Slightly modified from mnist_cnn.py in the Keras examples folder:
https://github.com/keras-team/keras/blob/master/examples/mnist_cnn.py
In [1]:
KERAS_MODEL_FILEPATH = '../../demos/data/mnist_cnn/mnist_cnn.h5'
In [2]:
import numpy as np
np.random.seed(1337) # for reproducibility
from keras.datasets import mnist
from keras.models import Sequential
from keras.layers import Dense, Dropout, Flatten, Activation
from keras.layers import Conv2D, MaxPooling2D
from keras.utils import np_utils
from keras.callbacks import EarlyStopping, ModelCheckpoint
In [3]:
num_classes = 10
# input image dimensions
img_rows, img_cols = 28, 28
# the data, shuffled and split between train and test sets
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = x_train.reshape(x_train.shape[0], img_rows, img_cols, 1)
x_test = x_test.reshape(x_test.shape[0], img_rows, img_cols, 1)
input_shape = (img_rows, img_cols, 1)
x_train = x_train.astype('float32')
x_test = x_test.astype('float32')
x_train /= 255
x_test /= 255
print('x_train shape:', x_train.shape)
print(x_train.shape[0], 'train samples')
print(x_test.shape[0], 'test samples')
# convert class vectors to binary class matrices
y_train = np_utils.to_categorical(y_train, num_classes)
y_test = np_utils.to_categorical(y_test, num_classes)
In [4]:
# Sequential Model
model = Sequential()
model.add(Conv2D(32, (3, 3), input_shape=input_shape))
model.add(Activation('relu'))
model.add(Conv2D(32, (3, 3)))
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Dropout(0.25))
model.add(Flatten())
model.add(Dense(128))
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(num_classes))
model.add(Activation('softmax'))
model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'])
In [5]:
# Model saving callback
checkpointer = ModelCheckpoint(filepath=KERAS_MODEL_FILEPATH, monitor='val_acc', verbose=1, save_best_only=True)
# Early stopping
early_stopping = EarlyStopping(monitor='val_acc', verbose=1, patience=5)
# Train
batch_size = 128
epochs = 100
model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=2,
callbacks=[checkpointer, early_stopping],
validation_data=(x_test, y_test))
score = model.evaluate(x_test, y_test, verbose=0)
print('Test score:', score[0])
print('Test accuracy:', score[1])
In [ ]: