In [1]:
%pylab inline
from obliquity.distributions import Cosi_Distribution
from simpledist.distributions import Box_Distribution, Gaussian_Distribution
import logging
rootLogger = logging.getLogger()
rootLogger.setLevel(logging.WARNING)
In [5]:
vsini = Box_Distribution(0,2)
#vsini = Gaussian_Distribution(3,0.5)
cosi_dist = Cosi_Distribution((1.3,0.1),(15,0.3),vsini, veq_simple=True)
cosi_dist.summary_plot()
In [25]:
from obliquity.kappa_inference import like_cosi
print like_cosi(.4,vsini,cosi_dist.veq_dist,vgrid=None)
In [8]:
cs = np.linspace(0,1,100)
plot(cs,cosi_dist(cs))
Out[8]:
In [26]:
Ls = cs*0
for i,c in enumerate(cs):
Ls[i] = like_cosi(c,vsini,cosi_dist.veq_dist)
In [27]:
plot(cs,Ls)
Out[27]:
In [3]:
from obliquity.kappa_inference import cosi_posterior
cs, post = cosi_posterior(vsini,cosi_dist.veq_dist)
plot(cs,post)
Out[3]:
In [ ]: