In [1]:
import holoviews as hv
from explorer.functors import Column, CustomFunctor, StarGalaxyLabeller, CompositeFunctor, RAColumn, DecColumn
import pandas as pd
import fastparquet
import dask.dataframe as dd

In [2]:
from distributed import Client, LocalCluster
# cluster = LocalCluster(n_workers=32)
# client = Client(cluster)

In [3]:
client = Client(scheduler_file='/scratch/tmorton/dask/scheduler.json')

In [4]:
from explorer.catalog import ParquetCatalog
import glob

files = glob.glob('/scratch/tmorton/qa_explorer_data/forced_big_fake*')[:32]
cat = ParquetCatalog(files)

In [5]:
from explorer.functors import (Mag, CustomFunctor, DeconvolvedMoments, Column,
                            SdssTraceSize, PsfSdssTraceSizeDiff, HsmTraceSize,
                            PsfHsmTraceSizeDiff)

# fdict = {'x': Mag('base_PsfFlux'), 'y1': DeconvolvedMoments(),
#                       'y2': CustomFunctor('mag(modelfit_CModel) - mag(base_PsfFlux)'),
#                       'ra': RAColumn(), 'dec':DecColumn()}

In [6]:
f = DeconvolvedMoments()
f.columns


Out[6]:
('ext_shapeHSM_HsmSourceMoments_xx',
 'ext_shapeHSM_HsmSourceMoments_yy',
 'base_SdssShape_xx',
 'base_SdssShape_yy',
 'ext_shapeHSM_HsmPsfMoments_xx',
 'ext_shapeHSM_HsmPsfMoments_yy')

In [7]:
xfn = CustomFunctor('mag(base_PsfFlux)')
yfn = CustomFunctor('mag(modelfit_CModel) - mag(base_PsfFlux)')

In [8]:
%time x = client.persist(xfn(cat))
%time y = client.persist(yfn(cat))


CPU times: user 7.79 s, sys: 86.9 ms, total: 7.88 s
Wall time: 15.1 s
CPU times: user 6.33 s, sys: 155 ms, total: 6.49 s
Wall time: 6.78 s

In [13]:
type(x)


Out[13]:
dask.dataframe.core.Series

In [11]:
type(y)


Out[11]:
dask.dataframe.core.Series

In [ ]: