In [1]:
import minke
from minke import mdctools
from minke import sources
from minke import distribution
In [2]:
import matplotlib.pyplot as plt
%matplotlib inline
In [3]:
mdcset = mdctools.MDCSet(['L1', 'H1'])
In [5]:
times = distribution.even_time(start = 1126620016, stop = 1136995216, rate = 630720, jitter = 20)
hrss_values = distribution.log_uniform(5e-23, 1e-20, len(times))
In [7]:
wnb = sources.WhiteNoiseBurst(duration=0.1, bandwidth=10, frequency=1000,
hrss=1e-21, time=1126620016, seed=3)
In [15]:
type(wnb._row())
Out[15]:
In [11]:
import lalsimulation as ls
import lalburst
In [18]:
x = wnb._row()
In [22]:
x.time_geocent.gpsSeconds
Out[22]:
In [17]:
a, b = lalburst.GenerateSimBurst(wnb._row(), 1.0/16384)
In [ ]:
mdcset = mdctools.MDCSet(['L1', 'H1'])
for hrss, time in zip(hrss_values, times):
# The HF WNB
# Note that the frequency is the low frequency, to keep consistency with
# the way things are specified in the burst group spec.
# Minke converts this into the central frequency
# under the hood.
wnb = sources.WhiteNoiseBurst(duration=0.1, bandwidth=10, frequency=1000,
hrss=hrss, time=time, seed=3)
mdcset + wnb
mdcset.save_xml('wnb1000b10tau0d1.xml.gz')
In [6]:
import numpy as np
In [7]:
for hrss, time in zip(hrss_values, times):
sn = sources.Scheidegger2010(incl=0., phi=0., time=time, filepath="R1E1CA_L.txt")
mdcset + sn
In [8]:
for hrss, time in zip(hrss_values, times):
dm = sources.Dimmelmeier08(time=time, filepath="signal_s15a2o05_ls.dat")
mdcset + dm
In [9]:
len(dm.hp.data.data)
In [13]:
sn.plot()
In [11]:
plus = np.loadtxt("R1E1CA_L_theta0.000_phi0.000-plus.txt")
cross = np.loadtxt("R1E1CA_L_theta0.000_phi0.000-cross.txt")
f, ax = plt.subplots(1,2)
ax[0].plot(plus)
ax[0].plot(cross)
ax[1].plot(plus, -cross)
Out[11]:
In [9]:
In [ ]:
for hrss, time in zip(hrss_values, times):
sg = sources.SineGaussian(q=2, frequency=200, hrss=hrss,
polarisation='circular', time=time, seed=3)
mdcset + sg
In [ ]:
sg.row.psi
In [ ]:
for hrss, time in zip(hrss_values, times):
ga = sources.Gaussian(duration = 0.001, hrss=hrss, time=time, seed=3)
mdcset + ga
In [12]:
mdcset = mdctools.MDCSet(['L1', 'H1'])
for hrss, time in zip(hrss_values, times):
wnb = sources.WhiteNoiseBurst(duration=0.1, bandwidth=10, frequency=1000, hrss=hrss,
polarisation='elliptical', time=time, seed=3)
mdcset + wnb
In [ ]:
sg.params
In [ ]:
wnb.plot()
In [ ]:
ga.plot()
In [ ]:
sg.plot()
In [ ]:
mdcset + sg
In [18]:
mdcset.waveforms[5000].plot()
In [ ]:
mdcset.save_xml('test.xml.gz')
In [ ]:
mdcset2 = mdctools.MDCSet(['L1', 'H1'])
mdcset2.load_xml('ga_d0100_rescaled.xml.gz', full=False)
In [ ]:
sn_mdc = mdctools.MDCSet(['L1', 'H1'])
In [ ]:
sn_mdc.load_xml('DM_s15_a2_09.xml.gz', full=False)
In [ ]:
sn_mdc.waveforms[0].numrel_data
In [ ]:
for a in lsctables.SimBurstTable.validcolumns.keys():
print a
In [ ]: