852166505, 0.13771341666414802], ['121313', 'gn10', 0.77155955573231083, 0.9819808456808069, 0.41475713590521601], ['121313', 'gn1', 0.061351905826645597, 1.5745855446049899, 0.18948466676248105], ['121412', 'gn0', 1, -0.97531068384110997, 0.74745169288391289], ['121614', 'gn100', 0.34881549580247401, -0.694778107822005, 0.38898715224005104], ['121614', 'gn10', 0.7756065554522561, 0.045211428303675798, 0.20858514405736103], ['121614', 'gn1', 0.94560376455064787, -0.39204023358292295, 0.316596129622226]]
In [6]:
# change to data frame
df = pd.DataFrame(list_results, columns=["Date", "Gain", "Rsquared", "A_coeff", "B_coeff"])
print(df.head())
Date Gain Rsquared A_coeff B_coeff
0 010713 gn0 0.999913 -0.700480 0.911512
1 010813 gn0 0.712038 0.353666 0.190055
2 011013 gn0 0.175292 2.319334 -1.072155
3 011314 gn10 0.987127 -1.771561 1.012140
4 011314 gn1 0.881928 -2.193312 1.778894
In [7]:
# change date
df['Date'] = pd.to_datetime(df['Date'])
print(df.head())
Date Gain Rsquared A_coeff B_coeff
0 2013-01-07 gn0 0.999913 -0.700480 0.911512
1 2013-01-08 gn0 0.712038 0.353666 0.190055
2 2013-01-10 gn0 0.175292 2.319334 -1.072155
3 2014-01-13 gn10 0.987127 -1.771561 1.012140
4 2014-01-13 gn1 0.881928 -2.193312 1.778894
In [8]:
# save to csv
df.to_csv("legacy_coeffs_rsquared.csv", index=False)
Content source: ucd-cws/arcproject-wq-processing
Similar notebooks: