In [1]:
import pandas as pd
In [2]:
cols = [0,7,10,11,15,16,27,28,46,59,64,69,75,82,86,89,94,105,128,130,133,136,143,144,
150,159,163,193,227,232,233,246,247,254]
table = pd.read_csv('C:\Users\Ty Dickinson\Downloads\kbdisummary_1995_2003.csv', usecols=cols)
#sets all columns to have an integer datatype; next line overwrites this for Date
table.apply(pd.to_numeric, errors='ignore').dtypes
table.Date = pd.to_datetime(table.Date)
Date1 = pd.to_datetime('09-01-1999')
Date2 = pd.to_datetime('11-30-1999')
Date3 = pd.to_datetime('03-01-2000')
Date4 = pd.to_datetime('05-31-2000')
Date5 = pd.to_datetime('06-01-2000')
Date6 = pd.to_datetime('08-31-2000')
#These lists will contain individual counties' days above 550
Fall1999 = []
Fall2000 = []
Fall2001 = []
Spring2000 = []
Spring2001 = []
Summer2000 = []
Summer2001 = []
FallCount = 0
while FallCount <= 2:
x = table.loc[(table.Date >= Date1) & (table.Date <= Date2)]
columns = [x.ATASCOSA.tolist(), x.BANDERA.tolist(), x.BASTROP.tolist(), x.BEXAR.tolist(),
x.BLANCO.tolist(), x.BURNET.tolist(), x.CALDWELL.tolist(), x.COMAL.tolist(),
x.DEWITT.tolist(), x.DIMMIT.tolist(), x.EDWARDS.tolist(), x.FAYETTE.tolist(),
x.FRIO.tolist(), x.GILLESPIE.tolist(), x.GONZALES.tolist(), x.GUADALUPE.tolist(),
x.HAYS.tolist(), x.KARNES.tolist(), x.KENDALL.tolist(), x.KERR.tolist(),
x.KINNEY.tolist(), x.LAVACA.tolist(), x.LEE.tolist(), x.LLANO.tolist(),
x.MAVERICK.tolist(), x.MEDINA.tolist(), x.REAL.tolist(), x.TRAVIS.tolist(),
x.UVALDE.tolist(), x.VAL_VERDE.tolist(), x.WILLIAMSON.tolist(),
x.WILSON.tolist(), x.ZAVALA.tolist()]
for i in range(0,len(columns)):
ThresholdDays = 0
for j in range(0,len(columns[i])):
if columns[i][j] >= 500:
ThresholdDays += 1
if Date1 == pd.Timestamp('09-01-1999'):
Fall1999.insert(i,ThresholdDays)
elif Date1 == pd.Timestamp('09-01-2000'):
Fall2000.insert(i,ThresholdDays)
else:
Fall2001.insert(i,ThresholdDays)
Date1 = Date1 + pd.DateOffset(years=1)
Date2 = Date2 + pd.DateOffset(years=1)
FallCount += 1
SpringCount = 0
while SpringCount <= 1:
x = table.loc[(table.Date >= Date3) & (table.Date <= Date4)]
columns = [x.ATASCOSA.tolist(), x.BANDERA.tolist(), x.BASTROP.tolist(), x.BEXAR.tolist(),
x.BLANCO.tolist(), x.BURNET.tolist(), x.CALDWELL.tolist(), x.COMAL.tolist(),
x.DEWITT.tolist(), x.DIMMIT.tolist(), x.EDWARDS.tolist(), x.FAYETTE.tolist(),
x.FRIO.tolist(), x.GILLESPIE.tolist(), x.GONZALES.tolist(), x.GUADALUPE.tolist(),
x.HAYS.tolist(), x.KARNES.tolist(), x.KENDALL.tolist(), x.KERR.tolist(),
x.KINNEY.tolist(), x.LAVACA.tolist(), x.LEE.tolist(), x.LLANO.tolist(),
x.MAVERICK.tolist(), x.MEDINA.tolist(), x.REAL.tolist(), x.TRAVIS.tolist(),
x.UVALDE.tolist(), x.VAL_VERDE.tolist(), x.WILLIAMSON.tolist(),
x.WILSON.tolist(), x.ZAVALA.tolist()]
for i in range(0,len(columns)):
ThresholdDays = 0
for j in range(0,len(columns[i])):
if columns[i][j] >= 500:
ThresholdDays += 1
if Date3 == pd.Timestamp('03-01-2000'):
Spring2000.insert(i,ThresholdDays)
else:
Spring2001.insert(i,ThresholdDays)
Date3 = Date3 + pd.DateOffset(years=1)
Date4 = Date4 + pd.DateOffset(years=1)
SpringCount += 1
SummerCount = 0
while SummerCount <= 1:
x = table.loc[(table.Date >= Date5) & (table.Date <= Date6)]
columns = [x.ATASCOSA.tolist(), x.BANDERA.tolist(), x.BASTROP.tolist(), x.BEXAR.tolist(),
x.BLANCO.tolist(), x.BURNET.tolist(), x.CALDWELL.tolist(), x.COMAL.tolist(),
x.DEWITT.tolist(), x.DIMMIT.tolist(), x.EDWARDS.tolist(), x.FAYETTE.tolist(),
x.FRIO.tolist(), x.GILLESPIE.tolist(), x.GONZALES.tolist(), x.GUADALUPE.tolist(),
x.HAYS.tolist(), x.KARNES.tolist(), x.KENDALL.tolist(), x.KERR.tolist(),
x.KINNEY.tolist(), x.LAVACA.tolist(), x.LEE.tolist(), x.LLANO.tolist(),
x.MAVERICK.tolist(), x.MEDINA.tolist(), x.REAL.tolist(), x.TRAVIS.tolist(),
x.UVALDE.tolist(), x.VAL_VERDE.tolist(), x.WILLIAMSON.tolist(),
x.WILSON.tolist(), x.ZAVALA.tolist()]
for i in range(0,len(columns)):
ThresholdDays = 0
for j in range(0,len(columns[i])):
if columns[i][j] >= 500:
ThresholdDays += 1
if Date5 == pd.Timestamp('06-01-2000'):
Summer2000.insert(i,ThresholdDays)
else:
Summer2001.insert(i,ThresholdDays)
Date5 = Date5 + pd.DateOffset(years=1)
Date6 = Date6 + pd.DateOffset(years=1)
SummerCount += 1
fall = [sum(Fall1999), sum(Fall2000), sum(Fall2001)]
spring = [sum(Spring2000), sum(Spring2001)]
summer = [sum(Summer2000), sum(Summer2001)]
dffall = pd.DataFrame({'1999': [fall[0]], '2000': [fall[1]],
'2001': [fall[2]]}, index=['Fall'])
dfspring = pd.DataFrame({'1999': [''], '2000': [spring[0]],
'2001': spring[1]}, index=['Spring'])
dfsummer = pd.DataFrame({'1999': [''], '2000': [summer[0]],
'2001': summer[1]}, index=['Summer'])
dftot = pd.concat([dffall, dfspring, dfsummer], axis=0)
In [ ]: