In [4]:
import random
from datetime import datetime
import numpy as np
#year = random.randint(1950, 2000)
#month = random.randint(1, 12)
year = 2017
month = 12
# Generate 300 random timestamps and users
n_events = 300
action_dic = {1:'on',0:'off'}
events=[]
for i in range(n_events):
day = random.randint(1, 28)
# add a few null values
#if i & 3 == 2 :
# user = np.nan
#else:
user = int(random.randint(1,10))
timestamp = datetime(year, month, day).timestamp()
action = action_dic[random.randint(0,1)]
events.append([timestamp,user,action])
#>>> from datetime import datetime
#>>> datetime.fromtimestamp(1172969203.1)
#datetime.datetime(2007, 3, 4, 0, 46, 43, 100000)
In [5]:
import numpy as np
import pandas as pd
# numpy array to df
events = np.array(events)
columns = ['timestamp','user','action']
df = pd.DataFrame(events,columns=columns)
df.head(10)
Out[5]:
In [6]:
df.to_csv('tracks.csv')
In [ ]: