In [1]:
require 'cunn'; require 'nn'; require 'torch'; require 'image';
In [2]:
model = torch.load('result4/model.dat')
In [4]:
m = model:get(2)
In [12]:
data = torch.load('mnist.t7/test_32x32.t7', 'ascii')
In [54]:
model:evaluate()
prediction = model:forward(data['data'][1])
val,output = torch.max(prediction,1)
print(output)
Out[54]:
8
[torch.LongTensor of size 1]
In [55]:
target = data['labels'][1]
print(target)
Out[55]:
8
In [60]:
ind = 1
for t = 1,10 do
while data['labels'][ind] ~= t do
ind = ind + 1
end
model:evaluate()
model:forward(data['data'][ind])
for i = 1,m:size() do
print('Layer ' .. i)
print(m:get(i))
print('Weights:')
if not pcall(function () itorch.image(m:get(i).weight) end) then print("Can't display") end
print('Output:')
if not pcall(function () itorch.image(m:get(i).output) end) then print("Can't display") end
print()
end
end
Out[60]:
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 3
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 32x14x14
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
bias : CudaTensor - size: 128
Out[60]:
kH : 5
finput : CudaTensor - size: 800x100
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
Out[60]:
ceil_mode : false
padW : 0
output : CudaTensor - size: 128x5x5
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
nelement : 3200
Out[60]:
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
Out[60]:
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 14
nn.Dropout(0.500000)
{
Out[60]:
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Out[60]:
Can't display
Output:
Out[60]:
Layer 3
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 32x14x14
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
bias : CudaTensor - size: 128
kH : 5
finput : CudaTensor - size: 800x100
Out[60]:
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 128x5x5
Out[60]:
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
nelement : 3200
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
Out[60]:
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 14
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
Out[60]:
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
Out[60]:
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 3
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 32x14x14
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
bias : CudaTensor - size: 128
kH : 5
finput : CudaTensor - size: 800x100
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 128x5x5
kH : 2
}
Weights:
Out[60]:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
nelement : 3200
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Out[60]:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
bias : CudaTensor - size: 256
Out[60]:
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Out[60]:
Output:
Can't display
Layer 14
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 3
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 32x14x14
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
bias : CudaTensor - size: 128
kH : 5
finput : CudaTensor - size: 800x100
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Out[60]:
Can't display
Output:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 128x5x5
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
nelement : 3200
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Out[60]:
Weights:
Can't display
Output:
Can't display
Layer 14
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 3
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 32x14x14
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
bias : CudaTensor - size: 128
kH : 5
finput : CudaTensor - size: 800x100
Out[60]:
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
ceil_mode : false
Out[60]:
padW : 0
output : CudaTensor - size: 128x5x5
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
nelement : 3200
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
Out[60]:
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 14
Out[60]:
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
Out[60]:
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 3
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
train : false
kW : 2
ceil_mode : false
padW : 0
Out[60]:
output : CudaTensor - size: 32x14x14
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
bias : CudaTensor - size: 128
Out[60]:
kH : 5
finput : CudaTensor - size: 800x100
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 128x5x5
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
nelement : 3200
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 14
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 3
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 32x14x14
kH : 2
Out[60]:
}
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
bias : CudaTensor - size: 128
Out[60]:
kH : 5
finput : CudaTensor - size: 800x100
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
ceil_mode : false
Out[60]:
padW : 0
output : CudaTensor - size: 128x5x5
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
Out[60]:
nelement : 3200
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 14
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 3
Out[60]:
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
Out[60]:
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 32x14x14
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
Out[60]:
bias : CudaTensor - size: 128
kH : 5
finput : CudaTensor - size: 800x100
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 128x5x5
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
nelement : 3200
Out[60]:
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
Out[60]:
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 14
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 3
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 32x14x14
kH : 2
}
Out[60]:
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
bias : CudaTensor - size: 128
kH : 5
finput : CudaTensor - size: 800x100
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Can't display
Out[60]:
Output:
Out[60]:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 128x5x5
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
nelement : 3200
Out[60]:
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 14
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
Layer 1
nn.SpatialConvolutionMM(1 -> 32, 5x5)
{
padW : 0
nInputPlane : 1
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x1x32x32
gradBias : CudaTensor - size: 32
dW : 1
nOutputPlane : 32
bias : CudaTensor - size: 32
kH : 5
finput : CudaTensor - size: 25x784
weight : CudaTensor - size: 32x25
train : false
gradWeight : CudaTensor - size: 32x25
fgradInput : CudaTensor - size: 28x28
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 2
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 32x28x28
gradInput : CudaTensor - size: 9x32x28x28
train : false
}
Weights:
Out[60]:
Can't display
Output:
Out[60]:
Layer 3
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x32x28x28
indices : CudaTensor - size: 1x32x14x14
train : false
kW : 2
ceil_mode : false
padW : 0
output : CudaTensor - size: 32x14x14
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 4
nn.SpatialConvolutionMM(32 -> 128, 5x5)
{
padW : 0
nInputPlane : 32
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x32x14x14
gradBias : CudaTensor - size: 128
dW : 1
nOutputPlane : 128
bias : CudaTensor - size: 128
kH : 5
finput : CudaTensor - size: 800x100
weight : CudaTensor - size: 128x800
train : false
gradWeight : CudaTensor - size: 128x800
fgradInput : CudaTensor - size: 10x10
padH : 0
dH : 1
kW : 5
}
Weights:
Out[60]:
Output:
Out[60]:
Layer 5
nn.ReLU
{
inplace : false
threshold : 0
val : 0
output : CudaTensor - size: 128x10x10
gradInput : CudaTensor - size: 9x128x10x10
train : false
}
Weights:
Can't display
Output:
Out[60]:
Layer 6
nn.SpatialMaxPooling(2,2,2,2)
{
dH : 2
dW : 2
padH : 0
gradInput : CudaTensor - size: 9x128x10x10
indices : CudaTensor - size: 1x128x5x5
train : false
kW : 2
ceil_mode : false
padW : 0
Out[60]:
output : CudaTensor - size: 128x5x5
kH : 2
}
Weights:
Can't display
Output:
Out[60]:
Layer 7
nn.Reshape(3200)
{
size : LongStorage - size: 1
batchsize : LongStorage - size: 2
train : false
output : CudaTensor - size: 3200
gradInput : CudaTensor - size: 9x128x5x5
nelement : 3200
_gradOutput : CudaTensor - empty
_input : CudaTensor - empty
}
Weights:
Can't display
Output:
Can't display
Layer 8
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x3200
train : false
p : 0.5
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 3200
}
Weights:
Can't display
Output:
Can't display
Layer 9
nn.Linear(3200 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x3200
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x3200
output : CudaTensor - size: 256
gradWeight : CudaTensor - size: 256x3200
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 10
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 11
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Can't display
Layer 12
nn.Linear(256 -> 256)
{
gradBias : CudaTensor - size: 256
weight : CudaTensor - size: 256x256
train : false
bias : CudaTensor - size: 256
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
Out[60]:
gradWeight : CudaTensor - size: 256x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 13
nn.Tanh
{
gradInput : CudaTensor - size: 9x256
train : false
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 14
nn.Dropout(0.500000)
{
v2 : true
noise : CudaTensor - size: 9x256
train : false
p : 0.5
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 256
}
Weights:
Can't display
Output:
Out[60]:
Can't display
Layer 15
nn.Linear(256 -> 10)
{
gradBias : CudaTensor - size: 10
weight : CudaTensor - size: 10x256
train : false
bias : CudaTensor - size: 10
gradInput : CudaTensor - size: 9x256
output : CudaTensor - size: 10
gradWeight : CudaTensor - size: 10x256
addBuffer : CudaTensor - size: 9
}
Weights:
Out[60]:
Output:
Out[60]:
Can't display
Layer 16
nn.SoftMax
{
gradInput : CudaTensor - size: 9x10
train : false
output : CudaTensor - size: 10
}
Weights:
Can't display
Output:
Can't display
In [ ]:
Content source: touqir14/Project_Cmput399
Similar notebooks: