In [5]:
import random
from datetime import datetime
import numpy as np

#year = random.randint(1950, 2000)
#month = random.randint(1, 12)
year = 2017
month = 12

# Generate 300 random timestamps and users
n_events = 300

events=[]
for i in range(n_events): 
    day = random.randint(1, 28)
    # add a few null values
    #if i & 3 == 2 :
    #    user = np.nan
    #else:
    user = int(random.randint(1,10))
    timestamp = datetime(year, month, day).timestamp()
    events.append([timestamp,user])

    

#>>> from datetime import datetime
#>>> datetime.fromtimestamp(1172969203.1)
#datetime.datetime(2007, 3, 4, 0, 46, 43, 100000)

In [6]:
import numpy as np
import pandas as pd
# numpy array to df

events = np.array(events)
columns = ['timestamp','user']
df = pd.DataFrame(events,columns=columns)
df.head(10)


Out[6]:
timestamp user
0 1.513066e+09 6.0
1 1.513930e+09 2.0
2 1.513152e+09 NaN
3 1.513152e+09 1.0
4 1.512720e+09 8.0
5 1.512720e+09 10.0
6 1.513238e+09 NaN
7 1.513325e+09 4.0
8 1.512979e+09 6.0
9 1.512893e+09 6.0

In [7]:
df.to_csv('random_timestamps.csv')

In [ ]: