In [49]:
import pandas as pd
import numpy as np
from sklearn import ensemble, preprocessing
import xgboost as xgb
In [50]:
train = pd.read_csv('competition_data/train_set.csv', parse_dates=[2,])
test = pd.read_csv('competition_data/test_set.csv', parse_dates=[3,])
tube_data = pd.read_csv('competition_data/tube.csv')
bill_of_materials_data = pd.read_csv('competition_data/bill_of_materials.csv')
specs_data = pd.read_csv('competition_data/specs.csv')
In [51]:
train = pd.merge(train, tube_data, on ='tube_assembly_id')
train = pd.merge(train, bill_of_materials_data, on ='tube_assembly_id')
test = pd.merge(test, tube_data, on ='tube_assembly_id')
test = pd.merge(test, bill_of_materials_data, on ='tube_assembly_id')
In [52]:
train['year'] = train.quote_date.dt.year
train['month'] = train.quote_date.dt.month
In [53]:
test['year'] = test.quote_date.dt.year
test['month'] = test.quote_date.dt.month
In [54]:
idx = test.id.values.astype(int)
test = test.drop(['id', 'tube_assembly_id', 'quote_date'], axis = 1)
labels = train.cost.values
train = train.drop(['quote_date', 'cost', 'tube_assembly_id'], axis = 1)
In [55]:
train['material_id'].replace(np.nan,' ', regex=True, inplace= True)
test['material_id'].replace(np.nan,' ', regex=True, inplace= True)
for i in range(1,9):
column_label = 'component_id_'+str(i)
print(column_label)
train[column_label].replace(np.nan,' ', regex=True, inplace= True)
test[column_label].replace(np.nan,' ', regex=True, inplace= True)
In [56]:
train.fillna(0, inplace = True)
test.fillna(0, inplace = True)
In [60]:
train.shape
Out[60]:
In [58]:
train.head()
Out[58]:
In [61]:
train = np.array(train)
test = np.array(test)
In [62]:
# label encode the categorical variables
for i in range(train.shape[1]):
if i in [0,3,5,11,12,13,14,15,16,20,22,24,26,28,30,32,34]:
print(i,list(train[1:5,i]) + list(test[1:5,i]))
lbl = preprocessing.LabelEncoder()
lbl.fit(list(train[:,i]) + list(test[:,i]))
train[:,i] = lbl.transform(train[:,i])
test[:,i] = lbl.transform(test[:,i])
# object array to float
train = train.astype(float)
test = test.astype(float)
In [65]:
train[0,]
Out[65]:
In [73]:
train.shape
Out[73]:
In [66]:
label_log = np.log1p(labels)
In [67]:
type(label_log)
Out[67]:
In [68]:
label_log
Out[68]:
In [69]:
params = {}
params["objective"] = "reg:linear"
params["eta"] = 0.02
params["min_child_weight"] = 5
params["subsample"] = 0.7
params["colsample_bytree"] = 0.6
params["scale_pos_weight"] = 0.8
params["silent"] = 1
params["max_depth"] = 9
params["max_delta_step"]=2
plst = list(params.items())
In [70]:
xgtrain = xgb.DMatrix(train, label=label_log)
xgtest = xgb.DMatrix(test)
In [71]:
num_rounds = 2000
model = xgb.train(plst, xgtrain, num_rounds)
preds1 = model.predict(xgtest)
In [72]:
np.expm1(preds1)
Out[72]:
In [ ]:
num_rounds = 3000
model = xgb.train(plst, xgtrain, num_rounds)
preds2 = model.predict(xgtest)
In [ ]:
preds2
In [ ]:
num_rounds = 1500
model = xgb.train(plst, xgtrain, num_rounds)
preds4 = model.predict(xgtest)
In [ ]:
preds4
In [ ]:
preds = (np.expm1( (preds1+preds2+preds4)/3))
In [ ]:
preds
In [ ]:
preds = pd.DataFrame({"id": idx, "cost": preds})
In [ ]:
preds