In [1]:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
In [2]:
sess = tf.Session()
In [3]:
# Load iris dataset
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
In [4]:
# Parameters
batch_size = 25
learning_rate = 0.1
iterations = 200
In [5]:
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1, 1]))
b = tf.Variable(tf.random_normal(shape=[1, 1]))
model_output = tf.add(tf.matmul(x_data, A), b)
# L1 loss function
loss_l1 = tf.reduce_mean(tf.abs(y_target - model_output))
init = tf.global_variables_initializer()
sess.run(init)
opt_l1 = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_step_l1 = opt_l1.minimize(loss_l1)
loss_vec_l1 = []
for i in range(iterations):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = np.transpose([x_vals[rand_index]])
rand_y = np.transpose([y_vals[rand_index]])
fd = {
x_data: rand_x,
y_target: rand_y
}
sess.run(train_step_l1, feed_dict=fd)
temp_loss_l1 = sess.run(loss_l1, feed_dict=fd)
loss_vec_l1.append(temp_loss_l1)
if (i+1)%25==0:
print('Step #{} A = {}, b = {}'.format((i+1), sess.run(A), sess.run(b)))
In [6]:
from tensorflow.python.framework import ops
ops.reset_default_graph()
sess = tf.Session()
In [7]:
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1, 1]))
b = tf.Variable(tf.random_normal(shape=[1, 1]))
model_output = tf.add(tf.matmul(x_data, A), b)
# L1 loss function
loss_l2 = tf.reduce_mean(tf.square(y_target - model_output))
init = tf.global_variables_initializer()
sess.run(init)
opt_l2 = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_step_l2 = opt_l2.minimize(loss_l2)
loss_vec_l2 = []
for i in range(iterations):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = np.transpose([x_vals[rand_index]])
rand_y = np.transpose([y_vals[rand_index]])
fd = {
x_data: rand_x,
y_target: rand_y
}
sess.run(train_step_l2, feed_dict=fd)
temp_loss_l2 = sess.run(loss_l2, feed_dict=fd)
loss_vec_l2.append(temp_loss_l2)
if (i+1)%25==0:
print('Step #{} A = {}, b = {}'.format((i+1), sess.run(A), sess.run(b)))
In [8]:
plt.plot(loss_vec_l1, 'k-', label='L1 Loss')
plt.plot(loss_vec_l2, 'r--', label='L2 Loss')
plt.title('L1 and L2 Loss per Generation')
plt.xlabel('Generation')
plt.ylabel('L1 Loss')
plt.legend(loc='upper right')
plt.show()
In [ ]: