In [1]:
import pandas as pd
import numpy as np
import karps as ks
import karps.functions as f
from karps.display import show_phase
In [2]:
def harmonic_mean(col):
count = f.as_double(f.count(col))
inv_sum = 1.0/f.sum(1.0/col)
return inv_sum * count
In [3]:
df0 = pd.DataFrame([1.0, 2.0])
df0
Out[3]:
In [4]:
harmonic_mean(df0)
Out[4]:
In [5]:
# Create a HUGE dataframe
df = ks.dataframe([1.0, 2.0], name="my_input")
df
Out[5]:
In [6]:
# And apply our function:
cached_df = f.autocache(df)
hmean = harmonic_mean(cached_df)
hmean
Out[6]:
In [7]:
s = ks.session("demo1e")
In [10]:
s.eval(hmean)
Out[10]:
In [ ]:
s = ks.session("demo1b")
In [11]:
s.compute(hmean)
Out[11]:
In [12]:
_11.values()
Out[12]:
In [ ]:
df = pd.concat({'col1':c1, 'col2':c2})
df
In [ ]:
df = pd.DataFrame([1.0, 2.0])
In [ ]:
f.count(df)
In [ ]:
df2 = pd.DataFrame(list(zip(range(5), [x%2 for x in range(1,6)])))
df2
In [ ]:
z = pd.Series.groupby(df2[0], by=df2[1])
z.max()
In [ ]:
pd.Series({'x':x})
In [ ]:
type(df[df.columns[0]])
In [ ]:
pd.Series.__add__(df[0], df[0])
In [ ]:
s=(x.sum())
type(s), s
In [ ]:
np.cast(s, np.float64)
In [ ]:
x.count()
In [ ]: