Original data shapes: (13870, 22) (13870,)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/imblearn/base.py:306: UserWarning: The target type should be binary.
warnings.warn('The target type should be binary.')
Balanced data shapes: (94430, 22) (94430,)
('ProvStore', 'DecisionTreeClassifier', 0.98433862433862429, 0.6282739690504968)
('ProvStore', 'SVC', 0.97724867724867726, 54.664983707945794)
('ProvStore', 'KNeighborsClassifier', 0.97798941798941796, 0.6841244460083544)
('ProvStore', 'RandomForestClassifier', 0.98529100529100533, 0.9375908700749278)
('ProvStore', 'AdaBoostClassifier', 0.24137566137566138, 11.694342364091426)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/ensemble/gradient_boosting.py:583: RuntimeWarning: overflow encountered in double_scalars
tree.value[leaf, 0, 0] = numerator / denominator
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/utils/extmath.py:410: RuntimeWarning: invalid value encountered in subtract
out = np.log(np.sum(np.exp(arr - vmax), axis=0))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/ensemble/gradient_boosting.py:558: RuntimeWarning: invalid value encountered in multiply
return np.sum(-1 * sample_weight * (Y * pred).sum(axis=1) +
('ProvStore', 'GradientBoostingClassifier', 0.96719576719576716, 177.97722859308124)
('ProvStore', 'GaussianNB', 0.63534391534391532, 0.1893952637910843)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.2196116358973086)
('ProvStore', 'SGDClassifier', 0.58592592592592596, 0.95608109398745)
('ProvStore', 'MLPClassifier', 0.97873015873015878, 7.766927886987105)
('ProvStore', 'DecisionTreeClassifier', 0.98317460317460315, 0.6422885661013424)
('ProvStore', 'SVC', 0.97523809523809524, 56.62782682082616)
('ProvStore', 'KNeighborsClassifier', 0.98232804232804238, 0.7215720429085195)
('ProvStore', 'RandomForestClassifier', 0.9838095238095238, 0.9315545791760087)
('ProvStore', 'AdaBoostClassifier', 0.23883597883597885, 12.325766609050333)
('ProvStore', 'GradientBoostingClassifier', 0.98126984126984129, 205.08686965494417)
('ProvStore', 'GaussianNB', 0.63195767195767194, 0.19474898418411613)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.21984002296812832)
('ProvStore', 'SGDClassifier', 0.63460317460317461, 1.0515488469973207)
('ProvStore', 'MLPClassifier', 0.97894179894179889, 17.490266302833334)
('ProvStore', 'DecisionTreeClassifier', 0.98042328042328042, 0.7004924649372697)
('ProvStore', 'SVC', 0.97492063492063497, 60.00700272107497)
('ProvStore', 'KNeighborsClassifier', 0.97492063492063497, 0.7562006588559598)
('ProvStore', 'RandomForestClassifier', 0.98137566137566135, 1.017202251125127)
('ProvStore', 'AdaBoostClassifier', 0.24116402116402116, 12.618408649927005)
('ProvStore', 'GradientBoostingClassifier', 0.98052910052910058, 191.60630124108866)
('ProvStore', 'GaussianNB', 0.63100529100529101, 0.18379174708388746)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.20788549608550966)
('ProvStore', 'SGDClassifier', 0.56105820105820103, 0.9839116588700563)
('ProvStore', 'MLPClassifier', 0.97915343915343911, 13.864243179094046)
('ProvStore', 'DecisionTreeClassifier', 0.982010582010582, 0.6382025182247162)
('ProvStore', 'SVC', 0.97587301587301589, 54.57399194291793)
('ProvStore', 'KNeighborsClassifier', 0.982010582010582, 0.7025791951455176)
('ProvStore', 'RandomForestClassifier', 0.98370370370370375, 0.9280164430383593)
('ProvStore', 'AdaBoostClassifier', 0.24359788359788359, 12.009571711998433)
('ProvStore', 'GradientBoostingClassifier', 0.98243386243386244, 187.4014346669428)
('ProvStore', 'GaussianNB', 0.64074074074074072, 0.1926153169479221)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.20157398888841271)
('ProvStore', 'SGDClassifier', 0.66264550264550259, 0.9724252661690116)
('ProvStore', 'MLPClassifier', 0.97978835978835976, 24.709092132980004)
('ProvStore', 'DecisionTreeClassifier', 0.98116402116402113, 0.6377822048962116)
('ProvStore', 'SVC', 0.97576719576719573, 55.80485440604389)
('ProvStore', 'KNeighborsClassifier', 0.97798941798941796, 0.7254003388807178)
('ProvStore', 'RandomForestClassifier', 0.98222222222222222, 0.9230234220158309)
('ProvStore', 'AdaBoostClassifier', 0.23904761904761904, 12.039744910085574)
('ProvStore', 'GradientBoostingClassifier', 0.98126984126984129, 189.90324166906066)
('ProvStore', 'GaussianNB', 0.63417989417989418, 0.1964319630060345)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.20328653207980096)
('ProvStore', 'SGDClassifier', 0.39915343915343915, 0.9719647150486708)
('ProvStore', 'MLPClassifier', 0.97746031746031747, 11.966222131159157)
('ProvStore', 'DecisionTreeClassifier', 0.97838066977532856, 0.6494953420478851)
('ProvStore', 'SVC', 0.97329376854599403, 55.16984712891281)
('ProvStore', 'KNeighborsClassifier', 0.9358838490885969, 0.7060083199758083)
('ProvStore', 'RandomForestClassifier', 0.97965239508266211, 0.9225535469595343)
('ProvStore', 'AdaBoostClassifier', 0.24258160237388723, 12.090174629818648)
('ProvStore', 'GradientBoostingClassifier', 0.97700296735905046, 190.71470193611458)
('ProvStore', 'GaussianNB', 0.63342518016108518, 0.19647060008719563)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.20877749798819423)
('ProvStore', 'SGDClassifier', 0.40525646460364562, 0.9651722251437604)
('ProvStore', 'MLPClassifier', 0.97806273844849512, 28.429929216858)
('ProvStore', 'DecisionTreeClassifier', 0.98346757100466298, 0.6399862139951438)
('ProvStore', 'SVC', 0.97657905892327257, 54.96170974592678)
('ProvStore', 'KNeighborsClassifier', 0.97912250953793978, 0.7141891859937459)
('ProvStore', 'RandomForestClassifier', 0.98389147944044086, 0.918852160917595)
('ProvStore', 'AdaBoostClassifier', 0.24459516744383214, 12.048601221991703)
('ProvStore', 'GradientBoostingClassifier', 0.98325561678677409, 177.18023935798556)
('ProvStore', 'GaussianNB', 0.6300339126748622, 0.18278415803797543)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.1987031849566847)
('ProvStore', 'SGDClassifier', 0.62484103433658333, 0.9174390151165426)
('ProvStore', 'MLPClassifier', 0.98071216617210677, 17.275759185198694)
('ProvStore', 'DecisionTreeClassifier', 0.97997032640949555, 0.6224692738614976)
('ProvStore', 'SVC', 0.97286986011021614, 53.502078492892906)
('ProvStore', 'KNeighborsClassifier', 0.97456549385332769, 0.6719589701388031)
('ProvStore', 'RandomForestClassifier', 0.98050021195421788, 0.8765174869913608)
('ProvStore', 'AdaBoostClassifier', 0.23749470114455279, 11.357924479059875)
('ProvStore', 'GradientBoostingClassifier', 0.95803306485799067, 171.1285808600951)
('ProvStore', 'GaussianNB', 0.63183552352691819, 0.1877018720842898)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.1983064040541649)
('ProvStore', 'SGDClassifier', 0.14444679949130987, 0.9076564291026443)
('ProvStore', 'MLPClassifier', 0.97742687579482834, 18.265281066996977)
('ProvStore', 'DecisionTreeClassifier', 0.98050021195421788, 0.6138428659178317)
('ProvStore', 'SVC', 0.97424756252649425, 52.9012228010688)
('ProvStore', 'KNeighborsClassifier', 0.97965239508266211, 0.6679396738763899)
('ProvStore', 'RandomForestClassifier', 0.98134802882577366, 0.8896840901579708)
('ProvStore', 'AdaBoostClassifier', 0.20199236964815601, 11.323103261878714)
('ProvStore', 'GradientBoostingClassifier', 0.97986434930055111, 171.47252991888672)
('ProvStore', 'GaussianNB', 0.63543874523103006, 0.18165320483967662)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.19786123000085354)
('ProvStore', 'SGDClassifier', 0.54069520983467567, 0.9000884960405529)
('ProvStore', 'MLPClassifier', 0.97816871555743956, 22.837120848009363)
('ProvStore', 'DecisionTreeClassifier', 0.98081814328105132, 0.6138826361857355)
('ProvStore', 'SVC', 0.97371767698177192, 53.480530600994825)
('ProvStore', 'KNeighborsClassifier', 0.97615515048749468, 0.6645809879992157)
('ProvStore', 'RandomForestClassifier', 0.98166596015260699, 0.8876681609544903)
('ProvStore', 'AdaBoostClassifier', 0.24003815175922, 11.361000906908885)
('ProvStore', 'GradientBoostingClassifier', 0.97816871555743956, 171.13530291896313)
('ProvStore', 'GaussianNB', 0.63702840186519716, 0.18148943991400301)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('ProvStore', 'QuadraticDiscriminantAnalysis', 0.071428571428571425, 0.19680562405847013)
('ProvStore', 'SGDClassifier', 0.58488766426451888, 0.8985274231527001)
('ProvStore', 'MLPClassifier', 0.9773208986858839, 15.01476671709679)
Original data shapes: (5175, 22) (5175,)
Balanced data shapes: (8982, 22) (8982,)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.88777777777777778, 0.016987378941848874)
('CollabMap/Buildings', 'SVC', 0.88777777777777778, 0.654363403795287)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.88555555555555554, 0.05372064607217908)
('CollabMap/Buildings', 'RandomForestClassifier', 0.88777777777777778, 0.034585230983793736)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.88666666666666671, 0.5658830350730568)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.88666666666666671, 0.3947491920553148)
('CollabMap/Buildings', 'GaussianNB', 0.81444444444444442, 0.012314618099480867)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.018667222931981087)
('CollabMap/Buildings', 'SGDClassifier', 0.86111111111111116, 0.008864692877978086)
('CollabMap/Buildings', 'MLPClassifier', 0.87666666666666671, 0.6421780500095338)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.90423162583518935, 0.01484856684692204)
('CollabMap/Buildings', 'SVC', 0.90645879732739421, 0.6500226748175919)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.9031180400890868, 0.053719501942396164)
('CollabMap/Buildings', 'RandomForestClassifier', 0.90757238307349664, 0.03554195910692215)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.90645879732739421, 0.5695940731093287)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.90979955456570161, 0.3946095979772508)
('CollabMap/Buildings', 'GaussianNB', 0.81514476614699327, 0.012178122997283936)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.016865471145138144)
('CollabMap/Buildings', 'SGDClassifier', 0.89755011135857465, 0.009447709890082479)
('CollabMap/Buildings', 'MLPClassifier', 0.85968819599109136, 0.6124980931635946)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.90423162583518935, 0.015430834144353867)
('CollabMap/Buildings', 'SVC', 0.9031180400890868, 0.6543858039658517)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.90200445434298437, 0.05414189305156469)
('CollabMap/Buildings', 'RandomForestClassifier', 0.90534521158129178, 0.03505380009301007)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.9031180400890868, 0.5720462128520012)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.90423162583518935, 0.39682423789054155)
('CollabMap/Buildings', 'GaussianNB', 0.83518930957683746, 0.012489131884649396)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.01576193398796022)
('CollabMap/Buildings', 'SGDClassifier', 0.89977728285077951, 0.008987564826384187)
('CollabMap/Buildings', 'MLPClassifier', 0.88641425389755013, 0.5565136370714754)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.88752783964365256, 0.01517017581500113)
('CollabMap/Buildings', 'SVC', 0.88864142538975499, 0.6576030489522964)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.88864142538975499, 0.05321069899946451)
('CollabMap/Buildings', 'RandomForestClassifier', 0.88864142538975499, 0.034273005090653896)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.88975501113585742, 0.5650485181249678)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.88975501113585742, 0.3973813729826361)
('CollabMap/Buildings', 'GaussianNB', 0.80178173719376389, 0.011975385947152972)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.015171959064900875)
('CollabMap/Buildings', 'SGDClassifier', 0.79955456570155903, 0.008932056836783886)
('CollabMap/Buildings', 'MLPClassifier', 0.88084632516703787, 0.6642728180158883)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.90089086859688194, 0.015501237008720636)
('CollabMap/Buildings', 'SVC', 0.89643652561247211, 0.6675954160746187)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.89420935412026725, 0.05456989607773721)
('CollabMap/Buildings', 'RandomForestClassifier', 0.90089086859688194, 0.03459863387979567)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.89866369710467708, 0.5672015990130603)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.90089086859688194, 0.4064055010676384)
('CollabMap/Buildings', 'GaussianNB', 0.7984409799554566, 0.011983428848907351)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.015305576846003532)
('CollabMap/Buildings', 'SGDClassifier', 0.5, 0.009027238003909588)
('CollabMap/Buildings', 'MLPClassifier', 0.88975501113585742, 0.8404242810793221)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.9164810690423163, 0.015215085120871663)
('CollabMap/Buildings', 'SVC', 0.91202672605790647, 0.6739825340919197)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.91202672605790647, 0.05468761106021702)
('CollabMap/Buildings', 'RandomForestClassifier', 0.9164810690423163, 0.03474461194127798)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.9164810690423163, 0.5646350081078708)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.9164810690423163, 0.3944222799036652)
('CollabMap/Buildings', 'GaussianNB', 0.80957683741648112, 0.01192634692415595)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.015321757178753614)
('CollabMap/Buildings', 'SGDClassifier', 0.91091314031180404, 0.008777210023254156)
('CollabMap/Buildings', 'MLPClassifier', 0.9031180400890868, 0.5597613728605211)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.90423162583518935, 0.015363594982773066)
('CollabMap/Buildings', 'SVC', 0.89977728285077951, 0.6706824710126966)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.89977728285077951, 0.055158216040581465)
('CollabMap/Buildings', 'RandomForestClassifier', 0.9031180400890868, 0.03474282193928957)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.90423162583518935, 0.5641248559113592)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.9031180400890868, 0.40329694002866745)
('CollabMap/Buildings', 'GaussianNB', 0.8229398663697105, 0.012779850978404284)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.01747719501145184)
('CollabMap/Buildings', 'SGDClassifier', 0.89643652561247211, 0.010938325896859169)
('CollabMap/Buildings', 'MLPClassifier', 0.89643652561247211, 0.4319399781525135)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.91425389755011133, 0.01533547998405993)
('CollabMap/Buildings', 'SVC', 0.91202672605790647, 0.674257131991908)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.91202672605790647, 0.05335550894960761)
('CollabMap/Buildings', 'RandomForestClassifier', 0.9164810690423163, 0.03643997898325324)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.91202672605790647, 0.5689118970185518)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.91425389755011133, 0.39761419710703194)
('CollabMap/Buildings', 'GaussianNB', 0.80846325167037858, 0.01226760190911591)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.015477162087336183)
('CollabMap/Buildings', 'SGDClassifier', 0.86748329621380849, 0.009108009049668908)
('CollabMap/Buildings', 'MLPClassifier', 0.90423162583518935, 0.35561410686932504)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.90979955456570161, 0.01639224193058908)
('CollabMap/Buildings', 'SVC', 0.90868596881959907, 0.6748741089832038)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.90868596881959907, 0.0544117649551481)
('CollabMap/Buildings', 'RandomForestClassifier', 0.90868596881959907, 0.03523489483632147)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.90757238307349664, 0.5674329781904817)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.90868596881959907, 0.3978273479733616)
('CollabMap/Buildings', 'GaussianNB', 0.80066815144766146, 0.011915349867194891)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.015337583143264055)
('CollabMap/Buildings', 'SGDClassifier', 0.90423162583518935, 0.008761785924434662)
('CollabMap/Buildings', 'MLPClassifier', 0.89866369710467708, 0.5861516550648957)
('CollabMap/Buildings', 'DecisionTreeClassifier', 0.90868596881959907, 0.015345130814239383)
('CollabMap/Buildings', 'SVC', 0.91091314031180404, 0.6742275769356638)
('CollabMap/Buildings', 'KNeighborsClassifier', 0.90979955456570161, 0.05475896107964218)
('CollabMap/Buildings', 'RandomForestClassifier', 0.9131403118040089, 0.03464117995463312)
('CollabMap/Buildings', 'AdaBoostClassifier', 0.91091314031180404, 0.565354464109987)
('CollabMap/Buildings', 'GradientBoostingClassifier', 0.9131403118040089, 0.39780942001380026)
('CollabMap/Buildings', 'GaussianNB', 0.8229398663697105, 0.012065473012626171)
('CollabMap/Buildings', 'QuadraticDiscriminantAnalysis', 0.5, 0.015248610870912671)
('CollabMap/Buildings', 'SGDClassifier', 0.5, 0.008899723878130317)
('CollabMap/Buildings', 'MLPClassifier', 0.90200445434298437, 0.43090497702360153)
Original data shapes: (4997, 22) (4997,)
Balanced data shapes: (7816, 22) (7816,)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.97186700767263423, 0.020979539956897497)
('CollabMap/Routes', 'SVC', 0.95524296675191811, 0.44960711104795337)
('CollabMap/Routes', 'KNeighborsClassifier', 0.97186700767263423, 0.04359858902171254)
('CollabMap/Routes', 'RandomForestClassifier', 0.97058823529411764, 0.0408935840241611)
('CollabMap/Routes', 'AdaBoostClassifier', 0.95524296675191811, 0.5249527900014073)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.96035805626598469, 0.3884893278591335)
('CollabMap/Routes', 'GaussianNB', 0.88363171355498726, 0.010736207943409681)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.5, 0.013698538998141885)
('CollabMap/Routes', 'SGDClassifier', 0.86700767263427114, 0.008162094047293067)
('CollabMap/Routes', 'MLPClassifier', 0.89002557544757033, 0.35570379719138145)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.95524296675191811, 0.021168424980714917)
('CollabMap/Routes', 'SVC', 0.95652173913043481, 0.43363479105755687)
('CollabMap/Routes', 'KNeighborsClassifier', 0.94629156010230175, 0.04332349495962262)
('CollabMap/Routes', 'RandomForestClassifier', 0.96803069053708435, 0.04138321802020073)
('CollabMap/Routes', 'AdaBoostClassifier', 0.94757033248081846, 0.5245488719083369)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.9578005115089514, 0.38526863185688853)
('CollabMap/Routes', 'GaussianNB', 0.87340153452685421, 0.010610869154334068)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.50383631713554988, 0.013361826073378325)
('CollabMap/Routes', 'SGDClassifier', 0.84015345268542196, 0.008047211915254593)
('CollabMap/Routes', 'MLPClassifier', 0.92199488491048598, 0.6466054818592966)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.979539641943734, 0.021141943987458944)
('CollabMap/Routes', 'SVC', 0.96547314578005117, 0.45452029700390995)
('CollabMap/Routes', 'KNeighborsClassifier', 0.95652173913043481, 0.04406040208414197)
('CollabMap/Routes', 'RandomForestClassifier', 0.97570332480818411, 0.04175944998860359)
('CollabMap/Routes', 'AdaBoostClassifier', 0.96163682864450128, 0.5209596098866314)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.96930946291560105, 0.3918162831105292)
('CollabMap/Routes', 'GaussianNB', 0.88618925831202044, 0.010599188972264528)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.5, 0.013487095013260841)
('CollabMap/Routes', 'SGDClassifier', 0.88874680306905374, 0.008146509062498808)
('CollabMap/Routes', 'MLPClassifier', 0.91048593350383633, 0.5307393870316446)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.9578005115089514, 0.021546280942857265)
('CollabMap/Routes', 'SVC', 0.95652173913043481, 0.45405340497381985)
('CollabMap/Routes', 'KNeighborsClassifier', 0.96035805626598469, 0.0447120419703424)
('CollabMap/Routes', 'RandomForestClassifier', 0.97698209718670082, 0.04188215802423656)
('CollabMap/Routes', 'AdaBoostClassifier', 0.9578005115089514, 0.525707176188007)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.96930946291560105, 0.39176974119618535)
('CollabMap/Routes', 'GaussianNB', 0.88363171355498726, 0.010745926992967725)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.50127877237851659, 0.013412278145551682)
('CollabMap/Routes', 'SGDClassifier', 0.86700767263427114, 0.008297739084810019)
('CollabMap/Routes', 'MLPClassifier', 0.9156010230179028, 0.5349720451049507)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.97058823529411764, 0.021594892954453826)
('CollabMap/Routes', 'SVC', 0.95907928388746799, 0.4563536951318383)
('CollabMap/Routes', 'KNeighborsClassifier', 0.95396419437340152, 0.043562589911744)
('CollabMap/Routes', 'RandomForestClassifier', 0.97186700767263423, 0.04198571410961449)
('CollabMap/Routes', 'AdaBoostClassifier', 0.95268542199488493, 0.523284254828468)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.96419437340153458, 0.3914957919623703)
('CollabMap/Routes', 'GaussianNB', 0.87851662404092068, 0.010639494052156806)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.5, 0.013480408117175102)
('CollabMap/Routes', 'SGDClassifier', 0.89258312020460362, 0.00814447202719748)
('CollabMap/Routes', 'MLPClassifier', 0.92199488491048598, 0.6447383579798043)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.96675191815856776, 0.021754767978563905)
('CollabMap/Routes', 'SVC', 0.96675191815856776, 0.46761976298876107)
('CollabMap/Routes', 'KNeighborsClassifier', 0.9578005115089514, 0.044905869057402015)
('CollabMap/Routes', 'RandomForestClassifier', 0.98337595907928388, 0.04145476594567299)
('CollabMap/Routes', 'AdaBoostClassifier', 0.95524296675191811, 0.5204397179186344)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.97058823529411764, 0.39297017781063914)
('CollabMap/Routes', 'GaussianNB', 0.8964194373401535, 0.011470217956230044)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.5, 0.013653832953423262)
('CollabMap/Routes', 'SGDClassifier', 0.88874680306905374, 0.009221930988132954)
('CollabMap/Routes', 'MLPClassifier', 0.93222506393861893, 0.7108156781177968)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.97698209718670082, 0.022520752158015966)
('CollabMap/Routes', 'SVC', 0.95140664961636834, 0.45409965910948813)
('CollabMap/Routes', 'KNeighborsClassifier', 0.95012787723785164, 0.04357666801661253)
('CollabMap/Routes', 'RandomForestClassifier', 0.97698209718670082, 0.04129388392902911)
('CollabMap/Routes', 'AdaBoostClassifier', 0.96035805626598469, 0.5216042711399496)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.96803069053708435, 0.3901908420957625)
('CollabMap/Routes', 'GaussianNB', 0.87212276214833762, 0.010740266181528568)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.5, 0.013356228126212955)
('CollabMap/Routes', 'SGDClassifier', 0.76086956521739135, 0.008141199825331569)
('CollabMap/Routes', 'MLPClassifier', 0.89130434782608692, 0.6191923918668181)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.96291560102301788, 0.021467959973961115)
('CollabMap/Routes', 'SVC', 0.94757033248081846, 0.44973524613305926)
('CollabMap/Routes', 'KNeighborsClassifier', 0.95140664961636834, 0.044122966937720776)
('CollabMap/Routes', 'RandomForestClassifier', 0.96675191815856776, 0.04133962909691036)
('CollabMap/Routes', 'AdaBoostClassifier', 0.94501278772378516, 0.5265291421674192)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.9578005115089514, 0.3895133410114795)
('CollabMap/Routes', 'GaussianNB', 0.87723785166240409, 0.010711267124861479)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.50127877237851659, 0.013615763979032636)
('CollabMap/Routes', 'SGDClassifier', 0.86956521739130432, 0.008239500923082232)
('CollabMap/Routes', 'MLPClassifier', 0.91943734015345269, 0.6894009760580957)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.95641025641025645, 0.020868079969659448)
('CollabMap/Routes', 'SVC', 0.95641025641025645, 0.4549294929020107)
('CollabMap/Routes', 'KNeighborsClassifier', 0.95897435897435901, 0.043662518030032516)
('CollabMap/Routes', 'RandomForestClassifier', 0.96923076923076923, 0.04213361884467304)
('CollabMap/Routes', 'AdaBoostClassifier', 0.95512820512820518, 0.5255626440048218)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.95897435897435901, 0.3892016881145537)
('CollabMap/Routes', 'GaussianNB', 0.87564102564102564, 0.010490303160622716)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.52692307692307694, 0.013371005887165666)
('CollabMap/Routes', 'SGDClassifier', 0.87435897435897436, 0.007904492085799575)
('CollabMap/Routes', 'MLPClassifier', 0.93333333333333335, 0.8296690708957613)
('CollabMap/Routes', 'DecisionTreeClassifier', 0.97692307692307689, 0.021202150965109468)
('CollabMap/Routes', 'SVC', 0.96025641025641029, 0.4666906089987606)
('CollabMap/Routes', 'KNeighborsClassifier', 0.96153846153846156, 0.04472280712798238)
('CollabMap/Routes', 'RandomForestClassifier', 0.982051282051282, 0.04239291697740555)
('CollabMap/Routes', 'AdaBoostClassifier', 0.95641025641025645, 0.5244158839341253)
('CollabMap/Routes', 'GradientBoostingClassifier', 0.96410256410256412, 0.3946032510139048)
('CollabMap/Routes', 'GaussianNB', 0.87820512820512819, 0.010561563074588776)
('CollabMap/Routes', 'QuadraticDiscriminantAnalysis', 0.5, 0.013449113117530942)
('CollabMap/Routes', 'SGDClassifier', 0.86282051282051286, 0.007984800031408668)
('CollabMap/Routes', 'MLPClassifier', 0.92307692307692313, 0.6299189948476851)
Original data shapes: (4710, 22) (4710,)
Balanced data shapes: (6038, 22) (6038,)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.95364238410596025, 0.022387400036677718)
('CollabMap/Routesets', 'SVC', 0.95033112582781454, 0.2934609961230308)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.94867549668874174, 0.01796406600624323)
('CollabMap/Routesets', 'RandomForestClassifier', 0.96357615894039739, 0.04233773797750473)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.94536423841059603, 0.40487608104012907)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.95364238410596025, 0.33734262199141085)
('CollabMap/Routesets', 'GaussianNB', 0.70529801324503316, 0.007951893145218492)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.5, 0.009763133013620973)
('CollabMap/Routesets', 'SGDClassifier', 0.80629139072847678, 0.006294980179518461)
('CollabMap/Routesets', 'MLPClassifier', 0.91225165562913912, 0.6456035568844527)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.95529801324503316, 0.022938868962228298)
('CollabMap/Routesets', 'SVC', 0.93543046357615889, 0.2891701660118997)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.9387417218543046, 0.01761500397697091)
('CollabMap/Routesets', 'RandomForestClassifier', 0.96192052980132448, 0.039801802951842546)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.9370860927152318, 0.40900831390172243)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.95364238410596025, 0.3370290780439973)
('CollabMap/Routesets', 'GaussianNB', 0.72350993377483441, 0.008051329059526324)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.5298013245033113, 0.009809479117393494)
('CollabMap/Routesets', 'SGDClassifier', 0.9056291390728477, 0.0062596299685537815)
('CollabMap/Routesets', 'MLPClassifier', 0.91059602649006621, 0.848628485109657)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.9668874172185431, 0.02195188100449741)
('CollabMap/Routesets', 'SVC', 0.95529801324503316, 0.29088515089824796)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.95364238410596025, 0.01778050302527845)
('CollabMap/Routesets', 'RandomForestClassifier', 0.9668874172185431, 0.04070160584524274)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.95695364238410596, 0.41058047697879374)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.9701986754966887, 0.3366008100565523)
('CollabMap/Routesets', 'GaussianNB', 0.71026490066225167, 0.00804082490503788)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.62086092715231789, 0.009874872863292694)
('CollabMap/Routesets', 'SGDClassifier', 0.80132450331125826, 0.00629096501506865)
('CollabMap/Routesets', 'MLPClassifier', 0.86258278145695366, 0.4127837170381099)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.94039735099337751, 0.022793053183704615)
('CollabMap/Routesets', 'SVC', 0.94867549668874174, 0.29284341912716627)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.94370860927152322, 0.017488260054960847)
('CollabMap/Routesets', 'RandomForestClassifier', 0.95033112582781454, 0.040734926937147975)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.9387417218543046, 0.40877815312705934)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.94370860927152322, 0.3369099551346153)
('CollabMap/Routesets', 'GaussianNB', 0.71357615894039739, 0.008098769001662731)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.69867549668874174, 0.009835758013650775)
('CollabMap/Routesets', 'SGDClassifier', 0.7483443708609272, 0.006303105968981981)
('CollabMap/Routesets', 'MLPClassifier', 0.91887417218543044, 0.5536460909061134)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.96026490066225167, 0.022474762052297592)
('CollabMap/Routesets', 'SVC', 0.95033112582781454, 0.2905781001318246)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.95529801324503316, 0.018090395024046302)
('CollabMap/Routesets', 'RandomForestClassifier', 0.9668874172185431, 0.040718986885622144)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.95529801324503316, 0.4052738829050213)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.95860927152317876, 0.3364135539159179)
('CollabMap/Routesets', 'GaussianNB', 0.73013245033112584, 0.008031239965930581)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.55960264900662249, 0.009823711821809411)
('CollabMap/Routesets', 'SGDClassifier', 0.51986754966887416, 0.006246552104130387)
('CollabMap/Routesets', 'MLPClassifier', 0.92384105960264906, 0.6654085628688335)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.95695364238410596, 0.02247065701521933)
('CollabMap/Routesets', 'SVC', 0.96192052980132448, 0.2903721600305289)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.95695364238410596, 0.017271067947149277)
('CollabMap/Routesets', 'RandomForestClassifier', 0.9701986754966887, 0.03956448216922581)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.95198675496688745, 0.4108170981053263)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.96026490066225167, 0.33951162500306964)
('CollabMap/Routesets', 'GaussianNB', 0.74006622516556286, 0.007972134975716472)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.5, 0.009750866796821356)
('CollabMap/Routesets', 'SGDClassifier', 0.80629139072847678, 0.006307743955403566)
('CollabMap/Routesets', 'MLPClassifier', 0.91887417218543044, 0.6905629721004516)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.96357615894039739, 0.02231321996077895)
('CollabMap/Routesets', 'SVC', 0.95198675496688745, 0.29159425594843924)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.95364238410596025, 0.01769202691502869)
('CollabMap/Routesets', 'RandomForestClassifier', 0.97185430463576161, 0.0407216539606452)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.95033112582781454, 0.40757188596762717)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.96192052980132448, 0.3426747820340097)
('CollabMap/Routesets', 'GaussianNB', 0.72682119205298013, 0.007955130888149142)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.61092715231788075, 0.00976023287512362)
('CollabMap/Routesets', 'SGDClassifier', 0.82284768211920534, 0.006251373095437884)
('CollabMap/Routesets', 'MLPClassifier', 0.88245033112582782, 0.4838518360629678)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.94867549668874174, 0.021686450811102986)
('CollabMap/Routesets', 'SVC', 0.94039735099337751, 0.28616546490229666)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.95198675496688745, 0.017545380163937807)
('CollabMap/Routesets', 'RandomForestClassifier', 0.96192052980132448, 0.03954092087224126)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.95198675496688745, 0.4065771880559623)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.9668874172185431, 0.34199658781290054)
('CollabMap/Routesets', 'GaussianNB', 0.72350993377483441, 0.00795102003030479)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.51821192052980136, 0.009783991845324636)
('CollabMap/Routesets', 'SGDClassifier', 0.82947019867549665, 0.006266012089326978)
('CollabMap/Routesets', 'MLPClassifier', 0.92218543046357615, 0.4708578719291836)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.96192052980132448, 0.02254656609147787)
('CollabMap/Routesets', 'SVC', 0.95033112582781454, 0.2978651749435812)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.95033112582781454, 0.017515859100967646)
('CollabMap/Routesets', 'RandomForestClassifier', 0.97682119205298013, 0.04210781003348529)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.94701986754966883, 0.4084370299242437)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.96192052980132448, 0.34344770293682814)
('CollabMap/Routesets', 'GaussianNB', 0.72847682119205293, 0.00797056290321052)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.67052980132450335, 0.009791651042178273)
('CollabMap/Routesets', 'SGDClassifier', 0.92715231788079466, 0.006243706913664937)
('CollabMap/Routesets', 'MLPClassifier', 0.92549668874172186, 0.5744108147919178)
('CollabMap/Routesets', 'DecisionTreeClassifier', 0.9700996677740864, 0.02246780996210873)
('CollabMap/Routesets', 'SVC', 0.95182724252491691, 0.29382482497021556)
('CollabMap/Routesets', 'KNeighborsClassifier', 0.95681063122923593, 0.017376876901835203)
('CollabMap/Routesets', 'RandomForestClassifier', 0.96677740863787376, 0.04088546405546367)
('CollabMap/Routesets', 'AdaBoostClassifier', 0.94850498338870437, 0.4093765649013221)
('CollabMap/Routesets', 'GradientBoostingClassifier', 0.96511627906976749, 0.33941993792541325)
('CollabMap/Routesets', 'GaussianNB', 0.74252491694352163, 0.007861454971134663)
('CollabMap/Routesets', 'QuadraticDiscriminantAnalysis', 0.71594684385382057, 0.009866333100944757)
('CollabMap/Routesets', 'SGDClassifier', 0.84053156146179397, 0.006350570125505328)
('CollabMap/Routesets', 'MLPClassifier', 0.9169435215946844, 0.8341562729328871)
Original data shapes: (69, 22) (69,)
Balanced data shapes: (74, 22) (74,)
('RRG/k=11', 'DecisionTreeClassifier', 1.0, 0.0014888178557157516)
('RRG/k=11', 'SVC', 0.75, 0.0013928350526839495)
('RRG/k=11', 'KNeighborsClassifier', 1.0, 0.001620562979951501)
('RRG/k=11', 'RandomForestClassifier', 1.0, 0.011498658917844296)
('RRG/k=11', 'AdaBoostClassifier', 1.0, 0.0583934560418129)
('RRG/k=11', 'GradientBoostingClassifier', 1.0, 0.03988169599324465)
('RRG/k=11', 'GaussianNB', 0.875, 0.0019737021066248417)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.0019838321022689342)
('RRG/k=11', 'SGDClassifier', 0.5, 0.0014307887759059668)
('RRG/k=11', 'MLPClassifier', 0.5, 0.003501111175864935)
('RRG/k=11', 'DecisionTreeClassifier', 0.625, 0.001395893981680274)
('RRG/k=11', 'SVC', 0.625, 0.00147455302067101)
('RRG/k=11', 'KNeighborsClassifier', 0.75, 0.0016390657983720303)
('RRG/k=11', 'RandomForestClassifier', 0.75, 0.011266457848250866)
('RRG/k=11', 'AdaBoostClassifier', 0.75, 0.05869359220378101)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('RRG/k=11', 'GradientBoostingClassifier', 0.75, 0.041996494168415666)
('RRG/k=11', 'GaussianNB', 0.875, 0.001696938183158636)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.0019595439080148935)
('RRG/k=11', 'SGDClassifier', 0.75, 0.0013615519274026155)
('RRG/k=11', 'MLPClassifier', 0.5, 0.006086983950808644)
('RRG/k=11', 'DecisionTreeClassifier', 1.0, 0.0012267990969121456)
('RRG/k=11', 'SVC', 1.0, 0.0015221829526126385)
('RRG/k=11', 'KNeighborsClassifier', 1.0, 0.001708680996671319)
('RRG/k=11', 'RandomForestClassifier', 0.875, 0.011418401962146163)
('RRG/k=11', 'AdaBoostClassifier', 1.0, 0.06060530710965395)
('RRG/k=11', 'GradientBoostingClassifier', 0.875, 0.040803274139761925)
('RRG/k=11', 'GaussianNB', 1.0, 0.001698334002867341)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.00198193802498281)
('RRG/k=11', 'SGDClassifier', 0.625, 0.0013500789646059275)
('RRG/k=11', 'MLPClassifier', 0.5, 0.0035098791122436523)
('RRG/k=11', 'DecisionTreeClassifier', 0.875, 0.0012260228395462036)
('RRG/k=11', 'SVC', 1.0, 0.0013764961622655392)
('RRG/k=11', 'KNeighborsClassifier', 1.0, 0.0016852649860084057)
('RRG/k=11', 'RandomForestClassifier', 1.0, 0.011407349957153201)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('RRG/k=11', 'AdaBoostClassifier', 1.0, 0.059438828844577074)
('RRG/k=11', 'GradientBoostingClassifier', 1.0, 0.04061459400691092)
('RRG/k=11', 'GaussianNB', 0.875, 0.0016240121331065893)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.0018182999920099974)
('RRG/k=11', 'SGDClassifier', 0.75, 0.001461958047002554)
('RRG/k=11', 'MLPClassifier', 0.5, 0.003513803007081151)
('RRG/k=11', 'DecisionTreeClassifier', 0.875, 0.0012086979113519192)
('RRG/k=11', 'SVC', 0.75, 0.0013758628629148006)
('RRG/k=11', 'KNeighborsClassifier', 0.875, 0.0016258079558610916)
('RRG/k=11', 'RandomForestClassifier', 0.875, 0.011359950061887503)
('RRG/k=11', 'AdaBoostClassifier', 0.875, 0.059313332894816995)
('RRG/k=11', 'GradientBoostingClassifier', 0.875, 0.04020914598368108)
('RRG/k=11', 'GaussianNB', 0.375, 0.0016456039156764746)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.0017497390508651733)
('RRG/k=11', 'SGDClassifier', 0.5, 0.0018051520455628633)
('RRG/k=11', 'MLPClassifier', 0.5, 0.006517163012176752)
('RRG/k=11', 'DecisionTreeClassifier', 0.625, 0.0013907940592616796)
('RRG/k=11', 'SVC', 0.625, 0.0014790929853916168)
('RRG/k=11', 'KNeighborsClassifier', 1.0, 0.0017442090902477503)
('RRG/k=11', 'RandomForestClassifier', 1.0, 0.01228414406068623)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('RRG/k=11', 'AdaBoostClassifier', 0.75, 0.061202650889754295)
('RRG/k=11', 'GradientBoostingClassifier', 0.5, 0.04074292699806392)
('RRG/k=11', 'GaussianNB', 1.0, 0.0016191198956221342)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.0019401400350034237)
('RRG/k=11', 'SGDClassifier', 0.5, 0.001365691889077425)
('RRG/k=11', 'MLPClassifier', 0.75, 0.004001813009381294)
('RRG/k=11', 'DecisionTreeClassifier', 1.0, 0.0012713468167930841)
('RRG/k=11', 'SVC', 0.875, 0.001363782910630107)
('RRG/k=11', 'KNeighborsClassifier', 0.875, 0.0017453581094741821)
('RRG/k=11', 'RandomForestClassifier', 0.875, 0.011464271927252412)
('RRG/k=11', 'AdaBoostClassifier', 0.875, 0.05868331203237176)
('RRG/k=11', 'GradientBoostingClassifier', 0.875, 0.04217184684239328)
('RRG/k=11', 'GaussianNB', 0.75, 0.0016572889871895313)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.0017651650123298168)
('RRG/k=11', 'SGDClassifier', 0.5, 0.001581565011292696)
('RRG/k=11', 'MLPClassifier', 0.5, 0.0035655731335282326)
('RRG/k=11', 'DecisionTreeClassifier', 0.66666666666666663, 0.0013633829075843096)
('RRG/k=11', 'SVC', 0.5, 0.001506275963038206)
('RRG/k=11', 'KNeighborsClassifier', 0.66666666666666663, 0.0017049508169293404)
('RRG/k=11', 'RandomForestClassifier', 0.66666666666666663, 0.011329544940963387)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
('RRG/k=11', 'AdaBoostClassifier', 0.66666666666666663, 0.0598211910109967)
('RRG/k=11', 'GradientBoostingClassifier', 0.66666666666666663, 0.04210941190831363)
('RRG/k=11', 'GaussianNB', 0.66666666666666663, 0.0017534890212118626)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.0018699930515140295)
('RRG/k=11', 'SGDClassifier', 0.5, 0.0013889288529753685)
('RRG/k=11', 'MLPClassifier', 0.5, 0.006494611036032438)
('RRG/k=11', 'DecisionTreeClassifier', 0.83333333333333337, 0.0012138860765844584)
('RRG/k=11', 'SVC', 0.83333333333333337, 0.0013793460093438625)
('RRG/k=11', 'KNeighborsClassifier', 0.83333333333333337, 0.0017623151652514935)
('RRG/k=11', 'RandomForestClassifier', 0.83333333333333337, 0.011491863988339901)
('RRG/k=11', 'AdaBoostClassifier', 0.83333333333333337, 0.05878868489526212)
('RRG/k=11', 'GradientBoostingClassifier', 0.83333333333333337, 0.041642566910013556)
('RRG/k=11', 'GaussianNB', 0.66666666666666663, 0.0016783999744802713)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.0017852059099823236)
('RRG/k=11', 'SGDClassifier', 0.5, 0.001595557201653719)
('RRG/k=11', 'MLPClassifier', 0.5, 0.003532076021656394)
('RRG/k=11', 'DecisionTreeClassifier', 1.0, 0.0012313551269471645)
('RRG/k=11', 'SVC', 0.83333333333333337, 0.0013750740326941013)
('RRG/k=11', 'KNeighborsClassifier', 1.0, 0.0016042978968471289)
('RRG/k=11', 'RandomForestClassifier', 1.0, 0.011315866140648723)
('RRG/k=11', 'AdaBoostClassifier', 0.83333333333333337, 0.059280174784362316)
('RRG/k=11', 'GradientBoostingClassifier', 1.0, 0.043036176823079586)
('RRG/k=11', 'GaussianNB', 1.0, 0.0016102669760584831)
('RRG/k=11', 'QuadraticDiscriminantAnalysis', 0.5, 0.0018779360689222813)
('RRG/k=11', 'SGDClassifier', 0.5, 0.0015114808920770884)
('RRG/k=11', 'MLPClassifier', 0.5, 0.00437734485603869)
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: divide by zero encountered in power
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:719: RuntimeWarning: invalid value encountered in multiply
X2 = np.dot(Xm, R * (S ** (-0.5)))
/Users/tdh/.virtualenvs/datasets-provanalytics-dmkd/lib/python3.6/site-packages/sklearn/discriminant_analysis.py:722: RuntimeWarning: divide by zero encountered in log
u = np.asarray([np.sum(np.log(s)) for s in self.scalings_])