Train on 25000 samples, validate on 25000 samples
Epoch 1/8
25000/25000 [==============================] - 66s - loss: 0.4564 - acc: 0.7864 - val_loss: 0.3689 - val_acc: 0.8323
Epoch 2/8
25000/25000 [==============================] - 63s - loss: 0.3023 - acc: 0.8754 - val_loss: 0.3948 - val_acc: 0.8256
Epoch 3/8
25000/25000 [==============================] - 68s - loss: 0.2303 - acc: 0.9099 - val_loss: 0.4206 - val_acc: 0.8339
Epoch 4/8
25000/25000 [==============================] - 66s - loss: 0.1733 - acc: 0.9318 - val_loss: 0.4517 - val_acc: 0.8327
Epoch 5/8
25000/25000 [==============================] - 64s - loss: 0.1282 - acc: 0.9525 - val_loss: 0.5009 - val_acc: 0.8264
Epoch 6/8
25000/25000 [==============================] - 65s - loss: 0.0940 - acc: 0.9651 - val_loss: 0.6640 - val_acc: 0.8196
Epoch 7/8
25000/25000 [==============================] - 66s - loss: 0.0724 - acc: 0.9745 - val_loss: 0.7094 - val_acc: 0.8218
Epoch 8/8
25000/25000 [==============================] - 65s - loss: 0.0643 - acc: 0.9775 - val_loss: 0.6907 - val_acc: 0.8200