In [1]:
import matplotlib.pyplot as plt
import numpy as np
import tensorflow as tf
from sklearn import datasets
In [2]:
sess = tf.Session()
In [3]:
iris = datasets.load_iris()
x_vals = np.array([x[3] for x in iris.data])
y_vals = np.array([y[0] for y in iris.data])
In [4]:
batch_size = 50
learning_rate = 0.25
In [5]:
x_data = tf.placeholder(shape=[None, 1], dtype=tf.float32)
y_target = tf.placeholder(shape=[None, 1], dtype=tf.float32)
A = tf.Variable(tf.random_normal(shape=[1,1]))
b = tf.Variable(tf.random_normal(shape=[1,1]))
model_output = tf.add(tf.matmul(x_data, A), b)
In [6]:
demming_numerator = tf.abs(tf.subtract(y_target, tf.add(tf.matmul(x_data, A), b)))
demming_denominator = tf.sqrt(tf.add(tf.square(A), 1))
loss = tf.reduce_mean(tf.truediv(demming_numerator, demming_denominator))
In [7]:
init = tf.global_variables_initializer()
sess.run(init)
optimize = tf.train.GradientDescentOptimizer(learning_rate=learning_rate)
train_step = optimize.minimize(loss)
In [8]:
loss_vec = []
for i in range(1500):
rand_index = np.random.choice(len(x_vals), size=batch_size)
rand_x = np.transpose([x_vals[rand_index]])
rand_y = np.transpose([y_vals[rand_index]])
fd = {
x_data: rand_x,
y_target: rand_y,
}
sess.run(train_step, feed_dict=fd)
temp_loss = sess.run(loss, feed_dict=fd)
loss_vec.append(temp_loss)
if (i+1)%100 == 0:
print('Step #{} A={} b={}'.format(i+1, sess.run(A), sess.run(b)))
print('Loss = {}'.format(temp_loss))
In [9]:
[slope] = sess.run(A)
[y_intercept] = sess.run(b)
best_fit = []
for i in x_vals:
best_fit.append(slope*i + y_intercept)
In [10]:
plt.plot(x_vals, y_vals, 'o', label='Data points')
plt.plot(x_vals, best_fit, 'r-', label='Best fit line', linewidth=3)
plt.legend(loc='upper left')
plt.title('Sepal Length vs Pedal Width')
plt.xlabel('Pedal Width')
plt.ylabel('Sepal Length')
plt.show()
In [ ]: