Load Data from CSVs


In [1]:
import unicodecsv

## Longer version of code (replaced with shorter, equivalent version below)

# enrollments = []
# f = open('enrollments.csv', 'rb')
# reader = unicodecsv.DictReader(f)
# for row in reader:
#     enrollments.append(row)
# f.close()

with open('enrollments.csv', 'rb') as f:
    reader = unicodecsv.DictReader(f)
    enrollments = list(reader)

enrollments[0]


Out[1]:
{u'account_key': u'448',
 u'cancel_date': u'2015-01-14',
 u'days_to_cancel': u'65',
 u'is_canceled': u'True',
 u'is_udacity': u'True',
 u'join_date': u'2014-11-10',
 u'status': u'canceled'}

In [2]:
#####################################
#                 1                 #
#####################################

## Read in the data from daily_engagement.csv and project_submissions.csv 
## and store the results in the below variables.
## Then look at the first row of each table.
def read_csv(filename):
    with open(filename, 'rb') as f:
        reader = unicodecsv.DictReader(f)
        return list(reader)

daily_engagement = read_csv('daily_engagement.csv')
project_submissions = read_csv('project_submissions.csv')

Fixing Data Types


In [3]:
from datetime import datetime as dt

# Takes a date as a string, and returns a Python datetime object. 
# If there is no date given, returns None
def parse_date(date):
    if date == '':
        return None
    else:
        return dt.strptime(date, '%Y-%m-%d')
    
# Takes a string which is either an empty string or represents an integer,
# and returns an int or None.
def parse_maybe_int(i):
    if i == '':
        return None
    else:
        return int(i)

# Clean up the data types in the enrollments table
for enrollment in enrollments:
    enrollment['cancel_date'] = parse_date(enrollment['cancel_date'])
    enrollment['days_to_cancel'] = parse_maybe_int(enrollment['days_to_cancel'])
    enrollment['is_canceled'] = enrollment['is_canceled'] == 'True'
    enrollment['is_udacity'] = enrollment['is_udacity'] == 'True'
    enrollment['join_date'] = parse_date(enrollment['join_date'])
    
enrollments[0]


Out[3]:
{u'account_key': u'448',
 u'cancel_date': datetime.datetime(2015, 1, 14, 0, 0),
 u'days_to_cancel': 65,
 u'is_canceled': True,
 u'is_udacity': True,
 u'join_date': datetime.datetime(2014, 11, 10, 0, 0),
 u'status': u'canceled'}

In [12]:
# Clean up the data types in the engagement table
for engagement_record in daily_engagement:
    engagement_record['lessons_completed'] = int(float(engagement_record['lessons_completed']))
    engagement_record['num_courses_visited'] = int(float(engagement_record['num_courses_visited']))
    engagement_record['projects_completed'] = int(float(engagement_record['projects_completed']))
    engagement_record['total_minutes_visited'] = float(engagement_record['total_minutes_visited'])
    engagement_record['utc_date'] = parse_date(engagement_record['utc_date'])
    
daily_engagement[0]


Out[12]:
{u'acct': u'0',
 u'lessons_completed': 0,
 u'num_courses_visited': 1,
 u'projects_completed': 0,
 u'total_minutes_visited': 11.6793745,
 u'utc_date': datetime.datetime(2015, 1, 9, 0, 0)}

In [13]:
# Clean up the data types in the submissions table
for submission in project_submissions:
    submission['completion_date'] = parse_date(submission['completion_date'])
    submission['creation_date'] = parse_date(submission['creation_date'])

project_submissions[0]


Out[13]:
{u'account_key': u'256',
 u'assigned_rating': u'UNGRADED',
 u'completion_date': datetime.datetime(2015, 1, 16, 0, 0),
 u'creation_date': datetime.datetime(2015, 1, 14, 0, 0),
 u'lesson_key': u'3176718735',
 u'processing_state': u'EVALUATED'}

Investigating the Data


In [ ]:
#####################################
#                 2                 #
#####################################

## Find the total number of rows and the number of unique students (account keys)
## in each table.

Problems in the Data


In [ ]:
#####################################
#                 3                 #
#####################################

## Rename the "acct" column in the daily_engagement table to "account_key".

Missing Engagement Records


In [ ]:
#####################################
#                 4                 #
#####################################

## Find any one student enrollments where the student is missing from the daily engagement table.
## Output that enrollment.

Checking for More Problem Records


In [ ]:
#####################################
#                 5                 #
#####################################

## Find the number of surprising data points (enrollments missing from
## the engagement table) that remain, if any.

Tracking Down the Remaining Problems


In [ ]:
# Create a set of the account keys for all Udacity test accounts
udacity_test_accounts = set()
for enrollment in enrollments:
    if enrollment['is_udacity']:
        udacity_test_accounts.add(enrollment['account_key'])
len(udacity_test_accounts)

In [ ]:
# Given some data with an account_key field, removes any records corresponding to Udacity test accounts
def remove_udacity_accounts(data):
    non_udacity_data = []
    for data_point in data:
        if data_point['account_key'] not in udacity_test_accounts:
            non_udacity_data.append(data_point)
    return non_udacity_data

In [ ]:
# Remove Udacity test accounts from all three tables
non_udacity_enrollments = remove_udacity_accounts(enrollments)
non_udacity_engagement = remove_udacity_accounts(daily_engagement)
non_udacity_submissions = remove_udacity_accounts(project_submissions)

print len(non_udacity_enrollments)
print len(non_udacity_engagement)
print len(non_udacity_submissions)

Refining the Question


In [ ]:
#####################################
#                 6                 #
#####################################

## Create a dictionary named paid_students containing all students who either
## haven't canceled yet or who remained enrolled for more than 7 days. The keys
## should be account keys, and the values should be the date the student enrolled.

paid_students =

Getting Data from First Week


In [ ]:
# Takes a student's join date and the date of a specific engagement record,
# and returns True if that engagement record happened within one week
# of the student joining.
def within_one_week(join_date, engagement_date):
    time_delta = engagement_date - join_date
    return time_delta.days < 7

In [ ]:
#####################################
#                 7                 #
#####################################

## Create a list of rows from the engagement table including only rows where
## the student is one of the paid students you just found, and the date is within
## one week of the student's join date.

paid_engagement_in_first_week =

Exploring Student Engagement


In [ ]:
from collections import defaultdict

# Create a dictionary of engagement grouped by student.
# The keys are account keys, and the values are lists of engagement records.
engagement_by_account = defaultdict(list)
for engagement_record in paid_engagement_in_first_week:
    account_key = engagement_record['account_key']
    engagement_by_account[account_key].append(engagement_record)

In [ ]:
# Create a dictionary with the total minutes each student spent in the classroom during the first week.
# The keys are account keys, and the values are numbers (total minutes)
total_minutes_by_account = {}
for account_key, engagement_for_student in engagement_by_account.items():
    total_minutes = 0
    for engagement_record in engagement_for_student:
        total_minutes += engagement_record['total_minutes_visited']
    total_minutes_by_account[account_key] = total_minutes

In [ ]:
import numpy as np

# Summarize the data about minutes spent in the classroom
total_minutes = total_minutes_by_account.values()
print 'Mean:', np.mean(total_minutes)
print 'Standard deviation:', np.std(total_minutes)
print 'Minimum:', np.min(total_minutes)
print 'Maximum:', np.max(total_minutes)

Debugging Data Analysis Code


In [ ]:
#####################################
#                 8                 #
#####################################

## Go through a similar process as before to see if there is a problem.
## Locate at least one surprising piece of data, output it, and take a look at it.

Lessons Completed in First Week


In [ ]:
#####################################
#                 9                 #
#####################################

## Adapt the code above to find the mean, standard deviation, minimum, and maximum for
## the number of lessons completed by each student during the first week. Try creating
## one or more functions to re-use the code above.

Number of Visits in First Week


In [ ]:
######################################
#                 10                 #
######################################

## Find the mean, standard deviation, minimum, and maximum for the number of
## days each student visits the classroom during the first week.

Splitting out Passing Students


In [ ]:
######################################
#                 11                 #
######################################

## Create two lists of engagement data for paid students in the first week.
## The first list should contain data for students who eventually pass the
## subway project, and the second list should contain data for students
## who do not.

subway_project_lesson_keys = ['746169184', '3176718735']

passing_engagement =
non_passing_engagement =

Comparing the Two Student Groups


In [ ]:
######################################
#                 12                 #
######################################

## Compute some metrics you're interested in and see how they differ for
## students who pass the subway project vs. students who don't. A good
## starting point would be the metrics we looked at earlier (minutes spent
## in the classroom, lessons completed, and days visited).

Making Histograms


In [ ]:
######################################
#                 13                 #
######################################

## Make histograms of the three metrics we looked at earlier for both
## students who passed the subway project and students who didn't. You
## might also want to make histograms of any other metrics you examined.

Improving Plots and Sharing Findings


In [ ]:
######################################
#                 14                 #
######################################

## Make a more polished version of at least one of your visualizations
## from earlier. Try importing the seaborn library to make the visualization
## look better, adding axis labels and a title, and changing one or more
## arguments to the hist() function.