In [1]:
%matplotlib inline
In [3]:
import pandas as pd
import numpy as np
import seaborn as sns
from matplotlib import pyplot as plt
In [4]:
sns.set(style='whitegrid')
In [7]:
!ls -l ../../BrainPowerLogs/Firing/
In [22]:
firing = pd.read_csv('../../BrainPowerLogs/Firing/2015-12-04_13-34-56', header=None, names=['time', 'neuron', 'one'])
firing.time = pd.to_timedelta(firing.time, unit='ms') + pd.to_datetime('2015-12-04 13:34:56')
firing.head()
Out[22]:
In [24]:
energy = pd.read_csv('../../BrainPowerLogs/Energy/2015-12-04_13-34-56', header=None, names=['time', 'available_pools', 'total_energy'])
energy.time = pd.to_timedelta(energy.time, unit='ms') + pd.to_datetime('2015-12-04 13:34:56')
energy.index = energy.time
energy.head()
Out[24]:
In [25]:
total_firing = firing.groupby('time').one.sum()
In [31]:
ax = total_firing.plot()
In [33]:
energy.total_energy.plot()
Out[33]:
In [53]:
plt.scatter(total_firing, energy.total_energy.ix[total_firing.index], alpha=0.2)
plt.ylabel('Remaining ATP immediately accessible to the neurons')
plt.xlabel('Number of firings')
plt.title('Phase diagram\nConvergence to the limit cycle')
plt.savefig('lotka-volterra-1.pdf')
plt.savefig('lotka-volterra-1.png')
In [51]:
plt.scatter(total_firing, energy.available_pools.ix[total_firing.index], alpha=0.2)
plt.ylabel('Number of non-empty pools')
plt.xlabel('Number of activations')
plt.title('Phase diagram\nConvergence to the limit cycle')
plt.savefig('lotka-volterra-2.pdf')
plt.savefig('lotka-volterra-2.png')
In [ ]: