In [ ]:
import tensorflow as tf
import numpy as np
In [ ]:
graph = tf.Graph()
with graph.as_default():
sess = tf.Session()
with sess.as_default():
with graph.as_default():
accuracy = tf.Variable(0.2, name="xxx")
accuracy_ = tf.placeholder("float")
img_ = tf.placeholder("float", shape=[None, 64, 64, 3])
img = tf.Variable(tf.zeros([5, 64,64,3]))
tf.scalar_summary("acc", accuracy)
tf.image_summary("img",img)
summary_op = tf.merge_all_summaries()
summary_writer = tf.train.SummaryWriter("log2", graph_def=sess.graph_def)
update = tf.assign(accuracy, accuracy_)
update_img = tf.assign(img, img_)
In [ ]:
with sess.as_default():
with graph.as_default():
sess.run(tf.initialize_all_variables())
img_input = np.zeros([5,64,64,3])
for i in range(1000):
update.eval(feed_dict={accuracy_: i/100.0})
for b in range(5):
for x in range(64):
for y in range(64):
for c in range(3):
img_input[b][x][y][c] = ((x*(c+2)*i**2+y*i*(c+16)+b**3)%1000)/1000.0
update_img.eval(feed_dict={img_: img_input})
summary_writer.add_summary(summary_op.eval(), i)