In [2]:
%pylab inline
import pandas as pd
import sklearn.ensemble as sk_ensemble
import sklearn.cross_validation as sk_cv
import xgboost as xgb
In [3]:
def rmsle(actual, predicted):
error = np.log1p(predicted) - np.log1p(actual)
return np.sqrt(np.mean(np.square(error)))
In [4]:
train_df = pd.read_csv('../train_set_adjusted.csv')
In [45]:
# print train_df.shape
# print train_df.columns
In [6]:
tube = pd.read_csv('../tube_material_id_imputed_dummies_drop_ns.csv')
In [46]:
# print tube.shape
# print tube.columns
In [8]:
spec = pd.read_csv('../spec_dummies.csv')
In [47]:
# print spec.shape
# print spec.columns
In [10]:
comp = pd.read_csv('../comp_type_dummies.csv')
In [48]:
# print comp.shape
# print comp.columns
In [12]:
comp_type_weight = pd.read_csv('../comp_type_weight.csv')
In [49]:
# print comp_type_weight.shape
# print comp_type_weight.columns
In [14]:
tube_vol = pd.read_csv('../tube_volume.csv')
In [15]:
train = pd.merge(train_df, tube)
train = pd.merge(train, spec)
train = pd.merge(train, comp_type_weight)
train = pd.merge(train, tube_vol)
In [30]:
train.shape
Out[30]:
In [68]:
train_sub_train, train_sub_cv = sk_cv.train_test_split(train.ix[:29000], train_size = 0.5, random_state = 346)
train_sub_test = train.ix[29000:]
In [69]:
print train_sub_train.shape
print train_sub_cv.shape
In [81]:
X = train_sub_train.drop(['tube_assembly_id', 'quote_date', 'cost'], axis=1).values
Y = train_sub_train.cost
# , random_state=0, verbose=0
rf = sk_ensemble.RandomForestRegressor(n_estimators=500, n_jobs=4, oob_score=True)
rf = rf.fit(X, np.log1p(Y))
In [82]:
X_cv = train_sub_cv.drop(['tube_assembly_id', 'quote_date', 'cost'], axis=1).values
y_cv = train_sub_cv.cost
X_test = train_sub_test.drop(['tube_assembly_id', 'quote_date', 'cost'], axis=1).values
y_test = train_sub_test.cost
y_cv_fitted = np.expm1(rf.predict(X_cv))
In [83]:
print rmsle(y_cv, y_cv_fitted)
print y_cv[:10]
print y_cv_fitted[:10]
In [73]:
kaggle_test_df.head()
Out[73]:
In [84]:
kaggle_test = pd.read_csv('../test_dummies_adjusted.csv')
kaggle_test_df = pd.merge(kaggle_test, tube)
kaggle_test_df = pd.merge(kaggle_test_df, spec)
kaggle_test_df = pd.merge(kaggle_test_df, comp_type_weight)
kaggle_test_df = pd.merge(kaggle_test_df, tube_vol)
kaggle_test_vals = kaggle_test_df.drop(['tube_assembly_id', 'quote_date', 'cost', 'id'], axis=1).values
preds = np.expm1(rf.predict(kaggle_test_vals))
In [85]:
preds[:10]
Out[85]:
In [ ]: